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9-1

Simplification of
Sequential Circuits

In this chapter, we will first look at a technique to remove redundant
states from sequential systems. We will then introduce the concept of
partitions as another approach to reducing the number of states and

as a technique to find state assignments that reduce the amount of com-
binational logic.

Two states of a sequential system are said to be equivalent if every
input sequence will produce the same output sequence starting in either
state. If the output sequence is the same, then we don’t need to know in
which of the two states we started. That definition is rather hard to apply,
since we must try a very long input sequence or a large number of shorter
sequences to be sure that we satisfied the definition. 

A more practical definition is:

Two states of a sequential system are equivalent if, starting in either state,
any one input produces the same output and equivalent next states.

If two states are equivalent, we can remove one of them and have a sys-
tem with fewer states. Usually, systems with fewer states are less expen-
sive to implement. This is particularly true if the reduced system requires
fewer state variables. For example, reducing a system from six states to
four states reduces the number of flip flops required to store the state
from three to two. If the system is built with JK flip flops and there is
one input, x, and one output, z, we have only five functions to implement
instead of seven. Furthermore, the J and K inputs are two-variable
functions rather than three and the output is also a function of one less
variable (three for a Mealy and two for a Moore system). Fewer variables
usually means less combinational logic. 

Occasionally, we can tell states are equivalent by just inspecting the
state table. We will look at the simple example of Table 9.1 to illustrate
this approach.
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9-2 Chapter 9 Simplification of Sequential Circuits

Note that for states D and E, the next state is the same (A) for x � 0 and
is also the same (B) for x � 1. Also, the outputs are the same for each
state, for both x � 0 and x � 1. Thus, we can delete one of the states. We
will remove state E and obtain Table 9.2.

Table 9.1 A state table.

q� z
q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B E D 0 0
C A D 0 1
D A B 0 1
E A B 0 1

Table 9.2 Reduced state table.

q� z
q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B D D 0 0
C A D 0 1
D A B 0 1

We replaced each appearance of E in the state table by D. Although it is
not obvious, no further reduction is possible. Often, we cannot see the
equivalences so easily. 

EXAMPLE 9.1
q� z

q x � 0 x � 1 x � 0 x � 1

A C B 0 0
B D D 0 0
C A D 0 1
D A C 0 1

States C and D are equivalent. They both have a 0 output for x � 0, and a
1 output for x � 1. Both go to A when x � 0, and they go to either C or D
when x � 1. We could say that C and D are equivalent if D is equivalent to
C; but that is a truism. Thus, this system can be reduced to three states:

q� z
q x � 0 x � 1 x � 0 x � 1

A C-D B 0 0
B C-D C-D 0 0

C-D A C-D 0 1
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where we have named the state resulting from the equivalence of C and D
by a compound name C-D. (We will do that some of the time, but it often
gets cumbersome, and we will name the state in the reduced system using
the name of the first state in the group.)

More commonly, equivalences are not so obvious. Therefore, we
will develop two algorithmic methods in the next two sections.

9.1 A TABULAR METHOD FOR 
STATE REDUCTION

In this section, we will develop a technique using a chart with one square
for each possible pairing of states. We will enter in that square an X if
those states cannot be equivalent because the outputs are different, a √
if the states are equivalent (because they have the same output and go to
the same state or to each other for each input), and otherwise the condi-
tions that must be met for those two states to be equivalent (that is, which
states must be equivalent to make these equivalent). 

The chart has one row for each state except the first and one column
for each state except the last; only the lower half of the chart is necessary
to include all pairs of states. For the state table of Table 9.1, we first get
the chart of Figure 9.1. 

9.1 A Tabular Method for State Reduction 9-3

Figure 9.1 Chart for Table 9.1.

B C E, B D

B D
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A B C D

�

In order for states A and B to be equivalent, they must have the same out-
put for both x � 0 and x � 1 (which they do) and must go to equivalent
states. Thus, C must be equivalent to E and B must be equivalent to D, as
shown in the first square. Each square in the balance of that column and
the whole next column contains an X since states A and B have a 0 output
for x � 1 and states C, D, and E have a 1 output. In the CD square, we
place BD since C goes to D and D goes to B when x � 1. That is also the
case in the CE square. Finally, in the DE square, we place a check (√),
since both states have the same output and next state for each input. We
must now go back through the table to see if the conditions are met.
Since B cannot be equivalent to D (there is already an X in the BD
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The states D and E can be combined. The reduced table can then be pro-
duced. In the process of doing that, there is a check that there was no
mistake in the first part. As entries are made for combined states (such as
D-E), each of the original states must go to the same state in the reduced
table and they must have the same output. The reduced table was shown
in the last section (Table 9.2).

The process is not always as easy as this. Example 9.2 will illustrate
some further steps that are necessary.

square), none of the three pairs can be equivalent. We thus cross out
those squares, leaving only one check, as shown in Figure 9.2.

9-4 Chapter 9 Simplification of Sequential Circuits

Figure 9.2 Reduced chart with states crossed out.
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EXAMPLE 9.2
q�

q x � 0 x � 1 z

A B D 1
B D F 1
C D A 0
D D E 0
E B C 1
F C D 0

The chart for this table is

B D, D F

B D, C F

C D, A D C D, D E

B

C

D

C D

A E

E

F

A B C D E

mar91647_c09_000_000.qxd  11/24/08  12:08 PM  Page 9-4



Note that the first entry could have been written BDF, that is, all three states
must be equivalent. (Indeed, since this is the condition for A and B to be
equivalent, we then require that A, B, D, and F all be equivalent.) Going
through the table, we see that B and D cannot be equivalent; neither can A
and D, nor D and E. That reduces the table to the following:

What remains is that A is equivalent to E if C is equivalent to D and that C is
equivalent to D if A is equivalent to E. That allows us to check off both of
these, producing the reduced table:

B D, D F

B D, C F

C D, A D C D, D E

B

C

D

C D

A E

E

F

A B C D E
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EXAMPLE 9.3

q�

q x � 0 x � 1 z

A-E B C-D 1
B C-D F 1

C-D C-D A-E 0
F C-D C-D 0

Before looking at some more complex examples, we want to empha-
size the effect that the output column has on the process. The state table
and chart of Example 9.3 correspond to a system with the same next state
behavior as that of Example 9.2, but a different output column.

The chart is different, because the pairings that are automatically X’d (due
to the output) are different.

q�

q x � 0 x � 1 z

A B D 1
B D F 1
C D A 1
D D E 0
E B C 0
F C D 0
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None of the conditions can be satisfied, and thus, no states can be com-
bined and the state table cannot be reduced.

Sometimes, when the obvious unequivalences are crossed off, there
may be some doubt as to whether the remaining states can be combined.
We could try to combine them all and develop the reduced state table. If
we were mistaken, it will quickly become evident. Also, if we find one or
more equivalences before completing the process, we can reduce the table
and start the process over. That is somewhat more work, but the chart for
the reduced table is much smaller and may be easier to work with.

B D F

B D, C E

B C DC D E

A B D A F

B

C

D

E

F

A B C D E
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EXAMPLE 9.4
q� z

q x � 0 x � 1 x � 0 x � 1

A F B 0 0
B E G 0 0
C C G 0 0
D A C 1 1
E E D 0 0
F A B 0 0
G F C 1 1

The chart for this table is

E F, B G

B G, C F

E F, B D

A E, B DA C, B GA E, B G

C E

D G D G

B

C

D

E

F

G A F

A B C D E F
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Note that we checked AF, since the requirement that A is equivalent to F is
just that F is equivalent to A. That is always true. We first go through the
chart to find which conditions cannot be met, crossing them out. We also
note that condition AF has already been checked and therefore D and G are
equivalent. During this pass, we may take advantage of the new equiva-
lences and the cross outs or we may wait until the next pass. Waiting until
the next pass, the table becomes

We now have A equivalent to F and D equivalent to G. The latter satisfies the
condition for C being equivalent to E and B being equivalent to E. Finally,
since C and E are equivalent, B is equivalent to C. That makes B, C, and E
all equivalent. Thus, the reduced table has three states—A (A-F ), B (B-C-E ),
and D (D-G).

E F, B G

B G, C F

E F, B D

A E, B DA C, B GA E, B G

C E

D G D G

B

C

D

E

F

G  A F

A B C D E F

�

�
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q� z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B B D 0 0
D A B 1 1

q� z
q x � 0 x � 1 x � 0 x � 1

A A B 0 0
B E D 0 0
C C D 0 0
D A C 1 1
E E D 0 0

With the last chart above, we could have reduced the system to one with
five states, just using the equivalences checked (A-F and D-G). That would
produce the new table
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We can now construct a new chart

However, B and D cannot be equivalent; C and E are. Thus, states B, C,
and E can be replaced by one state, B; that will allow us to reduce this table
to the three-state one we have already obtained.

