Chapter 2

1. The quarterly interest rate is

$$
j=\frac{i^{(4)}}{4}=\frac{.06}{4}=.015
$$

and all time periods are measured in quarters. Using the end of the third year as the comparison date

$$
\begin{aligned}
& 3000(1+j)^{12}+X=2000 v^{4}+5000 v^{28} \\
X & =2000(.94218)+5000(.65910)-3000(1.19562) \\
& =\$ 1593.00
\end{aligned}
$$

2. The monthly interest rate is

$$
j=\frac{i^{(12)}}{12}=\frac{.18}{12}=.015
$$

Using the end of the third month as the comparison date

$$
\begin{aligned}
X & =1000(1+j)^{3}-200(1+j)^{2}-300(1+j) \\
& =1000(1.04568)-200(1.03023)-300(1.015) \\
& =\$ 535.13
\end{aligned}
$$

3. We have

$$
\begin{gathered}
200 v^{5}+500 v^{10}=400.94 v^{5} \\
v^{10}=.40188 v^{5} \\
v^{5}=.40188 \text { or }(1+i)^{5}=2.4883 .
\end{gathered}
$$

Now using time $t=10$ as the comparison date

$$
\begin{aligned}
P & =100(1+i)^{10}+120(1+i)^{5} \\
& =100(2.4883)^{2}+120(2.4883)=\$ 917.76 .
\end{aligned}
$$

4. The quarterly discount rate is $1 / 41$ and the quarterly discount factor is $1-1 / 41=40 / 41$. The three deposits accumulate for 24,16 , and 8 quarters, respectively. Thus,

$$
A(28)=100\left[(1.025)\left(\frac{40}{41}\right)^{-24}+(1.025)^{3}\left(\frac{40}{41}\right)^{-16}+(1.025)^{5}\left(\frac{40}{41}\right)^{-8}\right]
$$

However,

$$
\left(\frac{40}{41}\right)^{-1}=1.025
$$

so that

$$
A(28)=100\left[(1.025)^{25}+(1.025)^{19}+(1.025)^{13}\right]=\$ 483.11
$$

5. (a) At time $t=10$, we have

$$
\begin{aligned}
X & =100(1+10 i)+100(1+5 i) \text { with } i=.05 \\
& =200+1500(.05)=\$ 275 .
\end{aligned}
$$

(b) At time $t=15$, we have

$$
\begin{aligned}
X(1+5 i) & =100(1+15 i)+100(1+10 i) \text { with } i=.05 \\
X(1.25) & =200+2500(.05)=325
\end{aligned}
$$

and

$$
X=\frac{325}{1.25}=\$ 260 .
$$

6. The given equation of value is

$$
1000(1.06)^{n}=2000(1.04)^{n}
$$

so that

$$
\begin{gathered}
\left(\frac{1.06}{1.04}\right)^{n}=2 \\
n[\ln 1.06-\ln 1.04]=\ln 2
\end{gathered}
$$

and

$$
n=\frac{.693147}{.058269-.039221}=36.4 \text { years } .
$$

7. The given equation of value is

$$
\begin{aligned}
3000+2000 v^{2} & =5000 v^{n}+5000 v^{n+5} \\
3000+2000(1-d)^{2} & =5000(1-d)^{n}\left[1+(1-d)^{5}\right] \\
\text { and } 3000+2000(.94)^{2} & =5000(.94)^{n}\left[1+(.94)^{5}\right]
\end{aligned}
$$

since $d=.06$. Simplifying, we have

$$
\begin{gathered}
4767.20=8669.52(.94)^{n} \\
(.94)^{n}=\frac{4767.20}{8669.52}=.54988 \\
n \ln (.94)=\ln (.54988) \\
\text { and } \quad n=\frac{\ln (.54988)}{\ln (.94)}=9.66 \text { years. }
\end{gathered}
$$

8. The given equation of value is

$$
100=100 v^{n}+100 v^{2 n}
$$

which is a quadratic in v^{n}. Solving

$$
\begin{aligned}
v^{2 n}+v^{n}-1 & =0 \\
v^{n} & =\frac{-1 \pm \sqrt{1-(4)(1)(-1)}}{2}=\frac{-1+\sqrt{5}}{2} \\
& =.618034 \text { rejecting the negative root. }
\end{aligned}
$$

We are given $i=.08$, so that

$$
\begin{aligned}
& (1.08)^{n}=1 / .61803=1.618034 \\
& \text { and } n=\frac{\ln 1.618034}{\ln 1.08}=6.25 \text { years. }
\end{aligned}
$$

9. Applying formula (2.2)

$$
\bar{t}=\frac{n^{2}+(2 n)^{2}+\cdots+\left(n^{2}\right)^{2}}{n+2 n+\cdots+n^{2}}=\frac{n^{2}\left(1+2^{2}+\cdots+n^{2}\right)}{n(1+2+\cdots+n)}
$$

