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25C H A P T E R

Reliability

The many definitions of reliability that exist depend upon the viewpoint of the user.
However, they all have a common core that contains the statement that reliability, R(t),

is the probability that a device performs adequately over the interval [0, t]. In general, it is
assumed that unless repair or replacement occurs, adequate performance at time t implies
adequate performance during the interval [0, t]. The device under consideration may be an
entire system, a subsystem, or a component.1 Although this definition is simple, the sys-
tems to which it is applied are generally very complex. In principle, it is possible to break
down the system into black boxes, with each black box being in one of two states: good
or bad. Mathematical models of the system can then be abstracted from the physical
processes and the theory of combinatorial probability used to predict the reliability of the
system. The black boxes may be independent of, or be very dependent upon, each other.
For any reasonable system, such a probability analysis generally becomes so cumbersome
that it must be considered impractical. Hence, we seek other methods that either simplify
the calculations or provide bounds on the reliability of the entire complex system.

As an example, consider an automobile. There are a large number of functional parts,
wiring, and joints. These may be broken into subsystems, with each subsystem having a
reliability associated with it. Possible subsystems are the engine, transmission, exhaust,
body, carburetor, and brakes. A mathematical model of the automobile system can be ab-
stracted and the theory of combinatorial probability used to predict the reliability of the
automobile.

� 25.1 STRUCTURE FUNCTION OF A SYSTEM

Suppose an automobile can be divided into n components (subsystems). The performance
of each component can be denoted by a random variable, Xi, that takes on the value xi � 1
if the component performs satisfactorily for the desired time and xi � 0 if the component
fails during this time. In general, then, Xi is a binary random variable defined by

Xi � �1, if component i performs satisfactorily during time [0, t]
0, if component i fails during time [0, t].

1A subsystem can be viewed as containing one or more components.
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The performance of the system is measured by the binary random variable1 �(X1, X2, . . . ,
Xn), where

�(X1, X2, . . . , Xn) � �
The function � is called the structure function of the system and is just a function of the
n-component random variables. Thus, the performance of the automobile is a function of
its n components and takes on the value 1 if the automobile functions properly for the de-
sired time and 0 if it does not. Because the performance of each component in the auto-
mobile takes on the value 1 or 0, the function � is defined over 2n points, with each point
resulting in a 1 if the automobile performs satisfactorily and a 0 if the automobile fails.

There are several important structure functions to consider, depending upon how the
components are assembled. Three structure functions will be discussed in detail.

Series System

The series system is the simplest and most common of all the configurations. For a series
system, the system fails if any component of the system fails; i.e., it performs satisfacto-
rily if and only if all the components perform satisfactorily. The structure function for a
series system is given by

�(X1, X2, . . . , Xn) � X1X2
. . . Xn � min{X1, X2, . . . . Xn}.

This equation holds because each Xi is either 1 or 0. Hence, the structure function takes
on the value 1 if each Xi equals 1 or, equivalently, if the minimum of the Xi equals 1. For
example, suppose the automobile is divided into only two components: the engine (X1)
and the transmission (X2). Then it is reasonable to assume that the automobile will per-
form satisfactorily for the desired time period if and only if the engine and the transmis-
sion both perform satisfactorily. Hence,

�(X1, X2) � X1X2,

and

�(1, 1) � 1, �(1, 0) � �(0, 1) � �(0, 0) � 0.

Parallel System

A parallel system of n components is defined to be a system that fails if all components
fail, or alternatively, a system that performs satisfactorily if at least one of the n compo-
nents performs satisfactorily (with all n components operating simultaneously). This prop-
erty of parallel systems is often called redundancy (i.e, there are alternative components,
existing within the system, to help the system operate successfully in case of failure of
one or more components). The structure function for a parallel system is given by

�(X1, X2, . . . , Xn) � 1 � (1 � X1)(1 � X2) . . . (1 � Xn)
� max{X1, X2, . . . , Xn}.

This equation again follows because each Xi is either 1 or 0. The structure function takes
on the value 1 if at least one of the Xi equals 1 or, equivalently, if the largest Xi equals 1. In
the automobile example, the car is equipped with front disk (X1) and rear drum (X2) brakes.

1, if system performs satisfactorily during time [0, t]
0, if system fails during time [0, t].