A E, B D

B D

B D C E

B

C

D

E

A B C D

� �
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EXAMPLE 9.5
q� z

q x � 0 x � 1 x � 0 x � 1

A B D 0 0
B E D 1 0
C B C 0 0
D F A 0 0
E A B 1 1
F E C 1 0

We first construct the chart

None of the conditions in the squares are contradicted. The chart says that
for A to be equivalent to C, C must be equivalent to D. That would make A,
C, and D one group. For A to be equivalent to D, B must be equivalent to F,

C D

B

C

D B F B F, A C

E

C DF

BA C D E
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and for B to be equivalent to F, C must be equivalent to D. Finally, C is equiv-
alent to D if B is equivalent to F and A is equivalent to C. All of these can
be true, producing a reduced state table with only three states, A (A-C-D),
B (B-F), and E. (As we construct that table, we can check our conclusions
from the chart by making sure that all states in one group go to a state in a
single group for each input.)

9.1 A Tabular Method for State Reduction 9-9

EXAMPLE 9.6

q� z
q x � 0 x � 1 x � 0 x � 1

A B A 0 0
B E A 1 0
E A B 1 1

As our last example of this technique, we will consider a system with two
inputs, x y. Thus, there are four columns in the next state section of the
table.

The charting problem is really no different than before; we just have more
conditions, since equivalent states must go to equivalent states for all four
input combinations (that is, all four columns). The chart then becomes

None of the groups of three states shown in the chart can be equivalent;
one of each has a different output than the other two. Crossing out those
squares, we have

B E
C D F

A E

B

C

D
A B F
C D

B C D
C F
B D

E A B C

F B D

BA C D E

x y q�

q 0 0 0 1 1 0 1 1 z

A B A F D 1
B E A D C 1
C A F D C 0
D A A B C 1
E B A C B 1
F A F B C 0
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That leaves three pairings intact, A E, B D, and C F. The only requirement
for any of these is that one of the others be equivalent. Thus, we can reduce
this to three states as follows:

B E
C D F

C F
B D

B D

A E

B

C

D

E

F

A B C D E

A B F
C D

B C D A B C
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[SP 1; EX 1]

x y q�

q 0 0 0 1 1 0 1 1 z

A B A C B 1
B A A B C 1
C A C B C 0

9.2 PARTITIONS

A partition on the states of a system is a grouping of the states of that
system into one or more blocks. Each state must be in one and only one
block. For a system with four states, A, B, C, and D, the complete list of
partitions is

P0 � (A)(B)(C)(D) P8 � (AC)(BD)

P1 � (AB)(C)(D) P9 � (AD)(BC)

P2 � (AC)(B)(D) P10 � (ABC)(D)

P3 � (AD)(B)(C) P11 � (ABD)(C)

P4 � (A)(BC)(D) P12 � (ACD)(B)

P5 � (A)(BD)(C) P13 � (A)(BCD)

P6 � (A)(B)(CD) PN � (ABCD)

P7 � (AB)(CD)

This list of partitions does not depend on the details of the state table,
only on the list of states. P0 is the partition with each state in a separate
block; PN is the partition with all of the states in the same block. We will
be concerned with partitions that have special properties for a particular
state table. There are three categories of partitions that will be of interest.
To illustrate these, we will use Table 9.3.
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Any partition with two blocks can be used to assign one of the state
variables. Those states in the first block would be assigned 0 and those in
the second block 1 (or vice versa). P7 through P13 meet that requirement.
(We write partitions in alphabetic order; thus, state A will usually be
assigned all 0’s.) In a four-state system, there are only three pairs of par-
titions that can be used for a two-variable state assignment, P7 and P8, P7

and P9, and P8 and P9. The three are shown in Table 9.4.

9.2 Partitions 9-11

Table 9.5 An unsuccessful
assignment.

q q1 q2

A 0 0
B 1 0
C 0 1
D 1 0

P8 P11

If we try any other pair of two-block partitions, we do not have an ade-
quate state assignment. For example, using P8 and P11, we get the assign-
ment of Table 9.5. Note that states B and D have the same assignment.

A second useful class of partitions are those for which all of the
states in each block have the same output for each of the inputs. Such
partitions are referred to as output consistent. P0 is always output consis-
tent; for Table 9.3, the other output consistent partitions are

P2 � (AC)(B)(D)

P5 � (A)(BD)(C)

P8 � (AC)(BD)

Knowing the block of an output consistent partition and the input is
enough information to determine the output (without having to know
which state within a block). 

For some partitions, knowing the block of the partition and the input
is enough information to determine the block of the next state. Such a
partition is said to have the substitution property and is referred to as an
SP partition. PN is always SP since all states are in the same block, and
P0 is always SP since knowing the block is the same as knowing the state.
Others may be SP, depending on the details of the state table. For this
state table, there are two nontrivial SP partitions (those other than P0 and
PN), namely,

P7 � (AB)(CD)

P9 � (AD)(BC)

If a partition other than P0 is both SP and output consistent, then we
can reduce the system to one having just one state for each block of that
partition. (That should be obvious since knowing the input and the block

Table 9.3 State table to illustrate
types of partitions.

q�

q x � 0 x � 1 z

A C A 1
B D B 0
C A B 1
D B A 0

q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

P7 P8

(a)

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

P7 P9

(b)

q q1 q2

A 0 0
B 1 1
C 0 1
D 1 0

P8 P9

(c)

Table 9.4 State assignments for four states.
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of the partition is all we need to know to determine the output, since it
is output consistent, and to determine the next state, since it is SP). For
this example, neither of the SP partitions is also output consistent. In
Example 9.1, the partition

(A)(B)(CD)

is both SP and output consistent; thus, we were able to reduce the system
to one with only three states.

Before developing a method for finding all SP partitions, we will
look at Example 9.7. It will help us understand the application of the var-
ious categories of partitions.

9-12 Chapter 9 Simplification of Sequential Circuits

EXAMPLE 9.7

For this state assignment, we obtain the output equation and the inputs to
D flip flops

z � q2 � q3

D1 � xq1 � xq3

D2 � x�q�1q�2 � xq�1q�3

D3 � x�q2q3 � x�q1 � xq�1q�3

This requires 11 gates and 25-gate inputs (for either AND and OR or NAND,
including a NOT for x�). We would need four 7400 series integrated circuit
packages to implement the combinational logic with NAND gates. (The
development of the equations and the gate count is left as an exercise.)

If we make the state assignment using the following three partitions:

P1 � (ABC)(DE ) SP

P2 � (AB)(CDE ) SP

P3 � (AE )(BCD) output consistent

we have

q�

q x � 0 x � 1 z

A C D 0
B C E 1
C A D 1
D B E 1
E B E 0

Assignment 1
q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0

Assignment 2
q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 1
D 1 1 1
E 1 1 0

Logic Equations

z � q3
D1 � x
D2 � x � q2�
D3 � x�q1 � x�q�2 � {q�2q�3 or q�1q�3} � xq�1q2
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9.2 Partitions 9-13

This requires only seven gates, 16 inputs, and three 7400 series NAND gate
integrated circuit packages. D3 is the only complex function.

We saw the advantage of using an output consistent partition, that
the output is just equal to that variable or its complement. Thus, z is only
a function of q3.

We saw the advantage of using an SP partition to assign a state vari-
able, that the next state of that variable is only a function of the input, x,
and that variable (no matter how many flip flops are needed to implement
that system). Since q1 and q2 are assigned using SP partitions, D1 is only
a function of x (could also depend on q1), and D2 is only a function of x
and q2. For JK flip flops, the inputs are functions only of x (x, x�, and 1
are the only possibilities). Indeed, we do not need to deal with the whole
state table for the implementation of flip flops assigned according to SP
partitions; we only need a block table. Thus, for the flip flops assigned
according to partition P1 � (ABC)(DE), where the first block is assigned
0, we would have Table 9.6, which gives 

D1 � q1
� � x J1 � x K1 � x�

This is, of course, the same answer we got for D1 before. We could fol-
low this approach for D2 or J2 and K2 as well, but would need the full
four-variable truth table to solve for the inputs to q3.

9.2.1 Properties of Partitions

First, we will define, for pairs of partitions, the relationship greater than
or equal (�) and two operators, the product and the sum.

