Total, average, and marginal revenue
Let $P=f(Q)$ be a demand schedule facing a firm. Then the firm's revenue, assuming it must charge the same price for all units sold, is $R(Q)=Q P=Q f(Q)$.

The firm's marginal revenue, the change in total revenue associated with the sale of one more unit, is the slope of the total revenue function: $M R=\mathrm{d} R(Q) / \mathrm{d} Q=R^{\prime}(Q)$. Using the product rule for differentiation, $R^{\prime}(Q)=Q f^{\prime}(Q)+f(Q)$. Average revenue is simply total revenue divided by output: $A R=$ $Q f(Q) / Q=f(Q)=P$.

Suppose markets are competitive. From the firm's perspective, then, price is constant over all reasonable ranges of output so that $f^{\prime}(Q)=0$. In that special case, $M R=f(Q)=P$. That is, the firm's marginal revenue and average revenue are both equal to the product price.

