Chapter 15 – Review Techniques

Overview

People discover mistakes as they develop software engineering work products. Technical reviews are the most effective technique for finding mistakes early in the software process. If you find an error early in the process, it is less expensive to correct. In addition, errors have a way of amplifying as the process proceeds. Reviews save time by reducing the amount of rework that will be required late in the project. In general, six steps are employed: planning, preparation, structuring the meeting, noting errors, making corrections, and verifying that corrections have been performed properly. The output of a review is a list of issues and/or errors that have been uncovered, as well as the technical status of the work product reviewed.

Review Goals

· Point out needed improvements in the product of a single person or team

· Confirm those parts of a product in which improvement is either not desired or not needed

· Achieve technical work of more uniform, or at least more predictable, quality than can be achieved without reviews, in order to make technical work more manageable

Software Defect Cost Impact

· Defects or faults are quality problems discovered after software has been released to end-user or another software process framework activity

· Industry studies suggest that design activities introduce 50-65% of all defects or errors during the software process

· Review techniques have been shown to be up to 75% effective in uncovering design flaws which ultimately reduces the cost of subsequent activities in the software process

· Defect amplification models can be used to show that the benefits of detecting and removing defects from activities that occur early in the software process

Review Metrics

· Preparation effort, Ep - the effort (in person-hours) required to review a work product prior to the actual review meeting

· Assessment effort, Ea - the effort (in person-hours) that is expending during the actual review

· Rework effort, Er - the effort (in person-hours) that is dedicated to the correction of those errors uncovered during the review

· Work product size, WPS - a measure of the size of the work product that has been reviewed (e.g., the number of UML models, or the number of document pages, or the number of lines of code)

· Minor errors found, Errminor - the number of errors found that can be categorized as minor (requiring less than some pre-specified effort to correct)

· Major errors found, Errmajor - the number of errors found that can be categorized as major (requiring more than some pre-specified effort to correct)

· Total review effort, Ereview = Ep + Ea + Er
· Total number of errors discovered, Errtot = Errminir + Errmajor
· Defect density = Errtot / WPS
Review Cost Effectiveness

· Software review organizations can only assess the effectiveness and cost benefits after reviews are completed, review metrics collected, average data computed, and downstream software quality is measured by testing

· Some people have found a 10 to 1 return on inspection costs, accelerated product delivery times, and productivity increases

· Review costs benefits are most pronounced during the latter phases of software process leading up to product deployment

Review Formality

· Review formality increases as:

· degree to which distinct roles are defined for the reviewers
· amount of planning and preparation for the review increases
· distinct structure for review (including tasks and internal work products) is defined
· follow-up the reviewers occurs for any corrections that are made
Informal Reviews

· Simple desk check of a work product or casual meeting

· Efficacy of informal reviews is improved by developing and using checklists for each major work product to be reviewed

· Pair programming might be viewed as continuous as relying on continuous desk checks as code is being created

Formal Technical Review (FTR) Objectives

· Uncover errors in function, logic, or implementation for any representation of the software

· Verify that the software under review meets its requirements

· Ensure that the software has been represented according to predefined standards

· Achieve software that is developed in a uniform manner

· Make projects more manageable

· Serve as a training ground, enabling junior engineers to observe different approaches to software analysis, design, and implementation

· Serves to promote backup and continuity because a number of people become familiar with parts of the software that they may not have otherwise seen

Formal Technical Reviews

· Involves 3 to 5 people (including reviewers)

· Advance preparation (no more than 2 hours per person) required

· Duration of review meeting should be less than 2 hours

· Focus of review (walkthrough or inspection) is on a discrete work product

· Review leader organizes the review meeting at the producer's request

· Reviewers ask questions that enable the producer to discover his or her own error (the product is under review not the producer)

· Producer of the work product walks the reviewers through the product

· Recorder writes down any significant issues raised during the review

· Reviewers decide to accept or reject the work product and whether to require additional reviews of product or not

Review Summary Report

· What was reviewed?

· Who reviewed it?

· What were the findings and conclusions?

Review Issues List

· Identifies problem areas within product

· Serves as action list to guide the work product creator as corrections are made

Formal Technical Review Guidelines

1. Review the product not the producer.

2. Set an agenda and maintain it.

3. Limit rebuttal and debate.

4. Enunciate problem area, but don’t attempt to solve every problem noted.

5. Take written notes.

6. Limit number of participants and insist on advance preparation.

7. Develop a checklist for each product that is likely to be reviewed.

8. Allocate resources and schedule time for all reviewers.

9. Conduct meaningful training for all reviewers.

10. Review your early reviews,

Sample Driven Reviews

· Samples of all software engineering work products are reviewed to determine the most error-prone

· Full FTR resources are focused on the likely error-prone work products based on sampling results

· To be effective the sample driven review process must be driven by quantitative measures of the work products

1. Inspect a representative fraction of the content of each software work product (i) and record the number of faults (fi) found within (ai)

2. Develop a gross estimate of the number of faults within work product i by multiplying fi by 1/ai
3. Sort work products in descending order according to the gross estimate of the number of faults in each

4. Focus on available review resources on those work products with the highest estimated number of faults