■ Pa � Pb if and only if all states in the same block of Pb are also in
the same block of Pa.

For example,

P10 � (ABC)(D) � P2 � (AC)(B)(D)

since the only states in the same block of P2 (A and C) are also in the
same block of P10. P0 is the smallest partition; all other partitions are
greater than it. PN is the largest partition; it is greater than all others. Not
all partitions are ordered. For example, P1 is neither � nor � P2.

■ The product of two partitions is written Pc � PaPb.

Two states are in the same block of the product Pc if and only if
they are in the same block of both Pa and Pb.

For example,

P12P13 � {(ACD)(B)}{(A)(BCD)} � (A)(B)(CD) � P6

Table 9.6 Truth table for q1.

x q1 q1
� J K

(ABC) 0 0 0 0 X
(DE) 0 1 0 X 1
(ABC) 1 0 1 1 X
(DE) 1 1 1 X 0
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The only states that are in the same block of both P12 and P13 are C and
D; they are then together in the product. The partitions Pa and Pb are
always greater than or equal to the product Pc. If the two partitions are
ordered, the product is equal to the smaller one. For example, P6 � P13

and thus, P6P13 � P6. It is also clear from the definitions that, for any
partition, Pa

PaP0 � P0 and PaPN � Pa

■ The sum of two partitions is written Pc � Pa � Pb.

Two states are in the same block of the sum Pd if they are in the
same block of either Pa or Pb or both.

For example,

P2 � P5 � {(AC)(B)(D)} � {(A)(BD)(C)} � P8 � (AC)(BD)

The sum sometimes brings together states that are not in the same block
of either since whole blocks are combined. Consider the following
example:

Pa � (AB)(C)(DF)(EG)

Pb � (ACD)(BG)(E)(F)

Pa � Pb � (ABCDEFG) � PN

Since A and B are in the same block of Pa and A, C, and D are in the same
block of Pb, then ABCD are in one block of the sum. But F is in the same
block as D in Pa and G is in the same block as B of Pb; so they must be
included with ABCD. Finally, E is in the same block as G in Pa, produc-
ing a sum of PN. The sum Pc is always greater than or equal to both
Pa and Pb. If Pa and Pb are ordered, the sum equals the greater. Thus,
P6 � P13 � P13. Also,

Pa � P0 � Pa and Pa � PN � PN

9.2.2 Finding SP Partitions

The process of finding all SP partitions has two steps.

We must ask what is required to make a partition SP if these two
states are in the same block, that is, what makes these two states equiva-
lent. They must go to equivalent states for each input. We must then
follow through, determining what groupings are forced.

Step 1: For each pair of states, find the smallest SP partition that
puts those two states in the same block.

9-14 Chapter 9 Simplification of Sequential Circuits

mar91647_c09_000_000.qxd  11/24/08  12:08 PM  Page 9-14



We will use the state table of Table 9.3, repeated here without the
output columns (since that has no relevance to finding SP partitions) as
Table 9.7.

For A to be equivalent to B, C must be equivalent to D. We continue
by checking what conditions are required to make C equivalent to D. In
this example, the only requirement is that A be equivalent to B. Thus, we
have our first SP partition

(AB) → (CD) → → (AB)(CD) � P1

where the right arrow (→) is used to indicate requires, and the double
arrow indicates the smallest SP partition that results. Sometimes, we find
no new conditions and other times the conditions force all of the states
into one block, producing PN.

The next step is

(AC) → (AB) → (CD) → (ABCD) � PN

(Since C must be with A and B must be with A, then A, B, and C must all
be together. But then D must be with C, resulting in PN.) The balance of
step 1 produces

(AD) → (BC) → → (AD)(BC) � P2

(BC) → (AD) → → (AD)(BC) � P2

(BD) → (AB) → → PN

(CD) → (AB) → → (AB)(CD) � P1

In this process, we do not need to find the sum of another partition
with any two-block partition since that always results in either the two-
block partition or PN. Also, if one partition is greater than another, its
sum is always the greater partition. We can omit those additions, too.

For the first example, there are no sums to compute, since the only
two unique nontrivial (that is, other than P0 and PN) SP partitions formed
by step 1 are both two-block.

Step 2: Find the sum of all of the SP partitions found in step 1 and,
if new ones are found, repeat step 2 on these new ones.

9.2 Partitions 9-15

EXAMPLE 9.8

Table 9.7 A state table for
finding SP
partitions.

q�

q x � 0 x � 1

A C A
B D B
C A B
D B A

q�

q x � 0 x � 1 z

A C D 1
B C D 0
C B D 1
D C A 1

Step 1 produces five SP partitions.

mar91647_c09_000_000.qxd  11/24/08  12:08 PM  Page 9-15



(AB) → √* → → P1 � (AB)(C)(D)

(AC) → (BC), (BC) → ok → → P2 � (ABC)(D)

(AD) → √ → → P3 � (AD)(B)(C)

(BC) → √ → → P4 � (A)(BC)(D)

(BD) → (AD) → (ABD) → → P5 � (ABD)(C)

(CD) → (BC), (AD) → → PN

Step 2 really only requires three sums, although we will show all 10
below:

P1 � P2 � (ABC)(D) → → P2 not needed

P1 � P3 � (ABD)(C) → → P5

P1 � P4 � (ABC)(D) → → P2

P1 � P5 � (ABD)(C) → → P5 not needed

P2 � P3 → → PN not needed

P2 � P4 � (ABC)(D) → → P2 not needed

P2 � P5 → → PN not needed

P3 � P4 � (AD)(BC) → → P6 � (AD)(BC)

P3 � P5 � (ABD)(C) → → P5 not needed

P4 � P5 → → PN not needed

Those partitions shown in bold are two-block and thus never produce
anything new. Only one new SP partition is found by step 2.
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*Here is the first example of a pairing that requires no other states to be combined. It
results in a partition where these two states are in one block and all others are by
themselves.

EXAMPLE 9.9
q�

q x � 0 x � 1 z

A C D 0
B D A 0
C E D 0
D B A 1
E C D 1

Step 1 of the process produces five SP partitions, as follows:

(AB) → (CD)(AD) → (ACD) → (BCE) → → PN

(AC) → (CE ) → → (ACE)(B)(D) � P1

(AD) → (BC) → (DE) → → (ADE)(BC) � P2

(AE ) → √ → → (AE)(B)(C)(D) � P3

(BC) → (ADE) → → P2

(BD) → √ → → (A)(BD)(C)(E ) � P4

(BE) → (ACD) → (BCE ) → → PN

(CD) → (BE)(AD) → (BC) → → PN

(CE) → √ → → (A)(B)(CE )(D) � P5

(DE ) → (BC)(AD) → (ADE) → → P2
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Table 9.9 Reduced state
table.

q�

q x � 0 x � 1 z

A C A 1
B C A 0
C B A 1

For step 2, we add each of the pairs of partitions found in step 1,
except that we do not need to add P2 to anything (since it is two-block) and
P1 need not be added to P3 or P5 (since it is greater than each of them).

P1 � P4 � (ACE )(BD) � P6

P3 � P4 � (AE )(BD)(C) � P7

P3 � P5 � (ACE)(B)(D) � P1

P4 � P5 � (A)(BD)(CE ) � P8

We now add pairs of these new partitions (with the same exceptions as
above); there is only one sum (which does not produce anything new):

P7 � P8 � (ACE )(BD) � P6

If there were new partitions of more than two blocks, they must also be
added.

For this example, there are eight nontrivial SP partitions, of which two
are two-block and none are output-consistent. We will return to this state
table in the next sections when we discuss state reduction and how to
make good state assignments.

9.3 STATE REDUCTION USING 
PARTITIONS

Any partition that is both output consistent and SP can be used to reduce
the system to one with one state for each block of that partition. Just as
there is always a unique largest SP partition (PN), there is always a unique
largest output consistent SP partition. That is the one with the fewest
blocks and thus corresponds to the reduced system with the fewest num-
ber of states.*

For the state table of Example 9.8, repeated here as Table 9.8, the only
SP partition that is output consistent is P3 � (AD)(B)(C); thus, this state
table can be reduced to one with three states (one for each block of P3). 

We will call the combined state A (rather than A-D); the reduced
table is shown in Table 9.9.

We do not need to recalculate all of the SP partitions (although for
this small example, that would be very easy). Any SP partition of the
original system that is greater than (�) the one used to reduce the system
is still SP. For this example, only P5 � P3. Thus, we get one nontrivial SP
partition for the reduced system, namely,

P5
� � (AB)(C)

where AD of the original P5 has been replaced by the new state A. 
The last state table of the previous section, Example 9.9, did not

have any output consistent SP partitions. Thus, it can not be reduced. 