25-2 CHAPTER 25 RELIABILITY

1Note that Xi and � are functions of the time t, but t will be suppressed for each of notation.
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The automobile will perform successfully if either the front or rear brakes operate properly.1

If one is concerned with the structure function of the brake subsystem, then

�(X1 X2) � 1 � (1 � X1)(1 � X2) � X1 � X2 � X1X2,

and

�(1, 1) � �(1, 0) � �(0, 1) � 1, �(0, 0) � 0.

k Out of n System

Some systems are assembled such that the system operates if k out of n components func-
tion properly. Note that the series system is a k out of n system, with k � n, and the par-
allel system is a k out of n system, with k � 1. The structure function for a k out of n
system is given by

�(X1, X2, . . . , Xn) � �
In the automobile example, consider a large truck equipped with eight tires. The structure
function for the tire system is an example of a four-out-of-eight system. (Although the
system’s performance may be degraded if fewer than eight tires are operating, rearrange-
ment of the tire configuration will result in adequate performance as long as at least four
tires are usable.)

It is reasonable to expect the performance of an automobile to improve if the per-
formance of one or more components is improved. This improvement can be reflected
in the characterization of the structure function, where, for example, one would expect
�(1, 0, 0, 1) to be no less than �(1, 0, 0, 0). Hence, it will be assumed that if xi � yi,
for i � 1, 2, . . . n, then

�(y1, y2, . . . , yn) � �(x1, x2, . . . , xn).
A system possessing this property (� is an increasing function of x) is called a coherent
(or monotone) system.

1, if �
n

i�1 
Xi � k

0, if �
n

i�1 
Xi � k.
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1It is evident that the loss of the front or rear brakes will affect the braking capability of the automobile, but the
definition of “perform successfully” may allow for either set working.
2The time t is now suppressed in the notation. Recall that the time is implicitly included in determining whether
or not the ith component performs satisfactorily.

� 25.2 SYSTEM RELIABILITY

The structure function of a system containing n components is a binary random variable that
takes on the value 1 or 0. Furthermore, the reliability of this system can be expressed as2

R � P{�(X1, X2, . . . , Xn) � 1}.

Thus, for a series system, the reliability is given by

R � P{X1X2
. . . Xn � 1} � P{X1 � 1, X2 � 1, . . . , Xn � 1}.

When the usual terms for conditional probability are employed,

R � P{X1 � 1}P{X2 � 1X1 � 1}P{X3 � 1X1 � 1, X2 � 1}
. . . P{Xn � 1X1 � 1, . . . , Xn�1 � 1}.
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In general, such conditional probabilities require careful analysis. For example, P{X2 �
1X1 � 1} is the probability that component 2 will perform successfully, given that com-
ponent 1 performs successfully. Consider a system where the heat from component 1 af-
fects the temperature of component 2 and thereby its probability of success. The perfor-
mance of these components is then dependent, and the evaluation of the conditional
probability is extremely difficult. If, on the other hand, the performance characteristics of
these components do not interact, e.g., the temperature of one component does not affect
the performance of the other component, then the components can be said to be
independent. The expression for the reliability then simplifies and becomes

R � P{X1 � 1}P{X2 � 1} . . . P{Xn � 1}.

When the components of a series system are assumed to be independent, it should be
noted that the reliability is a function of the probability distribution of the Xi. This phe-
nomenon is true for any system structure.

Unless otherwise specified, it will be assumed throughout the remainder of this chap-
ter that the component performances are independent. Hence, the probability distribution
of the binary random variables Xi can be expressed as

P{Xi � 1} � pi,

and

P{Xi � 0} � 1 � pi,

Thus, for systems composed of independent components, the reliability becomes a func-
tion of the pi; that is.

R � R(p1, p2, . . . , pn).

Reliability of Series Systems

As previously indicated, for a series structure,

R(p1, p2, . . . , pn) � P{�(X1, X2, . . . , Xn) � 1}
� P{X1X2

. . . Xn � 1}
� P{X1 � 1, X2 � 1, . . . , Xn � 1}
� P{X1 � 1}P{X2 � 1} . . . P{Xn � 1}
� p1p2

. . . pn.

Thus, returning to the automobile example, if the probability that the engine performs sat-
isfactorily is 0.95 and the probability that the transmission performs satisfactorily is 0.99,
then the reliability of this automobile series subsystem is given by R � (0.95)(0.99) � 0.94.

