Chapter 1

1. (a) Applying formula (1.1)

$$
A(t)=t^{2}+2 t+3 \quad \text { and } A(0)=3
$$

so that

$$
a(t)=\frac{A(t)}{k}=\frac{A(t)}{A(0)}=\frac{1}{3}\left(t^{2}+2 t+3\right) .
$$

(b) The three properties are listed on p. 2.
(1) $a(0)=\frac{1}{3}(3)=1$.
(2) $a^{\prime}(t)=\frac{1}{3}(2 t+2)>0$ for $t \geq 0$, so that $a(t)$ is an increasing function.
(3) $a(t)$ is a polynomial and thus is continuous.
(c) Applying formula (1.2)

$$
\begin{aligned}
I_{n} & =A(n)-A(n-1)=\left[n^{2}+2 n+3\right]-\left[(n-1)^{2}+2(n-1)+3\right] \\
& =n^{2}+2 n+3-n^{2}+2 n-1-2 n+2-3 \\
& =2 n+1
\end{aligned}
$$

2. (a) Appling formula (1.2)

$$
\begin{aligned}
I_{1}+I_{2}+\ldots+I_{n} & =[A(1)-A(0)]+[A(2)-A(1)]+\cdots+[A(n)-A(n-1)] \\
& =A(n)-A(0)
\end{aligned}
$$

(b) The LHS is the increment in the fund over the n periods, which is entirely attributable to the interest earned. The RHS is the sum of the interest earned during each of the n periods.
3. Using ratio and proportion

$$
\frac{5000}{11,130}(12,153.96-11,575.20)=\$ 260
$$

4. We have $a(t)=a t^{2}+b$, so that

$$
\begin{aligned}
& a(0)=\quad b=1 \\
& a(3)=9 a+b=1.72
\end{aligned}
$$

Solving two equations in two unknowns $a=.08$ and $b=1$. Thus,

$$
\begin{gathered}
a(5)=5^{2}(.08)+1=3 \\
a(10)=10^{2}(.08)+1=9
\end{gathered}
$$

and the answer is $100 \frac{a(10)}{a(5)}=100 \frac{9}{3}=300$.
5. (a) From formula (1.4b) and $A(t)=100+5 t$

$$
i_{5}=\frac{A(5)-A(4)}{A(4)}=\frac{125-120}{120}=\frac{5}{120}=\frac{1}{24} .
$$

(b) $i_{10}=\frac{A(10)-A(9)}{A(9)}=\frac{150-145}{145}=\frac{5}{145}=\frac{1}{29}$.
6. (a) $A(t)=100(1.1)^{t}$ and

$$
i_{5}=\frac{A(5)-A(4)}{A(4)}=\frac{100\left[(1.1)^{5}-(1.1)^{4}\right]}{100(1.1)^{4}}=1.1-1=.1 .
$$

(b) $i_{10}=\frac{A(10)-A(9)}{A(9)}=\frac{100\left[(1.1)^{10}-(1.1)^{9}\right]}{100(1.1)^{9}}=1.1-1=.1$.
7. From formula (1.4b)

$$
i_{n}=\frac{A(n)-A(n-1)}{A(n-1)}
$$

so that

$$
A(n)-A(n-1)=i_{n} A(n-1)
$$

and

$$
A(n)=\left(1+i_{n}\right) A(n-1) .
$$

8. We have $i_{5}=.05, i_{6}=.06, i_{7}=.07$, and using the result derived in Exercise 7

$$
\begin{aligned}
A(7) & =A(4)\left(1+i_{5}\right)\left(1+i_{6}\right)\left(1+i_{7}\right) \\
& =1000(1.05)(1.06)(1.07)=\$ 1190.91 .
\end{aligned}
$$