9.3 State Reduction Using Partitions 9-17

[SP 2, EX 2]

*It is possible that PN is output consistent; but that is a combinational system, where the
output does not depend on the state.

Table 9.8 A reducible state
table.

q�

q x � 0 x � 1 z

A C D 1
B C D 0
C B D 1
D C A 1
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We will now look at two state tables with the same next state section, but
different output columns. 

9-18 Chapter 9 Simplification of Sequential Circuits

EXAMPLE 9.10
q�

q x � 0 x � 1 z

A C D 0
B D A 1
C E D 0
D B A 0
E C D 0

q�

q x � 0 x � 1 z

A C D 0
B D A 1
C E D 0
D B A 1
E C D 0

q�

q x � 0 x � 1 z

A-C-E A-C-E D 0
B D A-C-E 1
D B A-C-E 0

The set of SP partitions for these two is the same as those for Example 9.9,
since the substitution property does not depend on the output. Repeating
the complete list here, we have

P1 � (ACE )(B)(D)

P2 � (ADE )(BC)

P3 � (AE )(B)(C)(D)

P4 � (A)(BD)(C)(E )

P5 � (A)(B)(CE )(D)

P6 � (ACE )(BD)

P7 � (AE )(BD)(C)

P8 � (A)(BD)(CE )

In the first table, P1, P3, and P5 are the only output consistent partitions.
Since 

P1 � (ACE )(B)(D)

is greater than either of the others, we will use it to reduce the system to one
with three states, as follows:

(We labeled the combined state with a compound name; we could have just
called it A.) Note that only P6 � P1; thus, the only SP partition of the reduced
system is

P6
� � (A-C-E )(BD)

For the second state table, P1, P3, P4, P5, P6, and P8 are all output
consistent. The largest is 

P6 � (ACE )(BD)

as can be seen from the chart below, where the smaller ones are on the left.
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We can thus reduce the system to one with only two states, A (ACE ) and
B (BD), as shown below. This system requires only one flip flop.

(A E ) (B) (C) (D)

(A C E ) (B) (D)

(A C E ) (B D)(A) (B) (C E ) (D)

(A) (B D) (C E )

(A) (B D) (C) (E )

�

�

�

�

�

�

9.3 State Reduction Using Partitions 9-19

EXAMPLE 9.11

q�

q x � 0 x � 1 z

A A B 0
B B A 1

The computation of all of the SP partitions for a fairly large system
can be quite time-consuming. If our interest is in reducing the system to
one with the minimum number of states, we can do that immediately when
we find an output consistent SP partition. Consider the following example.

As we begin the process of finding SP partitions, we get

(AB) → (BD)(AE ) → (DF )(AG)(CE ) → → PN

(AC) → (BG)(AE ) → (ACE ) → → (ACE )(BG)(D)(F )

This SP partition is also output consistent. Therefore, we could stop and
reduce the system to one with four states (one for each block) and find the
SP partitions of that smaller system.

q�

q x � 0 x � 1 z

A B E 0
B D A 1
C G A 0
D F G 1
E B C 0
F D G 1
G D E 1

q�

q x � 0 x � 1 z

A B A 0
B D A 1
D F B 1
F D B 1
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We can now find the SP partitions of this smaller system

(AB) → (BD) → (DF ) → → PN

(AD) → (AB)*(BF) → → PN

(AF ) → (BD)(AB) → → PN

(BD) → (DF )(AB) → → PN

(BF ) → (AB) → → PN

(DF ) → √ → (A)(B)(DF)

This system can be reduced further, to one with three states, since the SP
partition is also output consistent. The smallest equivalent system is thus 
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EXAMPLE 9.12

*Since we found that the only SP partition that combines A and B is PN, we can stop
looking; this must also produce PN.

q�

q x � 0 x � 1 z

A B A 0
B D A 1
D D B 1

As a final example, consider the following state table, where five dif-
ferent output columns are shown. (This is a Moore system with an output
that does not depend on the input; we will consider the different outputs
as five different problems.)

We will start by finding all of the SP partitions. That, of course, does not
depend upon which output column is used.

(AB) → (BC)(DE ) → (AE ) → → PN

(AC) → (AD) → (AE ) (BC) → → PN

(AD) → (DE)(BC) → → (ADE )(BC) � P1

(AE ) → √ → → (AE )(B)(C)(D) � P2

(BC) → (AE ) → → (AE )(BC)(D) � P3

(BD) → √ → → (A)(BD)(C)(E ) � P4

(BE ) → (BC)(DE ) → (AE ) → → PN

(CD) → (AE )(BC) → → (AE)(BCD) � P5

(CE ) → (AD) → (DE )(BC) → → PN

(DE ) → (BC) → (AE ) → → P1

q�

q x � 0 x � 1 z1 z2 z3 z4 z5

A D B 0 0 0 1 1
B E C 0 0 1 0 1
C A B 1 1 0 0 1
D E C 1 1 1 1 1
E D B 1 0 0 1 1
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9.3 State Reduction Using Partitions 9-21

Now, forming sums, we obtain only one new partition

P2 � P4 � (AE)(BD)(C) � P6

Thus, there are six nontrivial SP partitions.
For the first output column, none of the SP partitions are output con-

sistent. Thus, the state table cannot be reduced. (We will return to this
example in the next section and determine a good state assignment.)

For the second output column, only P2 is output consistent. Thus, this
system can be reduced to one with four states (replacing A and E by a state
called A).

q�

q x � 0 x � 1 z3

A B B 0
B A C 0
C A B 1

q�

q x � 0 x � 1 z2

A D B 0
B A C 0
C A B 1
D A C 1

Since any SP partition that is greater than P2 is an SP partition of the
reduced table (with states A and E shown as one, just A), we can see that
the SP partitions are

P1
� � (AD)(BC)

P3
� � (A)(BC)(D)

P5
� � (A)(BCD)

P6
� � (A)(BD)(C)

For the third output column, P2, P4, and P6 are all output consistent.
Since P6 is the largest of these, it is used to reduce the system to one with
only three states.

The only nontrivial SP partition for this system is 

P5
� � (A)(BC)

For the fourth output column, P1 is output consistent, reducing the
state table to one with only two states.
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Finally, for the last output column, there was no need to find the SP
partitions; PN is output consistent; the system is combinational. It does not
depend on the state.

z � 1 

9.4 CHOOSING A STATE ASSIGNMENT

In this section, we will look at a strategy for making a “good” state
assignment. We will first find all of the SP partitions, then reduce the sys-
tem if possible, and finally make a state assignment to solve the problem.
We have three levels of work, depending upon how important it is to
reduce the cost of the combinational logic. If an absolute minimum is
required, we must try all possible sets of two-block partitions for which
the product is P0. For three or four states, there are only three such
assignments, and it is fairly easy to do that. For five states, however, that
number goes up to 140, and this method is not practical. (It rises to 420
for six states, to 840 for seven or eight states, and to over 10 million for
nine states.) If we can use two-block SP partitions for one or more of the
variables, that is almost always preferable (as long as we do not increase
the number of variables). We can then try to group states that are in the
same block of multiblock SP partitions or to use partitions that corre-
spond to one or more of the output columns for the other variables. This
will usually lead to a pretty good solution. Last, and least likely to pro-
duce good results, we could choose an assignment at random, say using
000 for A, 001 for B, and so forth. Sometimes, that will lead to a good
solution. But more often, it will result in a more costly system. 

To illustrate this, we will consider the example in Table 9.10. The
SP partitions are

P1 � (AB)(CD)

P2 � (AD)(B)(C)

P3 � (A)(BC)(D)

P2 � P3 � P4 � (AD)(BC )

There are no output consistent SP partitions. There are two SP partitions
that could be used for state assignment, namely, P1 and P4. That would
produce the assignment of Table 9.11 and the D flip flop input equations
shown.
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Table 9.10 State assignment
example.

q�

q x � 0 x � 1 z

A B C 0
B A D 1
C A D 0
D B C 1

q�

q x � 0 x � 1 z4

A A B 0
B A B 1

[SP 3, EX 3]
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9.4 Choosing a State Assignment 9-23

Since both flip flops were assigned according to an SP partition, the
input equations are very simple. 

If we repeat the design, using the output consistent partition for
q2, we get the state assignment of Table 9.12 and the equations shown
beside it.

