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Simultaneous Linear Equations

Consider the system of simultaneous linear equations

a11x1 � a12x2 � . . . � a1nxn � b1,
a21x1 � a22x2 � . . . � a2nxn � b2,

am1x1 � am2x2 � . . . � amnxn � bm.

It is commonly assumed that this system has a solution, and
a unique solution, if and only if m � n. However, this as-
sumption is an oversimplification. It raises the questions: Un-
der what conditions will these equations have a simultane-
ous solution? Given that they do, when will there be only
one such solution? If there is a unique solution, how can it
be identified in a systematic way? These questions are the
ones we explore in this appendix. The discussion of the first
two questions assumes that you are familiar with the basic
information about matrices in Appendix 4.

The preceding system of equations can also be written
in matrix form as

Ax � b,

where

A = � �, x = � �, b = � �.
The first two questions can be answered immediately in terms
of the properties of these matrices. First, the system of equa-
tions possesses at least one solution if and only if the rank of
A equals the rank of [A, b]. (Notice that equality is guaranteed
if the rank of A equals m.) This result follows immediately
from the definitions of rank and linear independence given in

Appendix 4, because if the rank of [A, b] exceeds the rank of
A by 1 (the only other possibility), then b is linearly indepen-
dent of the column vectors of A (that is, b cannot equal any
linear combination Ax of these vectors).

Second, given that these ranks are equal, there are then
two possibilities. If the rank of A is n (its maximum possible
value), then the system of equations will possess exactly one
solution. [This result follows from Theorem A4.1, the defin-
ition of a basis, and part (b) of Theorem A4.3.] If the rank
of A is less than n, then there will exist an infinite number
of solutions. (This result follows from the fact that for any
basis of the column vectors of A, the xj corresponding to col-
umn vectors not in this basis can be assigned any value, and
there will still exist a solution for the other variables as before.)

Finally, it should be noted that if A and [A, b] have a
common rank r such that r � m, then (m � r) of the equa-
tions must be linear combinations of the other ones, so that
these (m � r) redundant equations can be deleted without
affecting the solution(s). It then follows from the preceding
results that this system of equations (with or without the re-
dundant equations) possesses at least one solution, where
the number of solutions is one if r � n or infinite if r � n.

Now consider how to find a solution to the system of
equations. Assume for the moment that m � n and A is non-
singular, so that a unique solution exists. This solution can
be obtained by the Gauss-Jordan method of elimination
(commonly called Gaussian elimination), which proceeds
as follows. To begin, eliminate the first variable from all but
one (say, the first) of the equations by adding an appropriate
multiple (positive or negative) of this equation to each of the
others. (For convenience, this one equation would be divided
by the coefficient of this variable, so that the final value of this
coefficient is 1.) Next, proceed in the same way to eliminate
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the second variable from all equations except one new one
(say, the second). Then repeat this procedure for the third
variable, the fourth variable, and so on, until each of the n
variables remains in only one of the equations and each of
the n equations contains exactly one of these variables. The
desired solution can then be read from the equations directly.

To illustrate the Gauss-Jordan method of elimination,
we consider the following system of linear equations:

(1) x1 � x2 � 4x3 � 10
(2) �x1 � 3x2 � 10
(3) 2x2 � 5x3 � 22.

The method begins by eliminating x1 from all but the first
equation. This first step is executed simply by adding Eq.
(1) to Eq. (2), which yields

(1) x1 � x2 � 4x3 � 10
(2) 2x2 � 4x3 � 20
(3) 2x2 � 5x3 � 22.

The next step is to eliminate x2 from all but the second equa-
tion. Begin this step by dividing Eq. (2) by 2, so that x2 will
have a coefficient of �1, as follows:

(1) x1 � x2 � 4x3 � 10
(2) x2 � 2x3 � 10
(3) 2x2 � 5x3 � 22.

Then add Eq. (2) to Eq. (1), and subtract two times Eq. (2)
from Eq. (3), which yields

(1) x1 � 6x3 � 20
(2) x2 � 2x3 � 10
(3) x3 � 2.

The final step is to eliminate x3 from all but the third equation.
This step requires subtracting six times Eq. (3) from Eq. (1)
and subtracting two times Eq. (3) from Eq. (2), which yields

(1) x1 � 8
(2) x2 � 6
(3) x3 � 2.
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Thus, the desired solution is (x1, x2, x3) � (8, 6, 2), and the
procedure is completed.

Now consider briefly what happens if the Gauss-Jordan
method of elimination is applied when m � n and/or A is
singular. As we discussed earlier, there are three possible
cases to consider. First, if the rank of [A, b] exceeds the rank
of A by 1, then no solution to the system of equations will
exist. In this case, the Gauss-Jordan method obtains an equa-
tion where the left-hand side has vanished (i.e., all the co-
efficients of the variables are zero), whereas the right-hand
side is nonzero. This signpost indicates that no solution ex-
ists, so there is no reason to proceed further.

The second case is where both of these ranks are equal
to n, so that a unique solution exists. This case implies that
m � n. If m � n, then the previous assumptions must hold
and no difficulty arises. Therefore, suppose that m � n, so
that there are (m � n) redundant equations. In this case, all
these redundant equations are eliminated (i.e., both the left-
hand and right-hand sides would become zero) during the
process of executing the Gauss-Jordan method, so the unique
solution is identified just as it was before.

The final case is where both the ranks are equal to r,
where r � n, so that the system of equations possesses an
infinite number of solutions. In this case, at the completion
of the Gauss-Jordan method, each of r variables remains in
only one of the equations, and each of the r equations (any
additional equations have vanished) contains exactly one of
these variables. However, each of the other (n � r) variables
either vanishes or remains in some of the equations. There-
fore, any solution obtained by assigning arbitrary values to
the (n � r) variables, and then identifying the respective val-
ues of the r variables from the single final equation in which
each one appears, is a solution to the system of simultane-
ous equations. Equivalently, the transfer of these (n � r)
variables to the right-hand side of the equations (either be-
fore or after the method is executed) identifies the solutions
for the r variables as a function of these extra variables.
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