9. (a) Applying formula (1.5)

$$
615=500(1+2.5 i)=500+1250 i
$$

so that

$$
1250 i=115 \text { and } i=115 / 1250=.092, \text { or } 9.2 \% .
$$

(b) Similarly,

$$
630=500(1+.078 t)=500+39 t
$$

so that

$$
39 t=130 \text { and } t=130 / 39=10 / 3=31 / 3 \text { years. }
$$

10. We have

$$
\begin{gathered}
1110=1000(1+i t)=1000+1000 i t \\
1000 \text { it }=110 \text { and } i t=.11
\end{gathered}
$$

so that

$$
\begin{gathered}
500\left[1+\left(\frac{3}{4}\right)(i)(2 t)\right]=500[1+1.5 i t] \\
=500[1+(1.5)(.11)]=\$ 582.50 .
\end{gathered}
$$

11. Applying formula (1.6)

$$
i_{n}=\frac{i}{1+i(n-1)} \quad \text { and } \quad .025=\frac{.04}{1+.04(n-1)}
$$

so that

$$
.025+.001(n-1)=.04, .001 n=.016, \quad \text { and } \quad n=16
$$

12. We have

$$
i_{1}=.01 \quad i_{2}=.02 \quad i_{3}=.03 \quad i_{4}=.04 \quad i_{5}=.05
$$

and adapting formula (1.5)

$$
1000\left[1+\left(i_{1}+i_{2}+i_{3}+i_{4}+i_{5}\right)\right]=1000(1.15)=\$ 1150
$$

13. Applying formula (1.8)

$$
600(1+i)^{2}=600+264=864
$$

which gives

$$
(1+i)^{2}=864 / 600=1.44, \quad 1+i=1.2, \text { and } i=.2
$$

so that

$$
2000(1+i)^{3}=2000(1.2)^{3}=\$ 3456
$$

14. We have

$$
\frac{(1+i)^{n}}{(1+j)^{n}}=(1+r)^{n} \quad \text { and } \quad 1+r=\frac{1+i}{1+j}
$$

so that

$$
r=\frac{1+i}{1+j}-1=\frac{(1+i)-(1+j)}{1+j}=\frac{i-j}{1+j}
$$

This type of analysis will be important in Sections 4.7 and 9.4.
15. From the information given:

$$
\begin{aligned}
(1+i)^{a} & =2 & (1+i)^{a} & =2 \\
2(1+i)^{b} & =3 & (1+i)^{b} & =3 / 2 \\
3(1+i)^{c} & =15 & (1+i)^{c} & =5 \\
6(1+i)^{n} & =10 & (1+i)^{n} & =5 / 3 .
\end{aligned}
$$

By inspection $\frac{5}{3}=5 \cdot \frac{2}{3} \cdot \frac{1}{2}$. Since exponents are addictive with multiplication, we have $n=c-a-b$.
16. For one unit invested the amount of interest earned in each quarter is:

Quarter:	1	2	3	4
Simple:	.03	.03	.03	.03

Compound: $\quad 1.03-1(1.03)^{2}-1.03(1.03)^{3}-(1.03)^{2} \quad(1.03)^{4}-(1.03)^{3}$
Thus, we have

$$
\frac{D(4)}{D(3)}=\frac{\left[(1.03)^{4}-(1.03)^{3}\right]-.03}{\left[(1.03)^{3}-(1.03)^{2}\right]-.03}=1.523
$$

17. Applying formula (1.12)

$$
\begin{aligned}
A: & 10,000\left[(1.06)^{-18}+(1.06)^{-19}\right] \\
B: & 10,000\left[(1.06)^{-20}+(1.06)^{-21}\right]
\end{aligned}=\underline{60598.57} 0 \underline{\text { Difference }}=\begin{aligned}
& \$ 748.97
\end{aligned}
$$

18. We have

$$
v^{n}+v^{2 n}=1
$$

and multiplying by $(1+i)^{2 n}$

$$
(1+i)^{n}+1=(1+i)^{2 n}
$$

or

$$
(1+i)^{2 n}-(1+i)^{n}-1=0 \quad \text { which is a quadratic. }
$$

Solving the quadratic

$$
(1+i)^{n}=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1+\sqrt{5}}{2} \text { rejecting the negative root. }
$$

Finally,

$$
(1+i)^{2 n}=\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+2 \sqrt{5}+5}{4}=\frac{3+\sqrt{5}}{2} .
$$

