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A P P E N D I X

B

THE LAPLACE TRANSFORM

B.1 COMPLEX FREQUENCY
AND THE LAPLACE TRANSFORM

The transient analysis methods illustrated in Chapter 5 for first- and second-order circuits
can become rather cumbersome when applied to higher-order circuits. Moreover, solving the
differential equations directly does not reveal the strong connection that exists between the
transient response and the frequency response of a circuit. The aim of this section is to
introduce an alternate solution method based on the notions of complex frequency and of
the Laplace transform. The concepts presented will demonstrate that the frequency response
of linear circuits is but a special case of the general transient response of the circuit, when
analyzed by means of Laplace methods. In addition, the use of the Laplace transform method
allows the introduction of systems concepts, such as poles, zeros, and transfer functions, that
cannot be otherwise recognized.

Complex Frequency

In Chapter 4, we considered circuits with sinusoidal excitations such as

v(t) = A cos(ωt + φ) (B.1)
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Figure B.1(a) Damped sinusoid: negative σ
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Figure B.1(b) Damped sinusoid: positive σ

which we also wrote in the equivalent phasor form

V( jω) = Ae jφ = A∠φ (B.2)

The two expressions just given are related by

v(t) = Re(Ve jωt) (B.3)

As was shown in Chapter 4, phasor notation is extremely useful in solving AC steady-state
circuits, in which the voltages and currents are steady-state sinusoids. We now consider a
different class of waveforms, useful in the transient analysis of circuits, namely, damped
sinusoids. The most general form of a damped sinusoid is

v(t) = Aeσ t cos(ωt + φ) (B.4)

As one can see, a damped sinusoid is a sinusoid multiplied by a real exponential eσ t . The
constant σ is real and is usually zero or negative in most practical circuits. Figure B.1(a) and
(b) depicts the case of a damped sinusoid with negative σ and with positive σ , respectively.
Note that the case of σ = 0 corresponds exactly to a sinusoidal waveform. The definition of
phasor voltages and currents given in Chapter 4 can easily be extended to account for the case
of damped sinusoidal waveforms by defining a new variable s, called the complex frequency:

s = σ + jω (B.5)

Note that the special case of σ = 0 corresponds to s = jω, that is, the familiar steady-state
sinusoidal (phasor) case. We shall now refer to the complex variable V(s) as the complex
frequency domain representation of v(t). It should be observed that from the viewpoint of
circuit analysis, the use of the Laplace transform is analogous to phasor analysis; that is,
substituting the variable s wherever jω was used is the only step required to describe a circuit
using the new notation.

CHECK YOUR UNDERSTANDING

B.1 Find the complex frequencies that are associated with

a. 5e−4t b. cos 2ωt c. sin(ωt + 2θ) d. 4e−2t sin(3t − 50◦) e. e−3t(2 + cos 4t)

B.2 Find s and V(s) if v(t) is given by

a. 5e−2t b. 5e−2t cos(4t + 10◦) c. 4 cos(2t − 20◦)
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B.3 Find v(t) if

a. s = −2, V = 2∠0◦ b. s = j2, V = 12∠−30◦ c. s = −4 + j3, V = 6∠10◦

Answers:B.1:a.−4;b.±j2ω;c.±jω;d.−2±j3;e.−3and−3±j4.B.2:a.−2,
5∠0◦;b.−2+j4,5∠10◦;c.j2,4∠−20◦.B.3:a.2e−2t;b.12cos(2t−30◦);
c.6e−4tcos(3t+10◦)

All the concepts and rules used in AC network analysis (see Chapter 4), such as imped-
ance, admittance, KVL, KCL, and Thévenin’s and Norton’s theorems, carry over to the damped
sinusoid case exactly. In the complex frequency domain, the current I(s) and voltage V(s) are
related by the expression

V(s) = Z(s)I(s) (B.6)

where Z(s) is the familiar impedance, with s replacing jω. We may obtain Z(s) from Z(jω) by
simply replacing jω by s. For a resistance R, the impedance is

ZR(s) = R (B.7)

For an inductance L, the impedance is

ZL(s) = sL (B.8)

For a capacitance C, it is

ZC(s) = 1

sC
(B.9)

Impedances in series or parallel are combined in exactly the same way as in the AC steady-state
case, since we only replace jω by s.

EXAMPLE B.1 Complex Frequency Notation

Problem:

Use complex impedance ideas to determine the response of a series RL circuit to a damped
exponential voltage.

Solution:

Known Quantities: Source voltage, resistor, inductor values.

Find: The time-domain expression for the series current iL(t).

Schematics, Diagrams, Circuits, and Given Data: vs(t) = 10e−2t cos(5t) V; R = 4 �;
L = 2 H.

Assumptions: None.