Table 9.11 State assignment.

q q1 q2

A 0 0
B 0 1
C 1 1
D 1 0

z � q�1q2 � q1q�2
D1 � x
D2 � q�2

Notice that D1 is unchanged. Since it was assigned according to the same
SP partition as before, its behavior does not depend on the rest of the
assignment. Also, z becomes simple, since q2 is assigned according to
an output consistent partition. This is an extreme case; D2 is particu-
larly complex. If, on the other hand, we assigned q1 according to the
output consistent partition and q2 according to P4 (as in the first exam-
ple), we would get the assignment of Table 9.13 and the equations shown
below.

Table 9.13 State assignment.

q q1 q2

A 0 0
B 1 1
C 0 1
D 1 0

z � q1

D1 � x�q�2 � xq2

D2 � q�2

Table 9.12 State assignment.

q q1 q2

A 0 0
B 0 1
C 1 0
D 1 1

z � q�2
D1 � x
D2 � x�q�1q�2 � x�q1q2 � xq�1q2 � xq1q�2

Now, D1 is more complex, although the total cost of combinational logic
is the same as for the first assignment. Costs do not vary as much in two
flip flop circuits as they do in larger ones.

We will illustrate the procedure with two of the output columns from
Example 9.12. 
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We will first consider the table of Example 9.12 with output column z2.
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EXAMPLE 9.13

q�

q x � 0 x � 1 z2

A D B 0
B E C 0
C A B 1
D E C 1
E D B 0

q�

q x � 0 x � 1 z2

A D B 0
B A C 0
C A B 1
D A C 1

The first step is to see if the system can be reduced. The SP partition,
(AE )(B)(C)(D) is output consistent, and thus this system can be reduced to
one with four states, as shown below.

The SP partitions for this are (as we found earlier)

P1
� � (AD)(BC) P5

� � (A)(BCD)

P3
� � (A)(BC)(D) P6

� � (A)(BD)(C)

The best assignment seems to be the one that uses P1
� and the output

consistent partition (POC � (AB)(CD)). That produces

z � q2

D1 � x

D2 � q�1q�2 � xq2

If, instead, we used output column z1, there could be no reduction, and
three flip flops would be needed. However, there are 2 two-block SP parti-
tions, in addition to the output consistent one, that can be used for the state
assignment.

P1 � (ADE )(BC)

P5 � (AE )(BCD)

POC � (AB)(CDE )

This produces the state assignment

q q1 q2 q3

A 0 0 0
B 1 1 0
C 1 1 1
D 0 1 1
E 0 0 1

and the equations
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z � q3

D1 � x

D2 � x � q�2

D3 � {x�q�1 or x�q�2} � q�1q2 � {q2q�3 or q1q�3}

This requires only five gates plus the NOT gate for x�.

9.4 Choosing a State Assignment 9-25

EXAMPLE 9.14

The nontrivial SP partitions are

P1 � (AB)(C)(DF )(E ) P6 � (AB)(CE )(DF )

P2 � (ABC)(DEF ) P7 � (ABDF )(C)(E )

P3 � (AD)(B)(C)(E )(F ) P8 � (ABDF )(CE )

P4 � (AF)(BD)(C)(E ) P9 � (AD)(BF )(C)(E )

P5 � (A)(BF )(C)(D)(E )

As can be seen, none of these are output consistent; thus the table cannot
be reduced.

For the first two variables, we will use the 2 two-block SP partitions, P2

and P8. The product of these are

P1 � (AB)(C)(DF )(E )

For the third variable, we need a partition that separates A from B and D
from F. There are many that will do that; we chose

P9 � (AF )(BCDE )

because that corresponds to the second output column and will simplify
somewhat the expression for z.

First, we will construct next block tables for q1 and q2.

q� z
q x � 0 x � 1 x � 0 x � 1

A D C 0 1
B F C 0 0
C E A 0 0
D A C 1 0
E C B 1 0
F B C 1 1

q1
�

q1 x � 0 x � 1

0 1 0
1 0 0

q2
�

q2 x � 0 x � 1

0 0 1
1 1 0

This produces

D1 � x�q�1 D2 � xq�2 � x�q2

For q3 and z, we will need the state assignment and truth table:
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(We do not need columns for q1
� and q2

�, since we already computed the
inputs for those flip flops from the next block table.) The resulting maps are

From this, we can find

D3 � x�q�2q�3 � xq�1q2 z � x�q1 � xq3

The advantage of using SP partitions is even more dramatic with JK
flip flops (since J and K do not depend on the state of that flip flop). Thus,
for this example,

J1 = x� K1 = 1
J2 = x K2 = x
J3 = x�q2� + xq1�q2 K3 = 1

If, instead, we used the state assignment

00 01 11 10

00

01

11

10

x q1

q2 q3

X X X

1

X

1 1

00 01 11 10

00

01

11

10

x q1

z

q2 q3

X X X

1

X

1

1 1 1

q3
★

q q1 q2 q3

A 0 0 1
B 0 0 0
C 0 1 0
D 1 0 0
E 1 1 0
F 1 0 1

P2 P8 P9

x q1 q2 q3 q3
� z

B 0 0 0 0 1 0
A 0 0 0 1 0 0
C 0 0 1 0 0 0
— 0 0 1 1 X X
D 0 1 0 0 1 1
F 0 1 0 1 0 1
E 0 1 1 0 0 1
— 0 1 1 1 X X
B 1 0 0 0 0 0
A 1 0 0 1 0 1
C 1 0 1 0 1 0
— 1 0 1 1 X X
D 1 1 0 0 0 0
F 1 1 0 1 0 1
E 1 1 1 0 0 0
— 1 1 1 1 X X

q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0
F 1 0 1
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we would obtain the equations

z � x�q1 � q1q3 � xq�1q�2q�3 � x�q2q3

D1 � x�q�1q�2q3 � x�q2q�3

D2 � xq3 � x�q�2q�3 � q�1q�2q�3

D3 � x�q�1q�2 + xq1q�3 � x�q1q3

These equations are much more complex than the previous solution. 

9.4 Choosing a State Assignment 9-27

EXAMPLE 9.15

The SP partitions are

P1 � (ABD)(C)(E ) P4 � (A)(B)(CE )(D)

P2 � (ABDE )(C) P5 � (A)(B)(C)(DE )

P3 � (A)(B)(CDE ) P6 � (ABD)(CE )

None of these is output consistent; therefore, the system cannot be
reduced. Although there are 2 two-block partitions, we cannot use both of
them, since their product is P1, which has three states in the same block.
One more two-block partition cannot separate these three states. We can
use P6 and the output consistent partition,

P7 � (ACD)(BE )

for two of the variables. Their product is 

(AD)(B)(C)(E )

We now need to choose one more partition to separate A and D. From the
list of SP partitions, P3 is attractive. It groups C, D, and E. We could use
either

P8 � (AB)(CDE ) or P9 � (A)(BCDE )

The two state assignments are

q�

q x � 0 x � 1 z

A B C 0
B D C 1
C A E 0
D A C 0
E A C 1

q q1 q2 q3

A 0 0 0
B 0 1 0
C 1 0 1
D 0 0 1
E 1 1 1

q q1 q2 q3

A 0 0 0
B 0 1 1
C 1 0 1
D 0 0 1
E 1 1 1
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The resulting sets of equations for the first assignment are

J1 � x K1 � x�

J2 � x�q�3 � xq1 K2 � 1

J3 � x � q2 K3 � x�

z � q2

For the second assignment, J1, K1, J2, K2, and z are unchanged; the others
become

J3 � 1 K3 � x�q�2 � x�q1

If, instead, we use the first five combinations for the five states, the equa-
tions become

J1 � q2q�3 K1 � 1

J2 � x � q3 K2 � x� � q�3

J3 � x�q�1q�2 K3 � x � q2

z � q1 � q�2q3

The cost of this combinational logic is about double that of the first solution.

The choice of state assignment is more of an art than a science.
Surely, we want to use two-block SP partitions when possible. But when
we run out of those, we use the output consistent partition and the group-
ings suggested by other SP partitions (if there are any). 

This approach does not guarantee a minimum solution. The only
way to do that is to try all possible sets of partitions. (In some unusual
circumstances, it may even be possible to find a less costly solution
with an extra flip flop or without reducing the number of states to a
minimum.)