19. From the given information $500(1+i)^{30}=4000$ or $(1+i)^{30}=8$.

The sum requested is

$$
\begin{gathered}
10,000\left(v^{20}+v^{40}+v^{60}\right)=10,000\left(8^{-2 / 3}+8^{-4 / 3}+8^{-2}\right) \\
=10,000\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\right)=\$ 3281.25
\end{gathered}
$$

20. (a) Applying formula (1.13) with $a(t)=1+i t=1+.1 t$, we have

$$
d_{5}=\frac{I_{5}}{A_{5}}=\frac{a(5)-a(4)}{a(5)}=\frac{1.5-1.4}{1.5}=\frac{.1}{1.5}=\frac{1}{15} .
$$

(b) A similar approach using formula (1.18) gives

$$
a^{-1}(t)=1-d t=1-.1 t
$$

and

$$
\begin{aligned}
d_{5} & =\frac{I_{5}}{A_{5}}=\frac{a(5)-a(4)}{a(5)}=\frac{(1-.5)^{-1}-(1-.4)^{-1}}{(1-.5)^{-1}} \\
& =\frac{1 / .5-1 / .6}{1-1 / .5}=\frac{2-5 / 3}{2}=\frac{6-5}{2 \cdot 3}=\frac{1}{6} .
\end{aligned}
$$

21. From formula (1.16) we know that $v=1-d$, so we have

$$
\begin{aligned}
& 200+300(1-d)=600(1-d)^{2} \\
& 6 d^{2}-12 d+6-2-3+3 d=0 \\
& 6 d^{2}-9 d+1=0 \text { which is a quadratic. }
\end{aligned}
$$

Solving the quadratic

$$
d=\frac{9 \pm \sqrt{(-9)^{2}-(4)(6)(1)}}{2 \cdot 6}=\frac{9-\sqrt{57}}{12}
$$

rejecting the root >1, so that

$$
d=.1208, \text { or } 12.08 \%
$$

22. Amount of interest: $i A=336$.

Amount of discount: $d A=300$.
Applying formula (1.14)

$$
i=\frac{d}{1-d} \quad \text { and } \quad \frac{336}{A}=\frac{300 / A}{1-300 / A}=\frac{300}{A-300}
$$

so that

$$
\begin{gathered}
336(A-300)=300 A \\
36 A=100,800 \text { and } A=\$ 2800 .
\end{gathered}
$$

23. Note that this Exercise is based on material covered in Section 1.8. The quarterly discount rate is $.08 / 4=.02$, while 25 months is $8 \frac{1}{3}$ quarters.
(a) The exact answer is

$$
5000 v^{25 / 3}=5000(1-.02)^{25 / 3}=\$ 4225.27
$$

(b) The approximate answer is based on formula (1.20)

$$
5000 v^{8}\left(1-\frac{1}{3} d\right)=5000(1-.02)^{8}\left[1-\left(\frac{1}{3}\right)(.02)\right]=\$ 4225.46
$$

The two answers are quite close in value.
24. We will algebraically change both the RHS and LHS using several of the basic identities contained in this Section.

$$
\begin{aligned}
& \text { RHS }=\frac{(i-d)^{2}}{1-v}=\frac{(i d)^{2}}{d}=i^{2} d \quad \text { and } \\
& \text { LHS }=\frac{d^{3}}{(1-d)^{2}}=\frac{i^{3} v^{3}}{v^{2}}=i^{3} v=i^{2} d .
\end{aligned}
$$

25. Simple interest: $\quad a(t)=1+$ it from formula (1.5).

Simple discount: $\quad a^{-1}(t)=1-d t$ from formula (1.18).