Reliability of Parallel Systems

The structure function for a parallel system is

�(X1, X2, . . . , Xn) � max(X1, X2, . . . , Xn),

and the reliability is given by

R(p1, p2, . . . , pn) � P{max(X1, X2, . . . , Xn) � 1}
� 1 � P{all Xi � 0}
� 1 � P{X1 � 0, X2 � 0, . . . , Xn � 0}
� 1 � (1 � p1)(1 � p2) . . . (1 � pn).

25-4 CHAPTER 25 RELIABILITY
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� 25.3 CALCULATION OF EXACT SYSTEM RELIABILITY

Thus, if the probability that the front disk brakes and the rear drum brakes perform sat-
isfactorily is 0.99 for each, the subsystem reliability is given by

R � 1 � (0.01)(0.01) � 0.9999.

Reliability of k Out of n Systems

The structure function for a k out of n system is

�(X1, X2, . . . , Xn) � �
and the reliability is given by

R(p1, p2, . . . , pn) � P��
n

i�1 
Xi � k�.

The evaluation of this expression is, in general, quite difficult except for the case of
p1 � p2 � . . . � pn � p. Under this assumption, �n

i � 1 Xi has a binomial distribution with
parameters n and p, so that

R(p, p, . . . , p) � �
n

i�k 
� � � pi(1 � p)n�i.

For the truck tire example, if each tire has a probability of 0.95 of performing satisfacto-
rily, then the reliability of a four-out-of-eight system is given by

R � �
8

i�4 
� � (0.95)i(0.05)8�i � 0.9999.

For general structures, the system reliability calculations can become quite tedious.
A technique for computing reliabilities for this general case will be presented in the next
section. However, the final result of this section is to indicate that the reliability function
of a system of independent components can be shown to be an increasing function of the
pi; that is, if pi � qi for i � 1, 2, . . . . , n, then

R(q1, q2, . . . , qn) � R (p1, p2, . . . , pn).

This result is analogous to, and dependent upon, the assumption that the structure function
of the system is coherent. The implication of this intuitive result is that the reliability of
the automobile will improve if the reliability of one or more components is improved.

8
i

n
i

1, if �
n

i�1 
Xi � k

0, if �
n

i�1 
Xi � k,

A representation of the structure of a system can be expressed in terms of a network, and
some of the material presented in Chap. 9 is relevant. For example, consider the system that
can be represented by the network in Fig. 25.1. This system consists of five components, con-
nected in a somewhat complex manner. According to the network diagram, the system will
operate successfully if there exists a flow from A (the source) to D (the sink) through the di-
rected graph, i.e., if components 1 and 4 operate successfully, or components 2 and 5 operate
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successfully, or components 1, 3, and 5 operate successfully. In fact, each arc can be viewed
as having capacity 1 or 0, depending upon whether or not the component is operating. If an
arc has a 0 attached to it (the component fails), then the network would lose that arc, and the
system would operate successfully if and only if there is a path from the source to the sink
in the resultant network. This situation is illustrated in Fig. 25.2, where the system still op-
erates if components 3 and 4 fail but becomes inoperable if components 2, 3, and 4 fail. This
suggests a possible method for computing the exact system reliability. Again, denote the per-
formance of the ith component by the binary random variable Xi. Then Xi takes on the value
1 with probability pi and 0 with probability (1 � pi). For each realization, X1 � x1, X2 � x2,
X3 � x3, X4 � x4 and X5 � x5 (there are 25 such realizations), it is determined whether or not
the system will operate, i.e., whether or not the structure function equals 1. The network con-
sisting of those arcs with Xi equal to 1 contains at least one path if and only if the corre-
sponding structure function equals 1. If a path is formed, the probability of obtaining this
configuration is obtained. For the realization in Fig. 21.2a. a path is formed, and

P{X1 � 1, X2 � 1, X3 � 0, X4 � 0, X5 � 1} � p1p2(1 � p3)(1 � p4)p5.

Because each realization is disjoint, the system reliability is just the sum of the probabil-
ities of those realizations that contain a path. Unfortunately, even for this simple system,
32 different realizations must be evaluated, and other techniques are desirable.

Another possible procedure for finding the exact reliability is to note that the relia-
bility R(p1, p2, . . . , pn) can be expressed as

R(p1, p2, . . . , pn) � P{maximum flow from source to sink � 1}.