Analysis: The input voltage phasor can be represented by the expression

V(s) = 10∠0 V
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The impedance seen by the voltage source is

Z(s) = R + sL = 4 + 2s

Thus, the series current is

I(s) = V(s)

Z(s)
= 10

4 + 2s
= 10

4 + 2(−2 + j5)
= 10

j10
= j1 = 1∠

(
−π

2

)
Finally, the time-domain expression for the current is

iL(t) = e−2t cos(5t − π/2) A

Comments: The phasor analysis method illustrated here is completely analogous to the method
introduced in Chapter 4, with the complex frequency jω (steady-state sinusoidal frequency)
related by s (damped sinusoidal frequency).

Just as frequency response functions H (jω) were defined in this appendix, it is possible
to define a transfer function H (s). This can be a ratio of a voltage to a current, a ratio of
a voltage to a voltage, a ratio of a current to a current, or a ratio of a current to a voltage.
The transfer function H (s) is a function of network elements and their interconnections. Using
the transfer function and knowing the input (voltage or current) to a circuit, we can find an
expression for the output either in the complex frequency domain or in the time domain. As an
example, suppose Vi(s) and Vo(s) are the input and output voltages to a circuit, respectively,
in complex frequency notation. Then

H (s) = Vo(s)

Vi(s)
(B.10)

from which we can obtain the output in the complex frequency domain by computing

Vo(s) = H (s)Vi(s) (B.11)

If Vi(s) is a known damped sinusoid, we can then proceed to determine vo(t) by means of the
method illustrated earlier in this section.

CHECK YOUR UNDERSTANDING

B.4 Given the transfer function H (s) = 3(s+2)/(s2 +2s+3) and the input Vi(s) = 4∠0◦,
find the forced response vo(t) if

a. s = −1 b. s = −1 + j1 c. s = −2 + j1

B.5 Given the transfer function H (s) = 2(s+4)/(s2+4s+5) and the input Vi(s) = 6∠30◦,
find the forced response vo(t) if

a. s = −4 + j1 b. s = −2 + j2

Answers:B.4:a.6e−t;b.12√2e−tcos(t+45◦);c.6e−2tcos(t+135◦).
B.5:a.3e−4tcos(t+165◦);b.8√2e−2tcos(2t−105◦)

The Laplace Transform

The Laplace transform, named after the French mathematician and astronomer Pierre Simon
de Laplace, is defined by
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L[ f (t)] = F(s) =
∫ ∞

0
f (t)e−stdt (B.12)

The function F(s) is the Laplace transform of f (t) and is a function of the complex frequency
s = σ + jω, considered earlier in this section. Note that the function f (t) is defined only for
t ≥ 0. This definition of the Laplace transform applies to what is known as the one-sided
or unilateral Laplace transform, since f (t) is evaluated only for positive t. To conveniently
express arbitrary functions only for positive time, we introduce a special function called the
unit step function u(t), defined by the expression

u(t) =
{

0 t < 0

1 t > 0
(B.13)

EXAMPLE B.2 Computing a Laplace Transform

Problem:

Find the Laplace transform of f (t) = e−atu(t).

Solution:

Known Quantities: Function to be Laplace-transformed.

Find: F(s) = L[ f (t)].
Schematics, Diagrams, Circuits, and Given Data: f (t) = e−atu(t).

Assumptions: None.

Analysis: From equation B.12,

F(s) =
∫ ∞

0
e−ate−st dt =

∫ ∞

0
e−(s+a)t dt = 1

s + a
e−(s+a)t

∣∣∣∣
∞

0

= 1

s + a

Comments: Table B.1 contains a list of common Laplace transform pairs.

EXAMPLE B.3 Computing a Laplace Transform

Problem:

Find the Laplace transform of f (t) = cos(ωt) u(t).

Solution:

Known Quantities: Function to be Laplace-transformed.

Find: F(s) = L[ f (t)].
Schematics, Diagrams, Circuits, and Given Data: f (t) = cos(ωt) u(t).

Assumptions: None.
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Analysis: Using equation B.12 and applying Euler’s identity to cos(ωt) give:

F(s) =
∫ ∞

0

1

2
(e jωt + e−jωt)e−st dt = 1

2

∫ ∞

0
(e(−s+jω)t + e(−s−jω)t) dt

= 1

−s + jω
e−(s+jω)t

∣∣∣∣∣
∞

0

+ 1

−s − jω
e−(s−jω)t

∣∣∣∣∣
∞

0

= 1

−s + jω
+ 1

−s − jω
= s

s2 + ω2

Comments: Table B.1 contains a list of common Laplace transform pairs.