Thus,

$$
1+i t=\frac{1}{1-d t}
$$

and

$$
\begin{gathered}
1-d t+i t-i d t^{2}=1 \\
i t-d t=i d t^{2} \\
i-d=i d t .
\end{gathered}
$$

26. (a) From formula (1.23a)

$$
\left(1-\frac{d^{(4)}}{4}\right)^{-4}=\left(1+\frac{i^{(3)}}{3}\right)^{3}
$$

so that

$$
d^{(4)}=4\left[1-\left(1+\frac{i^{(3)}}{3}\right)^{-\frac{3}{4}}\right] .
$$

(b)

$$
\left(1+\frac{i^{(6)}}{6}\right)^{6}=\left(1-\frac{d^{(2)}}{2}\right)^{-2}
$$

so that

$$
i^{(6)}=6\left[\left(1-\frac{d^{(2)}}{2}\right)^{-\frac{1}{3}}-1\right]
$$

27. (a) From formula (1.24)

$$
i^{(m)}-d^{(m)}=\frac{i^{(m)} \boldsymbol{d}^{(m)}}{m}
$$

so that

$$
i^{(m)}=d^{(m)}\left(1+\frac{i^{(m)}}{m}\right)=d^{(m)}(1+i)^{1 / m}
$$

(b) $\boldsymbol{i}^{(m)}$ measures interest at the ends of m ths of a year, while $d^{(m)}$ is a comparable measure at the beginnings of m ths of a year. Accumulating $d^{(m)}$ from the beginning to the end of the m thly periods gives $i^{(m)}$.
28. (a) We have $j=\frac{i^{(4)}}{4}=\frac{.06}{4}=.015$ and $n=2 \cdot 4=8$ quarters, so that the accumulated value is

$$
100(1.015)^{8}=\$ 112.65
$$

(b) Here we have an unusual and uncommon situation in which the conversion frequency is less frequent than annual. We have $j=4(.06)=.24$ per 4 -year period and $n=2(1 / 4)=1 / 2$ such periods, so that the accumulated value is

$$
100(1-.24)^{-.5}=100(.76)^{-.5}=\$ 114.71
$$

29. From formula (1.24)

$$
i^{(m)}-d^{(m)}=\frac{i^{(m)} d^{(m)}}{m}
$$

so that

$$
m=\frac{i^{(m)} d^{(m)}}{i^{(m)}-d^{(m)}}=\frac{(.1844144)(.1802608)}{.1844144-.1802608}=8 .
$$

30. We know that

$$
1+\frac{i^{(4)}}{4}=(1+i)^{\frac{1}{4}} \quad \text { and } \quad 1+\frac{i^{(5)}}{5}=(1+i)^{\frac{1}{5}}
$$

so that

$$
\begin{aligned}
& \text { RHS }=(1+i)^{\frac{1}{4}-\frac{1}{5}}=(1+i)^{\frac{1}{20}} \\
& \text { LHS }=(1+i)^{\frac{1}{n}} \quad \text { and } n=20 .
\end{aligned}
$$

31. We first need to express v in terms of $i^{(4)}$ and $d^{(4)}$ as follows:

$$
v=1-d=\left(1-\frac{d^{(4)}}{4}\right)^{4} \quad \text { so that } \quad d^{(4)}=4\left(1-v^{.25}\right)
$$

and

$$
v=(1+i)^{-1}=\left(1-\frac{i^{(4)}}{4}\right)^{-4} \quad \text { so that } \quad i^{(4)}=4\left(v^{-.25}-1\right)
$$

Now

$$
r=\frac{i^{(4)}}{d^{(4)}}=\frac{4\left(v^{-.25}-1\right)}{4\left(1-v^{.25}\right)}=v^{-.25} \quad \text { so that } \quad v^{.25}=r^{-1} \quad \text { and } \quad v=r^{-4}
$$

32. We know that $d<i$ from formula (1.14) and that $d^{(m)}<i^{(m)}$ from formula (1.24). We also know that $i^{(m)}=i$ and $d^{(m)}=d$ if $m=1$. Finally, in the limit $i^{(m)} \rightarrow \delta$ and $d^{(m)} \rightarrow \delta$ as $m \rightarrow \infty$. Thus, putting it all together, we have

$$
d<d^{(m)}<\delta<i^{(m)}<i .
$$

33. (a) Using formula (1.26), we have

$$
\begin{aligned}
A(t) & =K a^{t} b^{t^{2}} d^{c^{t}} \\
\ln A(t) & =\ln K+t \ln a+t^{2} \ln b+c^{t} \ln d
\end{aligned}
$$

and

$$
\delta_{t}=\frac{d}{d t} \ln A(t)=\ln a+2 t \ln b+c^{t} \ln c \ln d
$$

(b) Formula (1.26) is much more convenient since it involves differentiating a sum, while formula (1.25) involves differentiating a product.
34. Fund A: $a^{A}(t)=1+.10 t$ and $\delta_{t}^{A}=\frac{\frac{d}{d t} a^{A}(t)}{a^{A}(t)}=\frac{.10}{1+.10 t}$.