This identity allows the concept of paths and cuts presented in Chap. 9 to be used. In re-
liability theory, the terminology of minimal paths and minimal cuts is introduced. A
minimal path is a minimal set of components that, by functioning, ensures the success-
ful operation of the system. For the example in Fig. 25.1. components 2 and 5 are a min-
imal path. A minimal cut is a minimal set of components that, by failing, ensures the fail-
ure of the system. In Fig. 25.1, components 1 and 2 are a minimal cut. For the system
given in Fig. 25.1, the minimal paths and cuts are

1
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D
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B

C

D

(a) (b)

� FIGURE 25.2
(a) System with components
3 and 4 failed; (b) system
with components 2, 3, and 4
failed.

B

DA

C

41

2 5

3

� FIGURE 25.1
A five-component system.
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Minimal Paths Minimal Cuts

X1X4 X1X2

X1X3X5 X4X5

X2X5 X2X3X4

X1X5

If we use all the minimal paths, there are two ways to obtain the exact system relia-
bility. Because the system will operate if all the components in at least one of the mini-
mal paths operate, the system reliability can be expressed as

R(p1, p2, p3, p4, p5) � P{�(X1, X2, X3, X4, X5) � 1}
� P{(X1X4 � 1) � (X1X3X5 � 1) � (X2X5 � 1)}.

Using the algebra of sets,

R(p1, p2, p3, p4, p5) � P{X1X4 � 1} � P{X1X3X5 � 1}
� P{X2X5 � 1} � P{X1X3X4X5 � 1}
� P{X1X2X4X5 � 1} � P{X1X2X3X5 � 1}
� P{X1X2X3X4X5 � 1)

� p1p4 � p1p3p5 � p2p5 � p1p3p4p5

� p1p2p4p5 � p1p2p3p5 � p1p2p3p4p5

� 2p2 � p3 � 3p4 � p5, when pi � p.

Notice that there are 23 � 1 � 7 terms in the expansion of the reliability function (in gen-
eral, if there are r paths, then there are 2r � 1 terms in the expansion), so that this calcu-
lation is not simple.

The second method of determining the system reliability from paths is as follows:
For the minimal path containing components 1 and 4, X1X4 � 1 if and only if both com-
ponents function. This fact is similarly true for the other two minimal paths. However, the
system will operate if all the components in at least one of the minimal paths operate.
Hence, paths operate as a parallel system, so that

�(X1, X2, X3, X4, X5) � max[X1X4, X1X3X5, X2X5]
� 1 � (1 � X1X4)(1 � X1X3X5)(1 � X2X5).

Because Xi
2 � Xi, then

�(X1, X2, X3, X4, X5) � X1X4 � X1X3X5 � X2X5 � X1X3X4X5 � X1X2X4X5

� X1X2X3X5 � X1X2X3X4X5.

Noting that � is a binary random variable taking on the value 1 and 0,

E[�(X1, X2, X3, X4, X5)] � P{�(X1, X2, X3, X4, X5) � 1}
� R(p1, p2, p3, p4, p5).

Therefore,

R(p1, p2, p3, p4, p5)
� E[X1X4 � X1X3X5 � X2X5 � X1X3X4X5 � X1X2X4X5

� X1X2X3X5 � X1X2X3X4X5]

� p1p4 � p1p3p5 � p2p5 � p1p3p4p5 � p1p2p4p5 � p1p2p3p5

� p1p2p3p4p5.

This result is the same as the one obtained earlier and requires essentially the same amount
of calculation.

25.3 CALCULATION OF EXACT SYSTEM RELIABILITY 25-7
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If we use all the minimal cuts, there are also two ways to obtain the exact system re-
liability. Because the system will fail if and only if all the components in at least one of
the minimal cuts fail, the system reliability can be expressed as

R(p1, p2, p3, p4, p5) � 1 � P{�(X1, X2, X3, X4, X5) � 0}

� 1 � P{X1 � 0, X2 � 0) � (X4 � 0, X5 � 0)
�(X2 � 0, X3 � 0, X4 � 0) � (X1 � 0, X5 � 0)

� 1 � P{X1 � 0, X2 � 0} � P{X4 � 0, X5 � 0}
� P{X2 � 0, X3 � 0, X4 � 0} � P{X1 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0}
� P{X1 � 0, X2 � 0, X5 � 0}
� P{X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}
� P{X1 � 0, X2 � 0, X3 � 0, X4 � 0, X5 � 0}

� 1 � q1q2 � q4q5 � q2q3q4 � q1q5 � q1q2q3q4

� q1q2q5 � q2q3q4q5 � q1q4q5 � q1q2q3q4q5,

where

qi � 1 � pi.