CHECK YOUR UNDERSTANDING

B.6 Find the Laplace transform of the following functions:

a. u(t) b. sin(ωt) u(t) c. tu(t)

B.7 Find the Laplace transform of the following functions:

a. e−at sin ωt u(t) b. e−at cos ωt u(t)
Answers:B.6:a.

1

s
;b.

ω

s2+ω2;c.
1

s2.B.7:a.
ω

(s+a)2+ω2;b.
s+a

(s+a)2+ω2

Table B.1 Laplace
transform pairs

f (t) F(s)

δ(t)
(unit impulse) 1

u(t) (unit step)
1

s

e−atu(t)
1

s + a

sin ωt u(t)
ω

s2 + ω2

cos ωt u(t)
s

s2 + ω2

e−at sin ωt u(t)
ω

(s + a)2 + ω2

e−at cos ωt u(t)
s + a

(s + a)2 + ω2

tu(t)
1

s2

From what has been said so far about the Laplace transform, it is obvious that we may
compile a lengthy table of functions and their Laplace transforms by repeated application of
equation B.12 for various functions of time f (t). Then we could obtain a wide variety of inverse
transforms by matching entries in the table. Table B.1 lists some of the more common Laplace
transform pairs. The computation of the inverse Laplace transform is in general rather
complex if one wishes to consider arbitrary functions of s. In many practical cases, however,
it is possible to use combinations of known transform pairs to obtain the desired result.

EXAMPLE B.4 Computing an Inverse Laplace Transform

Problem:

Find the inverse Laplace transform of

F(s) = 2

s + 3
+ 4

s2 + 4
+ 4

s

Solution:

Known Quantities: Function to be inverse Laplace-transformed.
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Find: f (t) = L−1[F(s)].
Schematics, Diagrams, Circuits, and Given Data:

F(s) = 2

s + 3
+ 4

s2 + 4
+ 4

s
= F1(s) + F2(s) + F3(s)

Assumptions: None.

Analysis: Using Table B.1, we can individually inverse-transform each of the elements
of F(s):

f1(t) = 2L−1

(
1

s + 3

)
= 2e−3tu(t)

f2(t) = 2L−1

(
2

s2 + 22

)
= 2 sin(2t) u(t)

f3(t) = 4L−1

(
1

s

)
= 4u(t)

Thus

f (t) = f1(t) + f2(t) + f3(t) = (
2e−3t + 2 sin 2t + 4

)
u(t).

EXAMPLE B.5 Computing an Inverse Laplace Transform

Problem:

Find the inverse Laplace transform of

F(s) = 2s + 5

s2 + 5s + 6

Solution

Known Quantities: Function to be inverse Laplace-transformed.

Find: f (t) = L−1[F(s)].
Assumptions: None.

Analysis: A direct entry for the function cannot be found in Table B.1. In such cases, one must
compute a partial fraction expansion of the function F(s) and then individually transform
each term in the expansion. A partial fraction expansion is the inverse operation of obtaining
a common denominator and is illustrated below.

F(s) = 2s + 5

s2 + 5s + 6
= A

s + 2
+ B

s + 3

To obtain the constants A and B, we multiply the above expression by each of the denominator
terms:

(s + 2)F(s) = A + (s + 2)B

s + 3

(s + 3)F(s) = (s + 3)A

s + 2
+ B
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From the above two expressions, we can compute A and B as follows:

A = (s + 2)F(s)|s=−2 = 2s + 5

s + 3

∣∣∣∣∣∣
s=−2

= 1

B = (s + 3)F(s)|s=−3 = 2s + 5

s + 2

∣∣∣∣∣∣
s=−3

= 1

Finally,

F(s) = 2s + 5

s2 + 5s + 6
= 1

s + 2
+ 1

s + 3

and using Table B.1, we compute

f (t) = (
e−2t + e−3t

)
u(t)

CHECK YOUR UNDERSTANDING

B.8 Find the inverse Laplace transform of each of the following functions:

a. F(s) = 1

s2 + 5s + 6
b. F(s) = s − 1

s(s + 2)

c. F(s) = 3s

(s2 + 1)(s2 + 4)
d. F(s) = 1

(s + 2)(s + 1)2

Answers:a.f(t)=(e−2t−e−3t)u(t);b.f(t)=(
3
2e−2t−

1
2)u(t);

c.f(t)=(cost−cos2t)u(t);d.f(t)=(e−2t+te−t−e−t)u(t)

+
_
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+
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+
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Z2ZC
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Figure B.2 A circuit and its
Laplace transform domain
equivalent

