Preface

The sixth edition of this book, published in 2004, was vastly different to the fifth edition.
More than half of the sixth edition consisted of new material, much of it on the Unified
Process, and the topics that were retained from the fifth edition were rewritten from a more
modern viewpoint.

Many instructors were kind enough to provide feedback on the sixth edition. They
approved of the drastic changes I had made in the sixth edition, but suggested that the aim
of the seventh edition should be to update the sixth edition, rather than once again make
widespread changes. In addition, a number of instructors have asked for a new running case
study in Part 2 of the book.

Accordingly, there are two types of changes in the seventh edition:

* The book has been updated throughout. In particular, I have considerably expanded the
material on agile processes and open-source software development in Chapters 2 and 4.
The references have been updated, and there are new problems in every chapter.

» [have replaced the Osbert Oglesby case study, used to illustrate the techniques of soft-
ware development in Chapters 10 through 15, with the MSG Foundation case study.

Features Retained from the Sixth Edition

» The Unified Process is still largely the methodology of choice for object-oriented soft-
ware development. Throughout this book, the student is therefore exposed to both the
theory and the practice of the Unified Process.

* In Chapter 1, the strengths of the object-oriented paradigm are analyzed in depth.

* The iterative-and-incremental life-cycle model has been introduced as early as possible,
namely, in Chapter 2. Furthermore, as with all previous editions, numerous other life-
cycle models are presented, compared, and contrasted.

* In Chapter 3 (“The Software Process”), the workflows (activities) and processes of the
Unified Process are introduced, and the need for two-dimensional life-cycle models is
explained.

* A wide variety of ways of organizing software teams are presented in Chapter 4 (“Teams”),
including teams for agile processes and for open-source software development.

» Chapter 5 (“The Tools of the Trade”) includes information on important classes of
CASE tools.

» The importance of continual testing is stressed in Chapter 6 (“Testing”).

* Objects continue to be the focus of attention in Chapter 7 (“From Modules to Objects™).

* The material on interoperability, which was removed from Chapter 8 (“Reusability and
Portability”) in the sixth edition, has not been replaced. In both the fourth and the fifth
editions, these sections became hopelessly out of date during the 6 months it took to
publish the books. In my opinion, the field is moving too fast to be included in a text-
book; an instructor wishing to include interoperability in a software engineering course
should obtain up-to-the-minute material from the Internet.

Vi Preface

The new IEEE standard for software project management plans is again presented in
Chapter 9 (“Planning and Estimating”).

Chapter 10 (“Requirements”), Chapter 12 (“Object-Oriented Analysis™), and Chapter 13
(“Design”) are largely devoted to the workflows (activities) of the Unified Process. For
obvious reasons, Chapter 11 (“Classical Analysis”) has not been changed, other than the
case study.

The material in Chapter 14 (“Implementation”) clearly distinguishes between imple-
mentation and integration.

The importance of postdelivery maintenance is stressed in Chapter 15.

Chapter 16 provides additional material on UML to prepare the student thoroughly for
employment in the software industry. This chapter is of particular use to instructors who
utilize this book for the two-semester software engineering course sequence. In the second
semester, in addition to developing the team-based term project or a capstone project, the
student can acquire additional knowledge of UML, beyond what is needed for this book.

As before, there are two running case studies. The MSG Foundation case study and the
elevator problem case study have been developed using the Unified Process. As usual,
Java and C++ implementations are available online at www.mhhe.com/schach.

In addition to the two running case studies that are used to illustrate the complete life
cycle, seven mini case studies highlight specific topics, such as the moving-target prob-
lem, stepwise refinement, and postdelivery maintenance.

In all the previous editions, I have stressed the importance of documentation, mainte-
nance, reuse, portability, testing, and CASE tools. In this edition, all these concepts are
stressed equally firmly. It is no use teaching students the latest ideas unless they appre-
ciate the importance of the basics of software engineering.

As in the sixth edition, particular attention is paid to object-oriented life-cycle models,
object-oriented analysis, object-oriented design, management implications of the
object-oriented paradigm, and the testing and maintenance of object-oriented software.
Metrics for the object-oriented paradigm also are included. In addition, many briefer
references are made to objects, a paragraph or even only a sentence in length. The rea-
son is that the object-oriented paradigm is not concerned just with how the various
phases are performed but rather permeates the way we think about software engineering.
Object technology again pervades this book.

The software process still is the concept that underlies the book as a whole. To control
the process, we have to be able to measure what is happening to the project. Accordingly,
the emphasis on metrics is retained. With regard to process improvement, the material
on the capability maturity model (CMM), ISO/IEC 15504 (SPICE), and ISO/IEC 12207
has been retained; the people capability maturity model (P-CMM) has been added to
the chapter on teams.

