Worked Examples for Chapter 10

Example 1 for Section 10.3 

The Build-Em-Fast Company has agreed to supply its best customer with three widgits during each of the next 3 weeks, even though producing them will require some overtime work. The relevant production data are as follows:

	Week
	Maximum Production,

Regular Time
	Maximum Production,

Overtime
	Production Cost per Unit

Regular Time 

	1
	2
	2
	$300

	2
	3
	2
	$500

	3
	1
	2
	$400


The cost per unit produced with overtime for each week is $100 more than for regular time. The cost of storage is $50 per unit for each week it is stored. There is already an inventory of two widgets on hand currently, but the company does not want to retain any widgets in inventory after the 3 weeks.


Management wants to know how many units should be produced in each week to minimize the total cost of meeting the delivery schedule.


Let us solve this by using dynamic programming.

Application of Dynamic Programming


The decisions that need to be made are the number of units to produce each week, so the decision variables are


xn  = number of widgets to produce in week n, for n = 1, 2, 3.

To choose the value of xn, it is necessary to know the number of widgets already on hand at the beginning of week n. Therefore, the “state of the system” then is


 sn = number of widgets on hand at the beginning of week n, for n = 1, 2, 3.

Because of the shipment of three widgets to the customer each week, note that


 sn+1 = sn + xn -3.

Also  note that two widgets are on hand at the beginning of week 1, so


s1 = 2.


To introduce symbols for the data given in the above table for each week n, let

        cn
= unit production cost in regular time,

        rn 
= maximum regular time production,

       mn
= maximum total production.

The corresponding data are given in the following table.

	n
	rn
	mn
	cn

	1
	2
	4
	300

	2
	3
	5
	500

	3
	1
	3
	400



We wish to minimize the total cost of meeting the delivery schedule, so our measure of performance is total cost. For n = 1, 2, 3, let


pn(sn, xn) = cost incurred in week n when the state is sn and the decision is xn.

Thus, 



[image: image1.wmf].

Using the notation in Sec. 10.2, let


[image: image2.wmf](sn) = 
optimal cost for week n onward (through the end of week 3) when starting week n in state sn, for n = 1, 2, 3.

Given sn, the feasible values of xn are the integers such that xn ≤ mn and xn ≥ 3 - sn (assuming sn ≤ 3) in order to provide the customer with 3 widgets in week n. Thus, because sn+1 = sn + xn - 3, the optimal value of xn (denoted by 
[image: image3.wmf]) is obtained from the following recursive relationship.


  
[image: image4.wmf],

where



[image: image5.wmf](s4) = 0
for s4 = 0.


Recall that the company does not want to retain any widgets in inventory after the three weeks, so s4 = 0. Therefore, the optimal policy for week 3 obviously is to produce just enough widgets to have a total of three to ship to the customer, so




[image: image6.wmf] = 3 - s3.

Given 
[image: image7.wmf] and 
[image: image8.wmf](s3), we can use the recursive relationship to solve for the optimal policy for week 2 and then for week 1. These calculations are shown below.

For n = 3: 

	s3
	f3*(s3)
	x3*

	0
	1,400
	3

	1
	900
	2

	2
	400
	1

	3 ( s3
	0
	0


For n = 2:

	          
	x2 
	f2(s2, x2) = p2(s2, x2)+ f3*(s2+ x2-3)
	f2*(s2)
	x2*

	s2
	
	0
	1
	2
	3
	4
	5
	
	

	0
	
	
	
	2,900
	3,050
	3,200
	2,900
	3

	1
	
	
	2,400
	2,450
	2,600
	2,850
	2,400
	2

	2
	
	1,900
	1,950
	2,000
	2,250
	2,900
	1,900
	1

	3
	1,400
	1,450
	1,500
	1,650
	2,300
	2,950
	1,400
	0


For n = 1:

	          
	x1 
	f1(s1, x1) = p1(s1, x1)+ f2*(s1+ x1-3)
	f1*(s1)
	x1*

	s1
	
	0
	1
	2
	3
	4
	
	

	2
	
	3,200
	3,050
	3,000
	2,950
	2,950
	4


Hence, the optimal plan is to produce four widgets in period 1, store three of them until period 2, and produce three in period 3, with a total cost of $2,950.

Example 2 for Section 10.3 

Consider the following nonlinear programming problem:

Maximize
Z = 
[image: image9.wmf],

subject to





[image: image10.wmf] ≤ 2.

(There are no nonnegativity constraints.) Let us use dynamic programming to solve this problem.

Application of Dynamic Programming

Let x1 be the decision variable at stage 1 and x2 be the decision variable at stage 2.

The key to applying dynamic programming to this problem is to interpret the right-hand side of the constraint as the amount of a resource being made available to activities 1 and 2 (whose levels are x1 and x2). Then the state of the system entering stage 1 (before choosing x1 and x2) and entering stage 2 (before choosing x2) is the amount of the resource still available for allocation to the remaining activities. Consequently, letting sn denote the state of the system entering stage n, we have


  s1 = 2   and   s2 = 2 – 
[image: image11.wmf].

For n = 2:
At stage 2, we solve the following problem with variable x2:

Maximize f2(s2, x2) = x2,

subject to 


x2 ( s2.
The optimal solution is 
[image: image12.wmf], with 
[image: image13.wmf].
For n = 1:

At stage 1, we maximize f1(2, x1) = 
[image: image14.wmf],

subject to




[image: image15.wmf] ≤ 2.


[image: image16.wmf]  (  x1 = 1,  -1
are local maxima.


[image: image17.wmf]< 0 for x1 = 1, -1. 

Hence, 
[image: image18.wmf] is locally concave around x1 = 1 and x1 = -1.
Since 
[image: image19.wmf] = 
[image: image20.wmf] = 1, whereas f(2, 
[image: image21.wmf]) = 0 at the endpoints of the feasible region, we have both
[image: image22.wmf] = 1 and 
[image: image23.wmf]= -1 as global maximizers and 
[image: image24.wmf]
Hence, the optimal solutions are 
[image: image25.wmf] = (1, 1), and 
[image: image26.wmf] = (1, -1) with an optimal objective function value of Z = 1.
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