Transfer Functions, Poles, and Zeros

It should be clear that the Laplace transform can be quite a convenient tool for analyzing
the transient response of a circuit. The Laplace variable s is an extension of the steady-state
frequency response variable jω already encountered in this appendix. Thus, it is possible to
describe the input-output behavior of a circuit by using Laplace transform ideas in the same
way in which we used frequency response ideas earlier. Now we can define voltages and
currents in the complex frequency domain as V(s) and I(s), and we denote impedances by
the notation Z(s), where s replaces the familiar jω. We define an extension of the frequency
response of a circuit, called the transfer function, as the ratio of any input variable to any output
variable, that is,

H1(s) = Vo(s)

Vi(s)
or H2(s) = Io(s)

Vi(s)
etc. (B.14)

As an example, consider the circuit of Figure B.2. We can analyze it by using a method analogous
to phasor analysis by defining impedances

Z1 = R1 ZC = 1

sC
ZL = sL Z2 = R2 (B.15)
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Then we can use mesh analysis methods to determine that

Io(s) = Vi(s)
ZC

(ZL + Z2)ZC + (ZL + Z2)Z1 + Z1ZC
(B.16)

or, upon simplifying and substituting the relationships of equation B.15,

H2(s) = Io(s)

Vi(s)
= 1

R1LCs2 + (R1R2C + L)s + R1 + R2
(B.17)

If we were interested in the relationship between the input voltages and, say, the capacitor
voltage, we could similarly calculate

H1(s) = VC(s)

Vi(s)
= sL + R2

R1LCs2 + (R1R2C + L)s + R1 + R2
(B.18)

Note that a transfer function consists of a ratio of polynomials; this ratio can also be expressed
in factored form, leading to the discovery of additional important properties of the circuit. Let
us, for the sake of simplicity, choose numerical values for the components of the circuit of
Figure B.2. For example, let R1 = 0.5 �, C = 1

4 F, L = 0.5 H, and R2 = 2 �. Then we can
substitute these values into equation B.18 to obtain

H1(s) = 0.5s + 2

0.0625s2 + 0.375s + 2.5
= 8

(
s + 4

s2 + 6s + 40

)
(B.19)

Equation B.19 can be factored into products of first-order terms as follows:

H1(s) = 8

[
s + 4

(s − 3.0000 + j5.5678)(s − 3.0000 − j5.5678)

]
(B.20)

where it is apparent that the response of the circuit has very special characteristics for three
values of s: s = −4; s = +3.0000 + j5.5678; and s = +3.0000 − j5.5678. In the first case, at
the complex frequency s = −4, the numerator of the transfer function becomes zero, and the
response of the circuit is zero, regardless of how large the input voltage is. We call this particular
value of s a zero of the transfer function. In the latter two cases, for s = +3.0000 ± j5.5678,
the response of the circuit becomes infinite, and we refer to these values of s as poles of the
transfer function.

It is customary to represent the response of electric circuits in terms of poles and zeros,
since knowledge of the location of these poles and zeros is equivalent to knowing the transfer
function and provides complete information regarding the response of the circuit. Further, if the
poles and zeros of the transfer function of a circuit are plotted in the complex plane, it is possible
to visualize the response of the circuit very effectively. Figure B.3 depicts the pole–zero plot
of the circuit of Figure B.2; in plots of this type it is customary to denote zeros by a small circle
and poles by an “×.”

6

4

2

0

–2

–4

–6

–10 –5 0 5

Im
ag

in
ar

y 
pa

rt

Real part

Figure B.3 Zero–pole plot for the circuit of Figure B.2
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The poles of a transfer function have a special significance, in that they are equal to the
roots of the natural response of the system. They are also called the natural frequencies of
the circuit. Example B.6 illustrates this point.

EXAMPLE B.6 Poles of a Second-Order Circuit

Problem:

Determine the poles of a parallel RLC circuit. Express the homogeneous equation using iL as
the independent variable.

Solution:

Known Quantities: Values of resistor, inductor, and capacitor.

Find: Poles of the circuit.

Assumptions: None.

Analysis: The differential equation describing the natural response of the parallel RLC
circuit is

d 2i

dt2
+ R

L

di

dt
+ 1

LC
i = 0

with characteristic equation given by

s2 + R

L
s + 1

LC
= 0

Now, let us determine the transfer function of the circuit, say, VL(s)/VS(s). Applying the
voltage divider rule, we can write

VL(s)

VS(s)
= sL

1/sC + R + sL

= s2

s2 + (R/L)s + 1/LC

The denominator of this function, which determines the poles of the circuit, is identical to the
characteristic equation of the circuit: The poles of the transfer function are identical to the roots
of the characteristic equation!

s1,2 = − R

2L
± 1

2

√(
R

L

)2

− 4

LC

Comments: Describing a circuit by means of its transfer function is completely equivalent to
representing it by means of its differential equation. However, it is often much easier to derive
a transfer function by basic circuit analysis than it is to obtain the differential equation of a
circuit.