Fund B: $a^{B}(t)=(1-.05 t)^{-1} \quad$ and $\quad \delta_{t}^{B}=\frac{\frac{d}{d t} a^{B}(t)}{a^{B}(t)}=\frac{.05}{1+.05 t}$.
Equating the two and solving for t, we have

$$
\frac{.10}{1+.10 t}=\frac{.05}{1-.05 t} \quad \text { and } \quad .10-.005 t=.05+.005 t
$$

so that $.01 t=.05$ and $t=5$.
35. The accumulation function is a second degree polynomial, i.e. $a(t)=a t^{2}+b t+c$.

$$
\begin{array}{lll}
a(0) & = & c=1
\end{array} \quad \text { from Section 1.2 }
$$

Solving three equations in three unknowns, we have

$$
a=.04 \quad b=.03 \quad c=1 .
$$

36. Let the excess be denoted by E_{t}. We then have

$$
E_{t}=(1+i t)-(1+i)^{t}
$$

which we want to maximize. Using the standard approach from calculus

$$
\begin{aligned}
& \frac{d}{d t} E_{t}=i-(1+i)^{t} \ln (1+i)=i-\delta(1+i)^{t}=0 \\
& (1+i)^{t}=\frac{i}{\delta} \text { and } t \ln (1+i)=t \delta=\ln i-\ln \delta
\end{aligned}
$$

so that

$$
t=\frac{\ln i-\ln \delta}{\delta}
$$

37. We need to modify formula (1.39) to reflect rates of discount rather than rates of interest. Then from the definition of equivalency, we have

$$
\begin{aligned}
a(3)=(1+i)^{3} & =\left(1-d_{1}\right)^{-1}\left(1-d_{2}\right)^{-1}\left(1-d_{3}\right)^{-1} \\
& =(.92)^{-1}(.93)^{-1}(.94)^{-1}=.804261^{-1}
\end{aligned}
$$

and

$$
i=(.804264)^{-1 / 3}-1=.0753, \quad \text { or } 7.53 \% .
$$

38. (a) From formula (1.39)

$$
a(n)=\left(1+i_{1}\right)\left(1+i_{2}\right) \ldots\left(1+i_{n}\right) \text { where } 1+i_{k}=(1+r)^{k}(1+i)
$$

so that

$$
a(n)=[(1+r)(1+i)]\left[(1+r)^{2}(1+i)\right] \ldots\left[(1+r)^{n}(1+i)\right]
$$

and using the formula for the sum of the first n positive integers in the exponent, we have

$$
a(n)=(1+r)^{n(n+1) / 2}(1+i)^{n} .
$$

(b) From part (a)

$$
(1+j)^{n}=(1+r)^{n(n+1) / 2}(1+i)^{n} \quad \text { so that } j=(1+r)^{(n+1) / 2}-1 \text {. }
$$

39. Adapting formula (1.42) for $t=10$, we have

$$
a(10)=e^{5(.06)} e^{5 \delta}=2, \text { so that } e^{5 \delta}=2 e^{-.3}
$$

and

$$
\delta=\frac{1}{5} \ln \left(2 e^{-.3}\right)=.0786, \quad \text { or } 7.86 \%
$$

40. Fund X: $a^{X}(20)=e^{\int_{0}^{20}(.01 t+1) d t}=e^{4}$ performing the integration in the exponent.

Fund Y: $a^{Y}(20)=(1+i)^{20}=e^{4}$ equating the fund balances at time $t=20$.