The book is still language independent; the few code examples are presented in C++ and
Java, and I have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.println for Java output, I have
utilized the pseudocode instruction print. (The one exception is the new case study,
where complete implementation details are given in both C++ and Java, as before.)

Preface vii

* As in the sixth edition, this book contains over 600 references. I have selected current
research papers as well as classic articles and books whose message remains fresh and
relevant. There is no question that software engineering is a rapidly moving field, and
students therefore need to know the latest results and where in the literature to find them.
At the same time, today’s cutting-edge research is based on yesterday’s truths, and I see
no reason to exclude an older reference if its ideas are as applicable today as they origi-
nally were.

+ With regard to prerequisites, it is assumed that the reader is familiar with one high-level
programming language such as C, C++, Ada, or Java. In addition, the reader is expected
to have taken a course in data structures.

Why the Classical Paradigm Still Is Included

There is now almost unanimous agreement that the object-oriented paradigm is superior to
the classical paradigm. Nevertheless, I feel that attempting to eliminate all mention of the
classical paradigm is unwise.

First, it is impossible to appreciate why object-oriented technology is superior to classi-
cal technology without fully understanding the classical approach and how it differs from
the object-oriented approach. For example, the object-oriented paradigm uses an iterative
and incremental life-cycle model. To show why such a life-cycle model is needed, it is
essential to explain in detail the differences between classical life-cycle models like the
waterfall model and the iterative and incremental life-cycle model of the object-oriented
paradigm. Therefore, all through the book, I have included material on the classical paradigm
so that the student can clearly appreciate the differences between the classical paradigm
and the object-oriented paradigm.

The second reason why I have included both paradigms is that technology transfer is a
slow process. Notwithstanding the impact of Y2K on accelerating the switch to the object-
oriented paradigm, the majority of software organizations still have not yet adopted the
object-oriented paradigm. It therefore is likely that many of the students who use this
book will be employed by organizations that use classical software engineering techniques.
Furthermore, even when an organization uses the object-oriented approach for developing
new software, existing software still has to be maintained, and this legacy software is not
object oriented. Therefore, excluding classical material would be unfair to many of the
students who use this text.

A third reason for including both paradigms is that a student who is employed at an
organization considering making the transition to object-oriented technology will be able
to advise that organization regarding both the strengths and the weaknesses of the new
paradigm. So, as in the previous edition, the classical and object-oriented approaches are
compared, contrasted, and analyzed.

How the Seventh Edition Is Organized

Like the sixth edition of this book, the seventh edition is written for both the traditional
one-semester and the newer two-semester software engineering curriculum, now growing
in popularity. In the traditional one-semester (or one-quarter) course, the instructor has to
rush through the theoretical material to provide the students the knowledge and skills

viii

Preface

needed for the term project as soon as possible. The need for haste is so that the students
can commence the term project early enough to complete it by the end of the semester. To
cater to a one-semester, project-based software engineering course, Part 2 of this book
covers the software life cycle, workflow by workflow, and Part 1 contains the theoretical
material needed to understand Part 2. For example, Part 1 introduces the reader to CASE,
metrics, and testing; each chapter of Part 2 contains a section on CASE tools for that work-
flow, a section on metrics for that workflow, and a section on testing during that workflow.
Part 1 is kept short to enable the instructor to start Part 2 relatively early in the semester.
Furthermore, the last two chapters of Part 1 (Chapters 8 and 9) may be postponed, and then
taught in parallel with Part 2. As a result, the class can begin developing the term project as
soon as possible.

We turn now to the two-semester software engineering curriculum. More and more
computer science and computer engineering departments are realizing that the overwhelm-
ing preponderance of their graduates find employment as software engineers. As a result,
many colleges and universities have introduced a two-semester (or two-quarter) software
engineering sequence. The first course is largely theoretical (but often includes a small
project of some sort). The second course comprises a major team-based term project. This
is usually a capstone project. When the term project is in the second course, there is no need
for the instructor to rush to start Part 2.

Therefore, an instructor teaching a one-semester (or one-quarter) sequence using the
seventh edition covers most of Chapters 1 through 7 and then starts Part 2 (Chapters 10
through 16). Chapters 8 and 9 can be taught in parallel with Part 2 or at the end of the
course while the students are implementing the term project. When teaching the two-
semester sequence, the chapters of the book are taught in order; the class now is fully prepared
for the team-based term project that they will develop in the following semester.