9.5 SOLVED PROBLEMS

1. Reduce each of the following systems to ones with the
minimum number of states using the tabular method.

a. b.
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[SP 4; EX 4, 5, 6, 7]

q�

q x � 0 x � 1 z

A C B 0
B D A 1
C A B 0
D B B 1

q�

q x � 0 x � 1 z

A C D 1
B C C 1
C E B 0
D E A 0
E A B 1
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c. d.

a. We will first construct the chart

Since the AB box already has an X in it, the only equivalent
states are A and C. The state table can be reduced to one with
three states, as follows:

B

C

D A B

A B C

�

9.5 Solved Problems 9-29

q�

q x � 0 x � 1 z

A-C A-C B 0
B D A-C 1
D B B 1

b. The chart for this table is

B C D

C

D

A B C D

A B

E A C, B D A B C

q�

q x � 0 x � 1 z

A E B 0
B D A 1
C F B 0
D E B 1
E D C 1
F D A 1

q�

q x � 0 x � 1 z

A D G 0
B C E 1
C B G 0
D A B 1
E F E 0
F G B 1
G F A 0
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Since for A to be together with B requires C to be grouped
with D, and the CD grouping requires A and B to be together,
both of those can be checked off. A and C cannot be in the
same block of a partition; thus, the other two are crossed off,
resulting in

The reduced state table is thus (where A-B has been called A,
and C-D has been called C)

A C, B D A B C

B

C

D

A B C D

E

�

�

9-30 Chapter 9 Simplification of Sequential Circuits

q�

q x � 0 x � 1 z

A C C 1
C E A 0
E A A 1

c. We get the following chart:

B and F are already grouped; AC and EF also group. That
produces a group with B, E, and F, reducing the table to one

B

E FC

D

B C

A CA B, D E

E

F

A B, D E

A C

D ECA B

�
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with only three states (since AB and BC cannot be grouped):

9.5 Solved Problems 9-31

d. The chart becomes

We can cross out a few squares and obtain

On the first pass, we were able to cross out BE, which then
allowed us to cross out BD and BF. Since those pairs could not

B D

A C, B E

B

C

D

D F, E GE B F, E G

C G, B EF

D F G B F, A G A E

A G 

BA C D E F

�

�

B D

A C, B E

B

C

D

D F, E GE B F, E G

C G, B EF

D FG B F, A G A E

A G

BA C D E F

q�

q x � 0 x � 1 z

A B B 0
B D A 1
D B B 1
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be equivalent, we were then able to eliminate AC, CE, and EG.
At this point, we note that for A and G to be equivalent, D and
F must be equivalent and for D and F to be equivalent, A and
G must be equivalent. We can thus reduce the number of states
by two, reduce the state table and repeat the process, as
follows:
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Of course, we could have determined this from the original
chart, where we have replaced the crossed out squares with X’s
and the two equivalences we had previously determined with
checks.

q�

q x � 0 x � 1 z

A D A 0
B C E 1
C B A 0
D A B 1
E D E 0

The new smaller chart is thus

Only A and E can be equivalent, since B and E are not
equivalent, making B and D not equivalent. Thus, we can
reduce this further to four states, namely,

B D

A C, B E

B

C

D

E B D, A E

BA C D

�

q�

q x � 0 x � 1 z

A D A 0
B C A 1
C B A 0
D A B 1
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9.5 Solved Problems 9-33

From this table, we can see that G and E are equivalent if A
and E are equivalent, grouping A, G, and E. That would
directly produce the same table with four states as above.

2. For the same state tables as in Solved Problem 1, find all of the
nontrivial SP partitions. (Of course, the output columns are not
used.)

a. (AB) → (CD) → → (AB)(CD) � P1

(AC) √ → → (AC)(B)(D) � P2

(AD) → (BC) → (AB) →→ (ABCD) � PN

(BC) → (ABD) →→ PN

(BD) → (AB) →→ PN

(CD) → (AB) →→ (AB)(CD) � P1

b. (AB) → (CD) →→ (AB)(CD)(E) � P1

(AC) → (CE)(BD) →→ (ACE)(BD) � P2

(AD) → (CE) → (AE) →→ PN

(AE) → (AC)(BD) →→ P2

(BC) → (CE)(ABCE) →→ PN

(BD) → (ACE) →→ P2

(BE) → (ABC) →→ PN

(CD) → (AB) →→ P1

(CE) → (AE) → (BD) →→ P2

(DE) → (ABE) →→ PN

c. (AB) → (DE) → (BC) → (DF) →→ (ABC)(DEF) � P1

(AC) → (EF) →→ (AC)(B)(EF)(D) � P2

(AD) √ →→ (AD)(B)(C)(E)(F) � P3

(AE) → (DE)(BC) →→ PN

B

C

D

D F, G EE

F

G A E

BA C D E F

�

�
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(AF) → (DE)(AB) → (BC) →→ PN

(BC) → (DF)(AB)
→ (ABC)(DEF) →→ P1

(BD) → (DE)(AB) → (BC) →→ PN

(BE) → (AC) → (EF) →→ (AC)(BEF)(D) � P4

(BF) → √ →→ (A)(BF)(C)(D)(E) � P5

(CD) → (EF)(AC) →→ (ACD)(B)(EF) � P6

(CF) → (DF)(AB) → (DE) →→ PN

(DE) → (BC) → (DF)(AB) →→ P1

(DF) → (DE)(AB) →→ P1

(EF) → (AC) →→ P2

At this point, we have found six SP partitions. We must now
add each pair, since the sum of SP partitions is also SP. The
only new partitions are

P3 � P4 � P7 � (ACD)(BEF)

P3 � P5 � P8 � (AD)(BF)(C)(E)

No new sums are formed from these two (since P7 is 
two-block). (We will return to this example in later solved
problems.)

d. (AB) → (CD)(EG) → (ABEG)
→ (CDF) →→ (ABEG)(CDF) � P1

(AC) → (BD) → (BE) → (CF) → (BDG) →→ PN

(AD) → (BG) → (CF)(AE) →→ PN

(AE) → (DF)(EG) → (AEG) →→ (AEG)(B)(C)(DF) � P2

(AF) → (BDG) → (ACF)(ABE) →→ PN

(AG) → (DF) →→ (AG)(B)(C)(DF)(E) � P3

(BC) → (GE) → (AE) → (DF) →→ (AEG)(BC)(DF) � P4

(BD) → (AC)(BE) →→ PN

(BE) → (CF) → (BG) → (AE) →→ P1

(BF) → (CG)(BE) → (BF)(AG) →→ PN

(BG) → (CF)(AE) → (DF)(EG) →→ P1

(CD) → (ABG) →→ P1

(CE) → (BF)(EG) →→ PN

(CF) → (BG) → (AE) → (DF)(EG) →→ P1

(CG) → (BF)(AG) →→ PN

(DE) → (AF)(BE) →→ PN

(DF) → (AG) →→ P3

(DG) → (ABF) →→ PN

(EF) → (FG)(BE) → (AB) →→ PN
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(EG) → (AE) →→ P2

(FG) → (AB) →→ PN

The sums produce nothing new. Thus, there are four 
nontrivial SP partitions. 

3. a. Reduce the system of Solved Problem 2a to one with a
minimum number of states if the output column is

A (i) 0 (ii) 1 (iii) 0
B 1 0 0
C 0 0 1
D 1 1 1

b. Reduce the system of Solved Problem 2c to one with a
minimum number of states and find all of the SP partitions of
the reduced system if the output column is

A (i) 0 (ii) 1 (iii) 0
B 1 0 0
C 0 1 1
D 0 0 1
E 0 0 1
F 1 0 0

a. (i) P2 � (AC)(B)(D) is the only output consistent SP
partition. Thus, the system can be reduced to one with
three states:

9.5 Solved Problems 9-35

q�

q x � 0 x � 1 z

A A B 0
B D A 1
D B B 1

(ii) There are no output consistent SP partitions; therefore,
the system cannot be reduced for this output column.

(iii) P1 � (AB)(CD) is the only output consistent SP partition.
Thus, we can reduce the system to one with just two
states:

q�

q x � 0 x � 1 z

A C A 0
C A A 1
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b. (i) The output consistent SP partitions are

P3 � (AD)(B)(C)(E)(F)

P5 � (A)(BF)(C)(D)(E)

P8 � (AD)(BF)(C)(E)

Clearly, P8 is larger than either of the others; it can be
used to reduce the system to one with only four states.
None of the SP partitions is larger than P8; therefore, the
reduced system has no nontrivial SP partitions.
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(ii) The output consistent SP partitions are

P2 � (AC)(B)(D)(EF)

P4 � (AC)(BEF)(D)

P5 � (A)(BF)(C)(D)(E)

P4 is larger than either of the others and can be used to
reduce this to a system with three states:

Since P7 � P4, then P7
� � (AD)(B) is SP.