The answer is

$$
a^{Y}(1.5)=(1+i)^{1.5}=\left[(1+i)^{20}\right]^{.075}=\left(e^{4}\right)^{.075}=e^{.3} .
$$

41. Compound discount:

$$
a(3)=\left(1-d_{1}\right)^{-1}\left(1-d_{2}\right)^{-1}\left(1-d_{3}\right)^{-1}=(.93)^{-1}(.92)^{-1}(.91)^{-1}=1.284363
$$

using the approach taken in Exercise 37.

Simple interest: $a(3)=1+3 i$.
Equating the two and solving for i, we have

$$
1+3 i=1.284363 \text { and } i=.0948 \text {, or } 9.48 \% \text {. }
$$

42. Similar to Exercise 35 we need to solve three equations in three unknowns. We have

$$
A(t)=A t^{2}+B t+C
$$

and using the values of $A(t)$ provided

$$
\begin{aligned}
A(0) & = & C & =100 \\
A(1) & = & A+B+C & =110 \\
A(2) & = & 4 A+2 B+C & =136
\end{aligned}
$$

which has the solution $A=8 \quad B=2 \quad C=100$.
(a) $i_{2}=\frac{A(2)-A(1)}{A(1)}=\frac{136-110}{110}=\frac{26}{110}=.236$, or 23.6%.
(b) $\frac{A(1.5)-A(.5)}{A(1.5)}=\frac{121-103}{121}=\frac{18}{121}=.149$, or 14.9%.
(c) $\delta_{t}=\frac{A^{\prime}(t)}{A(t)}=\frac{16 t+2}{8 t^{2}+2 t+100}$ so that $\delta_{1.2}=\frac{21.2}{113.92}=.186$, or 18.6%.
(d) $\frac{A(.75)}{A(1.25)}=\frac{106}{115}=.922$.
43. The equation for the force of interest which increases linearly from 5% at time $t=0$ to 8% at time $t=6$ is given by

$$
\delta_{t}=.05+.005 t \text { for } 0 \leq t \leq 6
$$

Now applying formula (1.27) the present value is

$$
1,000,000 a^{-1}(6)=1,000,000 e^{-\int_{0}^{6}(.05+.005 t) d t}=1,000,000 e^{-.39}=\$ 677,057
$$

44. The interest earned amounts are given by

$$
\begin{aligned}
& \text { A: } \quad X\left[\left(1+\frac{i}{2}\right)^{16}-\left(1+\frac{i}{2}\right)^{15}\right]=X\left(1+\frac{i}{2}\right)^{15}\left(\frac{i}{2}\right) \\
& B: \quad 2 X \cdot \frac{i}{2} .
\end{aligned}
$$

Equating two expressions and solving for i

$$
X\left(1+\frac{i}{2}\right)^{15}\left(\frac{i}{2}\right)=2 X \cdot \frac{i}{2} \quad\left(1+\frac{i}{2}\right)^{15}=2 \quad i=2\left(2^{1 / 15}-1\right)=.0946, \text { or } 9.46 \% .
$$

45. Following a similar approach to that taken in Exercise 44, but using rates of discount rather than rates of interest, we have

$$
\begin{aligned}
& A: \quad X=100\left[(1-d)^{-11}-(1-d)^{-10}\right]=100(1-d)^{-10}\left[(1-d)^{-1}-1\right] \\
& B: \quad X=50\left[(1-d)^{-17}-(1-d)^{-16}\right]=50(1-d)^{-16}\left[(1-d)^{-1}-1\right] .
\end{aligned}
$$

Equating the two expressions and solving for d

$$
100(1-d)^{-10}=50(1-d)^{-16} \quad(1-d)^{-6}=2 \quad(1-d)^{-1}=2^{1 / 6} .
$$

Finally, we need to solve for X. Using A we have

$$
X=100 \cdot 2^{16 / 6}\left(2^{1 / 6}-1\right)=38.88
$$

46. For an investment of one unit at $t=2$ the value at $t=n$ is

$$
a(n)=e^{\int_{2}^{n} \delta_{t} d t}=e^{2 \int_{2}^{n}(t-1)^{-1} d t}=e^{2 \ln (t-1)]_{2}^{n}}=\frac{(n-1)^{2}}{(2-1)^{2}}=(n-1)^{2} .
$$