To ensure that the key software engineering techniques of Part 2 truly are understood,
each is presented twice. First, whenever a technique is introduced, it is illustrated by means
of the elevator problem. The elevator problem is the correct size for the reader to be able to
see the technique applied to a complete problem, and it has enough subtleties to highlight
both the strengths and weaknesses of the technique being taught. Then, the relevant portion
of the MSG Foundation case study is presented. This detailed solution provides the second
illustration of each technique.

The Problem Sets

As in the previous edition, this book has five types of problems. First, there are running
object-oriented analysis and design projects at the end of Chapters 10, 12, and 13. These
have been included because the only way to learn how to perform the requirements, analysis,
and design workflows is from extensive hands-on experience.

Second, the end of each chapter contains a number of exercises intended to highlight key
points. These exercises are self-contained; the technical information for all the exercises
can be found in this book.

Third, there is a software term project. It is designed to be solved by students working in
teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 15 separate components, each tied to the relevant
chapter. For example, design is the topic of Chapter 13, so in that chapter the component of

Preface ix

the term project is concerned with software design. By breaking a large project into smaller,
well-defined pieces, the instructor can monitor the progress of the class more closely. The
structure of the term project is such that an instructor may freely apply the 15 components
to any other project that he or she chooses.

Because this book has been written for use by graduate students as well as upper-class
undergraduates, the fourth type of problem is based on research papers in the software
engineering literature. In each chapter, an important paper has been chosen; wherever
possible, a paper related to object-oriented software engineering has been selected. The
student is asked to read the paper and answer a question relating to its contents. Of course,
the instructor is free to assign any other research paper; the For Further Reading section at
the end of each chapter includes a wide variety of relevant papers.

The fifth type of problem relates to the case study. This type of problem was first intro-
duced in the third edition in response to a number of instructors who feel that their students
learn more by modifying an existing product than by developing a new product from
scratch. Many senior software engineers in the industry agree with that viewpoint. Accord-
ingly, each chapter in which the case study is presented has problems that require the
student to modify the case study in some way. For example, in one chapter the student is
asked to redesign the case study using a different design technique from the one used for
the case study. In another chapter, the student is asked what the effect would have been of
performing the steps of the object-oriented analysis in a different order. To make it easy to
modify the source code of the case study, it is available on the World Wide Web at
www.mhhe.com/schach.

The website also has material for instructors, including a complete set of PowerPoint
lecture notes and detailed solutions to all the exercises as well as to the term project.

Material on UML

This book makes substantial use of the Unified Modeling Language (UML). If the students
do not have previous knowledge of UML, this material may be taught in two ways. I prefer
to teach UML on a just-in-time basis; that is, each UML concept is introduced just before
it is needed. The following table describes where the UML constructs used in this book are

introduced.
Section in Which the Corresponding
Construct UML Diagram Is Introduced
Class diagram, note, inheritance (generalization), Section 7.7
aggregation, association, navigation triangle
Use case Section 10.4.3
Use-case diagram, use-case description Section 10.7
Stereotype Section 12.1
Statechart Section 12.6
Interaction diagram (sequence diagram, collaboration Section 12.15
diagram)

Alternatively, Chapter 16 contains an introduction to UML, including material above
and beyond what is needed for this book. Chapter 16 may be taught at any time; it does not

x Preface

depend on material in the first 15 chapters. The topics covered in Chapter 16 are as given in
the following table.

Section in Which the Corresponding

Construct UML Diagram Is Introduced
Class diagram, aggregation, multiplicity, composition, Section 16.2
generalization, association
Note Section 16.3
Use-case diagram Section 16.4
Stereotype Section 16.5
Interaction diagram Section 16.6
Statechart Section 16.7
Activity diagram Section 16.8
Package Section 16.9
Component diagram Section 16.10
Deployment diagram Section 16.11
Acknowledgments

I greatly appreciate the constructive criticisms and many helpful suggestions of the re-
viewers of the six previous editions, including

Arvin Agah Thaddeus R. Crews, Jr.
University of Kansas Western Kentucky University
Kiumi Akingbehin Buster Dunsmore
University of Michigan, Dearborn Purdue University

Phil Bernhard Eduardo B. Fernandez
Clemson University Florida Atlantic University
Dan Berry Michael Godfrey

The Technion Cornell University

Don Bickerstaff Bob Goldberg

Eastern Washington University IBM

Richard J. Botting Donald Gotterbarn
California State University, East Tennessee State

San Bernardino University

Michael Buckley Frances Grodzinsky
State University New York, Buffalo Sacred Heart University
Catherine Lowry Campbell Jim Han