This result is, of course, algebraically equivalent to the one obtained previously, and it in-
volves 24 � 1 � 15 terms in the expansion of the reliability function. In general, if there
are s cuts, there are 2s � 1 terms in the expansion.

The second method of determining the system reliability from cuts is: For the mini-
mal cut containing components 1 and 2, 1 � (1 � X1)(1 � X2) � 0 if and only if both
components fail. This fact is similarly true for the other three cuts. However, the system
will operate if at least one of the components in each cut operates. Hence, cuts operate
as a series system, so that

�(X1, X2, X3, X4, X5)
� min[1 � (1 � X1)(1 � X2), 1 � (1 � X4)(1 � X5),

1 � (1 � X2)(1 � X3)(1 � X4), 1 � (1 � X1)(1 � X5)]

� ([1 � (1 � X1)(1 � X2)][1 � (1 � X4)(1 � X5)]
[1 � (1 � X2)(1 � X3)(1 � X4)][1 � (1 � X1)(1 � X5)])

� 1 � (1 � X1)(1 � X2) � (1 � X4)(1 � X5)
� (1 � X2)(1 � X3)(1 � X4) � (1 � X1)(1 � X5)
� (1 � X1)(1 � X2)(1 � X3)(1 � X4)
� (1 � X1)(1 � X2)(1 � X5)
� (1 � X2)(1 � X3)(1 � X4)(1 � X5)
� (1 � X1)(1 � X4)(1 � X5)
� (1 � X1)(1 � X2)(1 � X3)(1 � X4)(1 � X5).

Taking expectations on both sides leads to the desired expression for the reliability.
Again, this method requires essentially the same amount of calculation as required for the
first procedure using cuts.

25-8 CHAPTER 25 RELIABILITY
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Although the results presented in this section were based upon the example, an ex-
tension to any system can be easily obtained. All minimal paths and/or cuts must be found
and one of the four methods presented chosen.

As previously mentioned, if there are r paths and s cuts in the network, then calculat-
ing the exact reliability using paths will involve summing 2r � 1 terms, and using cuts will
involve 2s � 1 terms. Hence, the method using paths should be used if and only if r � s.
Generally, however, it is simpler to find minimal paths rather than minimal cuts, so that
the method using paths may have to be used because finding all cuts may be computa-
tionally infeasible. It is evident that finding the exact reliability of a system is quite diffi-
cult and that bounds are desirable, provided that the calculations are substantially reduced.

25.4 BOUNDS ON SYSTEM RELIABILITY 25-9

� 25.4 BOUNDS ON SYSTEM RELIABILITY

It is evident that the calculations required to compute exact system reliability are numer-
ous, and that other methods, such as obtaining upper and lower bounds, are desirable.

To obtain bounds, the following result concerning binary random variables is very
useful.

If X1, X2, . . . , Xn are independent binary random variables that take on the value 1 or 0,
and Yi � 	j�Ji

Xj, where the product ranges over all j that are elements in the set Ji,
i � 1, 2, . . . , r, then

P{Y1 � 0, Y2 � 0, . . . , Yi � 0} � P{Y1 � 0}P{Y2 � 0} . . . P{Yi � 0}.

Returning to the example of Sec. 25.3, it was pointed out that the system will operate if
all the components in at least one of the minimal paths operate, so that

R(p1, p2, p3, p4, p5) � P{�(X1, X2, X3, X4, X5) � 1}

� 1 � P{all paths fail}

� 1 � P{X1X4 � 0, X1X3X5 � 0, X2X5 � 0}.