Now applying formula (1.13)

$$
d_{n}=\frac{a(n+1)-a(n)}{a(n+1)}=\frac{n^{2}-(n-1)^{2}}{n^{2}}
$$

and

$$
1-d n=\left(\frac{n-1}{n}\right)^{2}
$$

Finally, the equivalent $d_{n}{ }^{(2)}$ is

$$
d_{n}^{(2)}=2\left[1-\left(1-d_{n}\right)^{1 / 2}\right]=2\left[1-\frac{n-1}{n}\right]=\frac{2}{n} .
$$

47. We are given $i=.20=\frac{1}{5}$, so that

$$
d=\frac{i}{1+i}=\frac{1 / 5}{1+1 / 5}=\frac{1}{6} .
$$

We then have

$$
\begin{aligned}
& \mathrm{PV}_{A}=(1.20)^{-1}\left[1+\frac{1}{2} \cdot \frac{1}{5}\right]^{-1} \\
& \mathrm{PV}_{B}=(1.20)^{-1}\left[1-\frac{1}{2} \cdot \frac{1}{6}\right]
\end{aligned}
$$

and the required ratio is

$$
\frac{\mathrm{PV}_{A}}{\mathrm{PV}_{B}}=\frac{(1+1 / 10)^{-1}}{1-1 / 12}=\frac{10}{11} \cdot \frac{12}{11}=\frac{120}{121}
$$

48. (a) $i=e^{\delta}-1=\delta+\frac{\delta^{2}}{2!}+\frac{\delta^{3}}{3!}+\frac{\delta^{4}}{4!}+\cdots$
using the standard power series expansion for e^{δ}.
(b) $\delta=\ln (1+i)=i-\frac{i^{2}}{2}+\frac{i^{3}}{3}-\frac{i^{4}}{4}+\cdots$
using a Taylor series expansion.
(c) $d=\frac{i}{1+i}=i(1+i)^{-1}=i\left(1-i^{2}+i^{2}-i^{3}+\cdots\right)=i-i^{2}+i^{3}-i^{4}+\cdots$
using the sum of an infinite geometric progression.
(d) $\delta=-\ln (1-d)=-\left(-d-\frac{d^{2}}{2}-\frac{d^{3}}{3}-\frac{d^{4}}{4}-\cdots\right)$
adapting the series expansion in part (b).
49. (a) $\frac{d d}{d i}=\frac{d}{d i}\left(\frac{i}{1+i}\right)=\frac{(1+i)-i}{(1+i)^{2}}=(1+i)^{-2}$.
(b) $\frac{d \delta}{d i}=\frac{d}{d i} \ln (1+i)=\frac{1}{1+i}=(1+i)^{-1}$.
(c) $\frac{d \delta}{d i}=\frac{d}{d v}(-\ln v)=-\frac{1}{v}=-v^{-1}$.
(d) $\frac{d d}{d \delta}=\frac{d}{d \delta}\left(1-e^{-\delta}\right)=-e^{-\delta}(-1)=e^{-\delta}$.
50. (a) (1) $a(t)=e^{\int_{0}^{t}(a+b r) d r}=e^{a t+b t^{2} / 2}$.
(2) $1+i_{n}=\frac{a(n)}{a(n-1)}=\frac{e^{a n+.5 b n^{2}}}{e^{a(n-1)+.5 b(n-1)^{2}}}=e^{a n+.5 b n^{2}-a n+a-.5 b n^{2}+b n-.5 b}=e^{(a-b / 2)+b n}$.
(b) (1) $a(t)=e^{\int_{0}^{t} a b^{r} d r}=e^{a\left(b^{t}-1\right) / \ln b}$.
(2) $1+i_{n}=\frac{a(n)}{a(n-1)}=e^{\frac{a}{\ln b}\left[\left(b^{n}-1\right)-\left(b^{n-1}-1\right)\right]}=e^{a(b-1) b^{n-1} / \ln b}$.