(iii) The only output consistent SP partition is

P5 � (A)(BF)(C)(D)(E)

Thus, the minimum system requires five states, namely,

q�

q x � 0 x � 1 z

A E B 0
B A A 1
C B B 0
E A C 0

q�

q x � 0 x � 1 z

A B B 1
B D A 0
D B B 0

q�

q x � 0 x � 1 z

A E B 0
B D A 0
C B B 1
D E B 1
E D C 1
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There are three SP partitions for this reduced system,

P4
� � (AC)(BE)(D)

P7
� � (ACD)(BE)

P8
� � (AD)(B)(C)(E)

4. Find good state assignments for each of the following state
tables. (Each of the first four correspond to one of the state
tables from Solved Problem 2.) Compute the input equations for
either D or JK flip flops and the output equation.

a. b.

c. d.

e.

f.

9.5 Solved Problems 9-37

q�

q x � 0 x � 1 z

A C B 0
B D A 1
C A B 0
D B B 0

q�

q x � 0 x � 1 z

A C B 1
B D A 1
C A B 0
D B B 1

q�

q x � 0 x � 1 z

A E B 0
B D A 0
C F B 1
D E B 1
E D C 1
F D A 1

q�

q x � 0 x � 1 z

A E B 0
B D A 0
C F B 1
D E B 1
E D C 0
F D A 1

q� z
q x � 0 x � 1 x � 0 x � 1

A C D 0 0
B E A 1 1
C A D 0 0
D B A 1 0
E B C 1 1

q� z
q x � 0 x � 1 x � 0 x � 1

A C D 0 1
B E A 1 1
C A D 0 0
D B A 1 0
E B C 1 1
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a. P2 � (AC)(B)(D) is output consistent; therefore, this system
can be reduced to one with three states, namely,
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Since the other SP partition is not larger than P2, this system
has no nontrivial SP partitions. There is not a good clue as to
how to choose partitions for a state assignment, other than
choosing the output consistent one to minimize the output
logic. We can try both

i. ii.

For assignment i, we get

D1 � x�q2 D2 � q1 � xq�2 z � q2

and for assignment ii, we obtain

D1 � x�q1 � xq�2 D2 � q1q�2 � xq�2 z � q2

The first assignment requires the least amount of logic. If we
tried the third assignment, we would find that it needs about
the same amount of logic as the second (but uses 2 three-input
gates).

b. This, of course, is the same next state behavior as part a, but
the new output column is such that there are no output
consistent SP partitions. We will implement it with JK flip
flops. We do have one two-block SP partition,

P1 � (AB)(CD)

The two-block output consistent partition is not useful, since
its product with P1 is not P0. We will use for the second
variable

P3 � (AC)(BD)

which takes advantage of the other SP partition,
P2 � (AC)(B)(D), by putting A and C in the same block. This
results in 

J1 � x� K1 � 1 J2 � x K2 � xq�1 z � q�1 � q2

q�

q x � 0 x � 1 z

A A B 0
B D A 1
D B B 0

q q1 q2

A 0 0
B 0 1
D 1 0

q q1 q2

A 0 0
B 1 1
D 1 0

mar91647_c09_000_000.qxd  11/24/08  12:08 PM  Page 9-38



Each of the other solutions requires very little logic as well.
That will normally be the case with only two flip flops.

c. There are no output consistent SP partitions; thus, this
system cannot be reduced. There are 2 two-block SP
partitions,

P1 � (ABC)(DEF)

P7 � (ACD)(BEF)

which will be used for the first two variables. The output
consistent two-block partition is not useful, since its product
with P1 and P7 is not P0; states E and F would have the same
assignment. We need a partition to separate A from C and E
from F. P3 indicates that A and D should be together; P5

indicates that B and F should be together. One of the partitions
that accomplishes these goals and still produces a product of
P0 with P1 and P7 is

P9 � (ABDF)(CE)*

The resulting state assignment is

9.5 Solved Problems 9-39

*There are others; you should try them as an exercise to see if one of them produces a
less costly solution.

The equations for q1 and q2 can be obtained from just the
block tables; the equation for D3 requires a 16-row truth table
and those for z require an 8-row table. (The work is left as an
exercise for the reader.)

D1 � x� D2 � q�2 z � q1 � q3

D3 � x�q�2q�3 � {xq1q3 or xq2q3}

This solution requires four gates plus the NOT gate. If we used
the straight binary assignment (A: 000, B: 001, . . .), we would
need 13 gates.

d. The next state portion of the table (and thus the list of SP
partitions) is the same as for part c. But, in this case, the
product of the output consistent partition

POC � (ABE)(CDF)

q q1 q2 q3

A 0 0 0
B 0 1 0
C 0 0 1
D 1 0 0
E 1 1 1
F 1 1 0
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with the other two is P0, and we can use it for the third
variable. The inputs to the first two flip flops would be the
same as for part c; the inputs for the third flip flop and the
output would be

D3 � x�q�1q2 � x�q2 � q�1q�3 z � q3

This requires seven gates. As in part c, the straight binary
assignment would be much more expensive (14 gates). 

e. The SP partitions are found as follows (ignoring the output
section, of course):

(AB) → (AD)(CE) → (BC)(CD) →→ PN

(AC) → √ →→ (AC)(B)(D)(E)
� P1

(AD) → (BC) → (ADE) → (AC) →→ PN

(AE) → (BCD) →→ PN

(BC) → (ADE) → (AC) →→ PN

(BD) → (BE) → (AC) →→ (AC)(BDE) � P2

(BE) → (AC) →→ (AC)(BE)(D) � P3

(CD) → (ABD) →→ PN

(CE) → (AB)(CD) →→ PN

(DE) → (AC) →→ (AC)(B)(DE) � P4

Note that both

PN � P2 � P3 � P1 � P0

PN � P2 � P4 � P1 � P0

No additional SP partitions are found by taking the sum of
these.

An inspection of the state table shows that P1 and P3 are
output consistent; thus the system can be reduced (using the
larger of these) to one with three states (combining A with C
and B with E), as follows:
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q� z
q x � 0 x � 1 x � 0 x � 1

A A D 0 0
B B A 1 1
D B A 1 0
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9.5 Solved Problems 9-41

Either directly from the state table or by converting it to a truth
table or directly to maps, we can determine

J1 � K1 � x

The first row of q� is the map for J and the second row is that
for K�. (We can always do a block table for variables assigned
using SP partitions.)

There is no clue from the next state portion as to which
partition to choose for the other variable. However, if we use

P4 � (AD)(B)

(which corresponds to the second column of the output
section), we are assured of a fairly simple output equation,
namely,

z � x�q1 � xq2

If we choose P4 for q2, then the state assignment and the truth
table for the next value of q2 and the output become

q�

q x � 0 x � 1

0(A) 0 1
1(B-D) 1 0

q x q1 q2 z q2
�

A 0 0 0 0 0
— 0 0 1 X X
D 0 1 0 1 1
B 0 1 1 1 1
A 1 0 0 0 0
— 1 0 1 X X
D 1 1 0 0 0
B 1 1 1 1 0

q q1 q2

A 0 0
B 1 1
D 1 0

The only SP partition for this reduced table is

P3
� � (A)(BD)

It can be used for one variable, q1, in the state assignment. For
that variable, we just need a next block table, namely,
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The maps for z and q2 (with the J portion for the quick method
shaded) are

The resulting equations are

z � q2 � x�q1 J2 � x�q1 K2 � x

Note that we have an even simpler version of z than expected.
If we retain the SP partition for assigning the first variable

and use the other two-block partition, P5 � (AB)(D), for q2, we
get

z � x�q2 � q1q�2 J2 � xq�1 K2 � 1

There is not much difference. Finally, if we do not use the SP
partition, but rather use the state assignment

0 1

00

01

11

10

x

z

q1 q2

11

XX

1

0 1

00

01

11

10

x
q1 q2

1

XX

1

q2
★
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we will get

z � q2 � x�q1 J1 � xq�2 K2 � 1 J2 � x�q1

K2 � x

For this simple problem, the state assignment does not make a
major difference.

f. The table of part f has one small change in the output section,
so that there are no longer any output consistent SP partitions.
We now need three variables, only one of which can use an SP
partition. The only two-block SP partition is P2, and we will
use it to assign q1. We will then use P3 to help with the second
variable; it keeps A and C together, and B and E together. We
must group D with AC; otherwise, we would just repeat the

q q1 q2

A 0 0
B 0 1
D 1 0
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same partition as before. Thus, we use 