From the result on binary random variables,

R(p1, p2, p3, p4, p5) � 1 � P{X1X4 � 0}P{X1X3X5 � 0}P{X2X5 � 0}

� 1 � (1 � p1p4)(1 � p1p3p5)(1 � p2p5)

� 1 � (1 � p2)2(1 � p3).

when

pi � p,

so that an upper bound is obtained.
Similarly, in Sec. 25.3, it was pointed out that the system will operate if at least one

of the components in each cut operates, so that

R(p1, p2, p3, p4, p5)
� P{�(X1, X2, X3, X4, X5) � 1} � P{at least one of X1, X2 operates; at least one

of X4, X5 operates; at least one of X2, X3, X4 operates; at least one of X1, X5

operates}

� P{[1 � (1 � X1)(1 � X2)] � 1, [1 � (1 � X4)(1 � X5)] � 1,
[1 � (1 � X2)(1 � X3)(1 � X4)] � 1, [1 � (1 � X1)(1 � X5)] � 1}

� P{[1 � X1)(1 � X2) � 0, (1 � X4)(1 � X5) � 0,
(1 � X2)(1 � X3)(1 � X4) � 0, (1 � X1)(1 � X5) � 0}.
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� 25.5 BOUNDS ON RELIABILITY BASED UPON FAILURE TIMES

Now (1 � Xi) are independent binary random variables that take on the values 1 and 0,
so that the result on binary random variables is again applicable; that is.

R(p1, p2, p3, p4, p5)
� (P{(1 � X1)(1 � X2) � 0}P{(1 � X4)(1 � X5) � 0}

P{(1 � X2)(1 � X3)(1 � X4) � 0}P(1 � X1)(1 � X5) � 0})

� ([1 � (1 � p1)(1 � p2)][1 � (1 � p4)(1 � p5)]
[1 � (1 � p2)(1 � p3)(1 � p4)][1 � (1 � p1)(1 � p5)])

� [1 � (1 � p)2]3[1 � (1 � p)3],

when

pi � p,

so that a lower bound is obtained.
Thus, we obtain an upper bound on the reliability based upon paths and a lower bound

based upon cuts. For example, if pi � p � 0.9, then

0.9693 � [1 � (0.1)2]3[1 � (0.1)3] � R(0.9, 0.9, 0.9, 0.9, 0.9)
� 1 � [1 � (0.9)2]2[1 � (0.9)3] � 0.9902.

Furthermore, the exact reliability obtained from the expressions in Sec. 25.3 is given by

R(0.9, 0.9, 0.9, 0.9, 0.9) � (0.9)2 � (0.9)3 � 3(0.9)4 � (0.9)5 � 0.9712.

In general, this technique provides useful results in that the bounds are frequently quite
narrow.

The previous sections considered systems that performed successfully during a designated
period or failed during this same period. An alternative way of viewing systems is to view
their performance as a function of time.

Consider a component (or system) and its associated random variable, the time to
failure, T. Denote the cumulative distribution function of the time to failure of the com-
ponent by F and its density function by f. In terms of the previous discussion, the random
variables X and T are related in that X takes on the values

1, if T � t
0, if T � t.

Then

R(t) � P{X � 1} � 1 � F(t) � �x

t
f(y) dy.

An appealing intuitive property in reliability is the failure rate. For those values of t
for which F(t) � 1, the failure rate r(t) is defined by

r(t) � 

R
f(
(
t
t
)
)


.

This function has a useful probabilistic interpretation, namely, r(t) dt represents the con-
ditional probability that an object surviving to age t will fail in the interval [t, t � dt]. This
function is sometimes called the hazard rate.

In many applications, there is every reason to believe that the failure rate tends to in-
crease because of the inevitable deterioration that occurs. Such a failure rate that remains
constant or increases with age is said to have an increasing failure rate (IFR).
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In some applications, the failure rate tends to decrease. It would be expected to de-
crease initially, for instance, for materials that exhibit the phenomenon of work harden-
ing. Certain solid-state electronic devices are also believed to have a decreasing failure
rate. Thus, a failure rate that remains constant or decreases with age is said to have a 
decreasing failure rate (DFR).

The failure rate possesses some interesting properties. The time to failure distribution
is completely determined by the failure rate. In particular, it is easily shown that

R(t) � 1 � F(t) � exp ���t

0
r(�) d�)	.

Thus, an assumption made about the failure rate has direct implications on the time to
failure distribution. As an example, consider a component whose failure distribution is
given by the exponential distribution, i.e.,

F(t) � P{T � t} � 1 � e�t/�.

Thus, R(t) is given by e�t/�, and the failure rate is given by

r(t) � 

(1/

e
�
�

)e
t/

�

�

t/�


 � 

1
�


.

Note that the exponential distribution has a constant failure rate and hence has both IFR
and DFR. In fact, using the expression relating the time to failure distribution and the fail-
ure rate, it is evident that a component having a constant failure rate must have a time to
failure distribution that is exponential.