New Jersey Institute of Technology Florida Atlantic University
James Cardow Scott Hawker

Air Force Institute of Technology University of Alabama
Betty Cheng Thomas B. Horton
Michigan State University Florida Atlantic University
David Cheriton Greg Jones

Stanford University Utah State University

Peter E. Jones

University of Western Australia
Gail Kaiser

Columbia University
Laxmikant V. Kale

University of Illinois

Helene Kershner

University of Buffalo

Werner Krandick

Drexel University

Owen Lavin

DePaul University

Chung Lee

California State Polytechnic, Pomona
Richar A. Lejk

University of North Carolina, Chapel Hill
Bill McCracken

Georgia Institute of Technology
Susan Mengel

Texas Tech University

Everald E. Mills

Seattle University

Fred Mowle

Purdue University

Donald Needham

United States Naval Academy
Ron New

Johns Hopkins University

David Notkin

University of Washington

Andy Podgurski

Case Western Reserve University
Hal Render

University of Colorado, Colorado Springs

In addition, special thanks go to the reviewers

Robert M. Cubert
University of Florida
Michael Hoffman
California State University,
Long Beach

Preface

David C. Rine

George Mason University
David S. Rosenblum
University of California,
Irvine

Shmuel Rotenstreich
George Washington University
Mansur Samadzadeh
Oklahoma State University
John H. Sayler

University of Michigan
Wendel Scarborough

Azusa Pacific University
Bob Schuerman

State College, Pennsylvania
Gerald B. Sheble

lowa State

Fred Strauss

Polytechnic University

K. C. Tai

North Carolina State
University

Toby Teorey

University of Michigan

Jie We

City University of New York
Laurie Werth

University of Texas, Austin
Lee White

Case Western Reserve University
David Workman

University of Central Florida
George W. Zobrist
University of Missouri, Rolla

of this edition, including

Saeed S. Monemi

California State Polytechnic University,
Pomona

Linda Ott

Michigan Technological University

xi

xii

Preface

James Purtilo Fred Strauss
University of Maryland Polytechnic University

Steven Shaffer
Pennsylvania State University

I would like to thank the numerous instructors from all over the world who sent me e-mail
regarding the sixth edition. As always, [am exceedingly appreciative of their suggestions,
comments, and criticisms. In particular, I thank Professor Michael Haugrud (Minnesota
State University Moorhead) for suggesting improvements to the Winburg mini case study.
I look forward with anticipation to receiving instructors’ feedback on this edition also. My
e-mail address is srs@vuse.vanderbilt.edu.

Students, too, continue to be most helpful. Once more I thank my students at Vanderbilt
University for their provocative questions and constructive suggestions, both inside and
outside the classroom. I also am most appreciative of the questions and comments on
the sixth edition e-mailed to me by students from all over the world. Special thanks go
to Benjamin Polak, a student at the University of Erlangen, Germany, for suggesting
improvements to the elevator problem case study. As with the previous editions, I look
forward keenly to student feedback on this edition, too.

I warmly thank three individuals who have also made significant contributions to previ-
ous editions of this book. First, Kris Irwin once again provided a complete solution to the
term project, including implementing it in both Java and C++. Second, Jeff Gray imple-
mented the MSG Foundation case study. Third, Lauren Ryder was again a co-author of the
Instructor’s Solution Manual and contributor to the PowerPoint slides.

I turn now to McGraw-Hill. My publisher Alan Apt and my developmental editor
Rebecca Olson provided assistance and guidance throughout the project. I thank copyedi-
tor Lucy Mullins for her many helpful suggestions. It was a pleasure to work with market-
ing manager Michael Weitz, media manager Christina Nelson, production supervisor Kara
Kudronowicz, and proofreader Carrie Barker. The striking cover of this book was designed
by Michelle Whitaker and Christopher Reese, both of whom I warmly thank. Finally, I par-
ticularly wish to thank production manager Lora Kalb for her endless help and for keeping
the project on schedule. She invariably went the extra mile—and more.

As always, I enjoyed working with the highly competent compositors at Interactive
Composition Corporation. I also thank ICC project manager Deepti Hingle.

Finally, as always, I thank my wife, Sharon, for her continual support. As with all my
previous books, I did my utmost to try to ensure that family commitments took precedence
over writing. However, when deadlines loomed, this was sometimes not possible. At such
times, she was always understanding, and for this I am most grateful.

It is my privilege to dedicate my thirteenth book to my grandson, Jackson, with love.

Stephen R. Schach