P5 � (ACD)(BE)

The product of these two is P3 and we must now find a two-
block partition, the product of which with P3 is P0. There are
several possibilities, such as 

P6 � (ABD)(CE)

P7 � (AB)(CDE)

P8 � (AE)(BCD)

P9 � (ADE)(BC)

Any of these might lead to a good solution. Using P2, P5,
and P6, we have the following state assignment and design
tables:

9.5 Solved Problems 9-43

The block table is used to solve for q1 and the truth table
allows us to solve for the other two flip flop inputs and the
system output. The resulting equations are

D1 � xq�1 � x�q1

D2 � x�q1

D3 � x�q�1q�3 � x�q2q�3 � {xq1q3 or xq2q3}

z � q2 � x�q1 � xq�1q�3

requiring nine gates (since x�q1 need only be built once) (plus
a NOT gate to form x�).

q q1 q2 q3

A 0 0 0
B 1 1 0
C 0 0 1
D 1 0 0
E 1 1 1

x q1 q2 q3 q2
� q3

� z

A 0 0 0 0 0 1 0
C 0 0 0 1 0 0 0
— 0 0 1 0 X X X
— 0 0 1 1 X X X
D 0 1 0 0 1 0 1
— 0 1 0 1 X X X
B 0 1 1 0 1 1 1
E 0 1 1 1 1 0 1
A 1 0 0 0 0 0 1
C 1 0 0 1 0 0 0
— 1 0 1 0 X X X
— 1 0 1 1 X X X
D 1 1 0 0 0 0 0
— 1 1 0 1 X X X
B 1 1 1 0 0 0 1
E 1 1 1 1 0 1 1

q1
�

q1 x � 0 x � 1

0 0 1
1 1 0
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we get the equations

D1 � x�q�2q3

D2 � xq�3 � q�1q�2q3

D3 � x�q1 � xq�1q�3 � q2q�3
z � q1 � x�q3 � xq�2

This requires 11 gates (plus the NOT for x�), significantly
more logic than required for the other assignment. The other
assignments with P7, P8, and P9 are left as an exercise.

9.6 EXERCISES
1. Reduce each of the following systems to ones with the minimum

number of states using the tabular method.

a. b.

�c.

d. Same table as c, except that the output for state B is 1.
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q q1 q2 q3

A 0 0 0
B 0 0 1
C 0 1 0
D 0 1 1
E 1 0 0

q�

q x � 0 x � 1 z

A C B 0
B D A 0
C A B 1
D B B 1

q�

q x � 0 x � 1 z

A C B 0
B D C 1
C A B 0
D A B 0

q�

q x � 0 x � 1 z

A C B 0
B D A 0
C E A 1
D E B 1
E D B 1

If, instead, we used the assignment (just the first five
binary numbers)

E
X

E
R

C
IS

E
S
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g.

�h.

i. j.

�k. l.

9.6 Exercises 9-45

q�

q x � 0 x � 1 z

A B C 0
B D E 1
C D F 0
D B E 1
E F C 0
F D A 0

q�

q x � 0 x � 1 z

A E B 0
B C C 1
C D E 1
D F B 0
E A F 1
F D F 1

q�

q x � 0 x � 1 z

A B G 0
B A E 1
C A F 1
D G B 1
E C D 0
F B D 0
G G B 1

q� z
q x � 0 x � 1 x � 0 x � 1

A B D 0 0
B E G 1 0
C G F 0 0
D A C 1 1
E B D 0 0
F G D 0 0
G A B 1 0

q�

q x � 0 x � 1 z

A G B 0
B E C 0
C E B 1
D A B 0
E F D 0
F E D 1
G A B 1

q�

q x � 0 x � 1 z

A G B 0
B E C 1
C E B 1
D A B 1
E F D 1
F E D 1
G A B 0

q�

q x � 0 x � 1 z

A F B 0
B E C 0
C D C 1
D C A 0
E B C 1
F A B 0

e. f.
q�

q x � 0 x � 1 z

A B B 0
B F D 0
C D A 1
D C E 0
E F E 0
F E A 1

E
X

E
R

C
IS

E
S
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2. For each of the state tables of Exercise 1, find all of the nontrivial
SP partitions.

3. a. For state tables a and b of Exercise 2, reduce the system to one
with a minimum number of states if the output column is

A (i) 0 (ii) 1 (iii) 0 (iv) 0

B 1 0 0 1

C 0 0 1 0

D 1 1 1 0

b. Reduce the system of Exercises 1e and 1g to ones with a
minimum number of states if the output column is

A (i) 0 (ii) 1 (iii) 0 (iv) 1

B 1 0 0 0

C 0 1 0 0

D 1 1 1 0

E 0 0 1 0

F 1 1 1 0

�c. Reduce the system of Exercises 1k to one with a minimum
number of states if the output column is

A (i) 0 (ii) 1 (iii) 0 (iv) 1

B 1 0 0 0

C 1 1 1 0

D 1 1 1 1

E 0 0 1 0

F 0 1 0 0

G 0 1 0 1

4. a. For Solved Problem 4c,

i. Find the D’s and z for the straight binary assignment.

ii. Find D3 and z using the two SP partitions for q1 and q2

and using P9 � (ABDE) (CF) for q3.

iii. Find D3 and z using the two SP partitions for q1 and q2

and using P10 � (ADE) (BCF) for q3.

b. Continue the example of Solved Problem 4f, using

P2 � (AC)(BDE) 

P5 � (ACD)(BE )

and each of

i. P7 � (AB)(CDE )

ii. P8 � (AE)(BCD)

iii. P9 � (ADE)(BC)
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E
X

E
R

C
IS

E
S
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5. For each of the state tables shown below, find a good state
assignment and design the system using JK flip flops. Compare
that design with the state assignment that just uses the binary
numbers in order for the states (that is, A: 000, B: 001,
C: 010, . . .).*

a.

b.

�c. Exercise 1e with output d. Exercise 1k.

column 1

0

0

1

1

0

6. For each of the following output columns, reduce the system if
possible and find a good state assignment

9.6 Exercises 9-47

*Note that part b has the same next state portion as Solved Problem 2d.

q�

q x � 0 x � 1 z

A D B 1
B C D 1
C E D 1
D A B 0
E C D 0

q� z
q x � 0 x � 1 x � 0 x � 1

A D G 1 0
B C E 1 1
C B G 0 1
D A B 0 0
E F E 1 0
F G B 1 1
G F A 1 1

q�

q x � 0 x � 1 z1 z2 z3 z4

A E B 0 0 1 0
B C D 0 0 0 0
C E F 1 1 0 0
D E A 1 0 0 1
E C F 0 1 0 1
F C D 1 0 1 0

E
X

E
R

C
IS

E
S
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9.7 CHAPTER 9 TEST (50 MINUTES)
1. Using the techniques of Section 7.1, reduce the following state

table to one with the minimum number of states.

9-48 Chapter 9 Simplification of Sequential Circuits

2. For the state table of Problem 1,

a. For each of the following partitions, indicate whether or not it
is SP and whether or not it is output consistent.

P1 � (ABCD)(E)

P2 � (ABE)(CD)

P3 � (AC)(BE)(D)

P4 � (AB)(CD)(E)

P5 � (AB)(CDE)

P6 � (A)(B)(C)(D)(E)

b. Using one of these partitions, reduce the system to the
one with the smallest number of states, showing a new state
table.

q� z
q x � 0 x � 1 x � 0 x � 1

A 0 0
B 0 1
C 1 1
D 0 0
E 1 1
F 1 0

q�

q x � 0 x � 1 z

A C B 0
B D A 0
C E A 0
D E B 0
E D B 1

7. Consider the following state table, where the next state is not
specified. Complete the next state portion such that the system can
be reduced to four states (not any smaller) and it is possible to
get from any state to any other state with an appropriate input
sequence.

E
X

E
R

C
IS

E
S

C
H

A
P

T
E

R
 T

E
S

T
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3. For the following state table, find all of the nontrivial SP
partitions.

9.7 Chapter 9 Test 9-49

4. For the following state table,

q�

q x � 0 x � 1 z

A D B 1
B F D 0
C A D 1
D E D 0
E C B 1
F D C 0

q�

q x � 0 x � 1 z

A C B
B D C
C A B
D B C

The following are all of the SP partitions,

P1 � (AE)(CD)(B)(F)

P2 � (AF)(BC)(D)(E)

P3 � (AEF)(BCD)

Make a “good” state assignment and show the output equation
and the input equations for D flip flops.

C
H

A
P

T
E

R
 T

E
S

T
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