Bounds for IFR Distributions

Under either the IFR or DFR assumption, it is possible to obtain sharp bounds on the re-
liability in terms of moments and percentiles: In particular, such bounds can be derived
from statements based upon the mean time to failure. This fact is particularly important
because many design engineers present specifications in terms of mean time to failure.

Because the exponential distribution with constant failure rate is the boundary distri-
bution between IFR and DFR distributions, it provides natural bounds on the survival
probability of IFR and DFR distributions. In particular, it can be shown that if all that is
known about the failure distribution is that it is IFR and has mean �, then the greatest
lower bound on the reliability that can be given is

R(t)� �
and the inequality is sharp; i.e., the exponential distribution with mean � attains the lower
bound for t � �, and the degenerate distribution concentrating at � attains the lower bound
for t � �. This situation can be represented graphically as shown in Fig. 25.3.

e�t/�, for t � �
0, for t � �,
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m
t

R(t )

e−t/m

� FIGURE 25.3
A lower bound on reliability
for IFR distributions.
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The least upper bound on R(t) that can be obtained if we know only that F is IFR
with mean � is given by

R(t) � �
where � depends on t and satisfies 1 � �� � e��t. It is important to note that the � in the
term e��t is a function of t, so that a different � must be found for each t. For fixed t and
�, this � is obtained by finding the intersection of the linear function (1 � ��) and the ex-
ponential function e��t. It can be shown that for t � �, such an intersection always exists.

Thus, R(t) for an IFR distribution with mean � can be bounded above and below, as
shown in Fig. 25.4. Note that the lower bound is the only one of consequence for t � �,
and that the upper bound is the only one of consequence for t � �.

Increasing Failure Rate Average

Now that bounds on the reliability of a component have been obtained, what can be said
about the preservation of monotone failure rate; i.e., what structures have the IFR prop-
erty when their individual components have this property? Series structures of indepen-
dent IFR (DFR) components are also IFR (DFR), k out of n structures consisting of n
identical independent components, each having an IFR failure distribution, are also IFR;
however, parallel structures of independent IFR components are not IFR unless they are
composed of identical components. Thus, it is evident that, even for some simple systems,
there may not be a preservation of the monotone failure rate.

Instead of using the failure rate as a means for characterizing the reliability,

R(t) � exp ���t

0
r(�) d�	,

a somewhat less appealing characterization can be obtained from the failure-rate average
function,

�t

0


r(�)

t
d�


 � � 

log

t
R(t)

.

A time-to-failure distribution such that F (0) � 0 is called increasing failure rate aver-
age (IFRA) if and only if

�t

0


r(�)

t
d�




1, for t � �
e��t, for t � �,
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m
t

R
(t

)

e−t/m e−wt

1

Upper
bound

Lower
bound

0

� FIGURE 25.4
Upper and lower bounds on
reliability for IFR distributions.
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In recent years, the delivery of systems that perform adequately for a specified period of
time in a given environment has become an important goal for both industry and govern-
ment. In the space program, higher system reliability means the difference between life
and death. In general, the cost of maintaining and/or repairing electronic equipment dur-
ing the first year of operation often exceeds the purchase cost, giving impetus to the study
and development of reliability techniques.

This chapter has been concerned with determining system reliability (or bounds) from
a knowledge of component reliability or characteristics of components, such as failure
rate or mean time to failure. Even the desirable state of knowing these values may lead
to cumbersome and sometimes crude results. However, it must be emphasized that these
values, e.g., component reliability or mean time to failure, may not be known and are of-
ten just the design engineers’ educated guesses. Furthermore, except in the case of the ex-
ponential distribution, knowledge of the mean time to failure leads to nothing but bounds.
Also, it is evident that the reliability of components or systems depends heavily upon the
failure rate, and the assumption of constant failure rate, which appears to be used fre-
quently in practice, should not be made without careful analysis.

The contents of the chapter have not been concerned with the statistical aspects of
reliability, i.e., estimating reliability from test data. This subject was omitted because the
book’s emphasis is on probability models, but this is not a reflection on its importance.
The statistical aspects of reliability may very well be the important problem. Statistical
estimation of component reliability is well in hand, but estimation of system reliability
from component data is virtually an unsolved problem.
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� PROBLEMS

25.1-1. Show that the structure function for a three-component sys-
tem that functions if and only if component 1 functions and at least
one of components 2 or 3 functions is given by

�(X1X2X3) � X1 max(X2, X3)
� X1 [1 � (1 � X2)(1 � X3)].

25.1-2. Show that the structure function for a four-component sys-
tem that functions if and only if components 1 and 2 function and
at least one of components 3 or 4 functions is given by

�(X1, X2, X3, X4) � X1X2 max(X3, X4).

25.2-1. Find the reliability of the structure function given in
Prob. 25.1-1 when each component has probability pi of per-
forming successfully and the components are independent.

25.2-2. Find the reliability of the structure function given in
Prob. 25.1-2 when each component has probability pi of per-
forming successfully and the components are independent.

25.3-1. Consider a system consisting of three components (labeled
1, 2, 3) that operate simultaneously. The system is able to function
satisfactorily as long as any two of the three components are still
functioning satisfactorily. The goal is for the system to function
satisfactorily for a length of time t, so the system’s reliability, R(t),
is the probability that this will occur. The times until failure of the
individual components are independently (but not identically) dis-
tributed, where pi is the probability that the time until failure of
component i exceeds t, for i � 1, 2, 3.
(a) Is this a k out of n system? If so, what are k and n?
(b) Draw a network representation of this system.

(c) Develop an explicit expression for the structure function of this
system.

(d) Find R(t) as a function of the pi’s.

25.3-2. Consider a system consisting of five components, labeled
1, 2, 3, 4, 5. The system is able to function satisfactorily as long as
at least one of the following three combinations of components has
every component in that combination functioning satisfactorily:
(1) Components 1 and 4;
(2) Components 2 and 5;
(3) Components 2, 3, and 4.

For a given amount of time t, let Ri(t) be the known reliability of
component i (i � 1, 2, 3, 4, 5), that is, the probability that this com-
ponent will function satisfactorily for this length of time. Assume
that the times until failure of the individual components are inde-
pendently distributed. Let R(t) be the unknown reliability of the
overall system.
(a) Draw a network representation of this system.
(b) Develop an explicit expression for the structure function of this

system.
(c) Find R(t) as a function of the Ri(t).

25.3-3. Suppose that there exist three different types of compo-
nents, with two units of each type. Each unit operates indepen-
dently, and each type has probability pi of performing successfully.
Either one or two systems can be built. One system can be as-
sembled as follows: The two units of each type of component are
put together in parallel, and the three types are then assembled to
operate in series. Alternatively, two subsystems are assembled, each
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consisting of the three different types of components assembled in
series. The final system is obtained by putting the two subsystems
together in parallel. Which system has higher reliability?

25.4-1. Consider the following network.

Assume that each component is independent with probability pi of
performing satisfactorily.
(a) Find all the minimal paths and cuts.
(b) Compute the exact system reliability, and evaluate it when pi �

p � 0.90.
(c) Find upper and lower bounds on the reliability, and evaluate

them when pi � p � 0.90.

25.4-2. Solve Prob. 25.4-1 by using the following network.

Note that component 3 flows in both directions.

25.4-3. Solve Prob. 25.4-1 by using the following network.

25.4-4. Solve Prob. 25.4-1 by using the following network.

25.5-1. Suppose F is IFR, with � � 0.5. Find upper and lower
bounds on R(t) for (a)t � 


1
4


 and (b) t � 1.

25.5-2. A time-to-failure distribution is said to have a Weibull dis-
tribution if the cumulative distribution function is given by

F(t) � 1 � e�t�/�, where �, � � 0.

Find the failure rate, and show that the Weibull distribution is IFR
when � � 1 and DFR when 0 � � � 1.

25.5-3. Suppose that a system consists of two different, but inde-
pendent, components, arranged into a series system. Further as-
sume that the time to failure for each component has an exponen-
tial distribution with parameter �i, i � 1, 2. Show that the
distribution of the time to failure of the system is IFR.

25.5-4. Consider a parallel system consisting of two independent
components whose time to failure distributions are exponential
with parameters �1 and �2, respectively (�1 � �2). Show that the
time to failure distribution of the system is not IFR.

R(t) � P{T1 � t or T2 � t} � 1 � P{T1 � t and T2 � t}
� 1 � (1 � e�t/�1)(1 � e�t/�2).

25.5-5. For Prob. 25.5-4, show that the time to failure distribution
is IFRA.
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