We now apply the formulas for the sum of the first n positive integers and their squares (see Appendix C) to obtain

$$
\frac{n^{2}\left(\frac{1}{6}\right)(n)(n+1)(2 n+1)}{n\left(\frac{1}{2}\right)(n)(n+1)}=\frac{1}{3}(n)(2 n+1)=\frac{2 n^{2}+n}{3} .
$$

10. We parallel the derivation of formula (2.4)

$$
(1+i)^{n}=3 \quad \text { or } \quad n=\frac{\ln 3}{\ln (1+i)}
$$

and approximating i by .08 , we obtain

$$
\begin{aligned}
n & \approx \frac{\ln 3}{i} \cdot \frac{.08}{\ln (1.08)}=\frac{1.098612}{i} \cdot \frac{.08}{.076961} \\
& =\frac{1.14}{i} \text { or a rule of } 114, \text { i.e. } n=114 .
\end{aligned}
$$

11. Use time $t=10$ as the comparison date

$$
\begin{aligned}
& \text { A: } 10[1+(10)(.11)]+30[1+(5)(.11)]=67.5 \\
& \text { B: } 10(1.0915)^{10-n}+30(1.0915)^{10-2 n}=67.5 \\
& 10 v^{n}+30 v^{2 n}=67.5(1.0915)^{-10}=28.12331
\end{aligned}
$$

which gives the quadratic

$$
v^{2 n}+.33333 v^{n}-.93744=0
$$

Solving

$$
v^{n}=\frac{-.33333 \pm \sqrt{(.33333)^{2}-(4)(1)(-.93744)}}{2}=.81579
$$

and

$$
n=\frac{\ln (.81579)}{-\ln (1.0915)}=2.33 \text { years. }
$$

12. Let t measure time in years. Then

$$
\begin{aligned}
& a^{A}(t)=(1.01)^{12 t} \text { and } \\
& a^{B}(t)=e^{\int_{0}^{t} r / 6 d r}=e^{t^{2} / 12}
\end{aligned}
$$

Equate the two expressions and solve for t

$$
\begin{aligned}
(1.01)^{12 t}= & e^{t^{2} / 12} \text { or }(1.01)^{144 t}=e^{t^{2}} \\
& 144 t \ln (1.01)=t^{2} \\
\text { and } t= & 144 \ln (1.01)=1.43 \text { years. }
\end{aligned}
$$

13. Let j be the semiannual interest rate. We have

$$
\begin{gathered}
1000(1+j)^{30}=3000 \\
\text { and } j=3^{1 / 30}-1=.0373 .
\end{gathered}
$$

The answer is

$$
i^{(2)}=2 j=2(.0373)=.0746, \text { or } 7.46 \% .
$$

14. The given equation of value is

$$
300(1+i)^{2}+200(1+i)+100=700
$$

Simplifying, we get a quadratic

$$
\begin{gathered}
3\left(1+2 i+i^{2}\right)+2(1+i)-6=0 \\
3 i^{2}+8 i-1=0 .
\end{gathered}
$$

Solving the quadratic

$$
\begin{aligned}
i & =\frac{-8 \pm \sqrt{8^{2}-(4)(3)(-1)}}{(2)(3)}=\frac{-8 \pm \sqrt{76}}{6} \\
& =\frac{-8+2 \sqrt{19}}{6}=\frac{\sqrt{19}-4}{3} \quad \text { rejecting the negative root. }
\end{aligned}
$$

15. The given equation of value is

$$
100+200 v^{n}+300 v^{2 n}=600 v^{10}
$$

Substituting the given value of v^{n}

$$
\begin{aligned}
& 100+200(.75941)+300(.75941)^{2}=600 v^{10} \\
& \qquad v^{10}=.708155 \text { or } \quad(1+i)^{10}=1.41212 \\
& \text { and } i=(1.41212)^{1}-1=.0351, \text { or } 3.51 \% \text {. }
\end{aligned}
$$

16. The total amount of interest equals

$$
1000 i(1+2+\cdots+10)=55,000 i
$$

Thus, we have

$$
\begin{aligned}
& 1000+55,000 i=1825 \\
& \text { and } \quad i=\frac{1825}{55,000}=.015, \text { or } 1.5 \%
\end{aligned}
$$

17. We have

$$
a(10)=e^{\int_{0}^{10} \delta_{t} d t}=e^{\int_{0}^{10} k t d t}=e^{50 k}=2
$$

so that

$$
50 k=\ln 2 \text { and } k=\frac{\ln 2}{50} .
$$

18. We will use i to represent both the interest rate and the discount rate, which are not equivalent. We have

$$
\begin{aligned}
& (1+i)^{3}+(1-i)^{3}=2.0096 \\
& \left(1+3 i+3 i^{2}+i^{3}\right)+\left(1-3 i+3 i^{2}-i^{3}\right)=2.0096 \\
& 2+6 i^{2}=2.0096 \text { or } 6 i^{2}=.0096 \\
& i^{2}=.0016 \text { and } i=.04, \text { or } 4 \% .
\end{aligned}
$$

19. (a) Using Appendix A

December 7 is Day 341 August 8 is Day 220.
We then have

$$
\begin{array}{rrl}
\text { 1941: } & 24 & =365-341 \\
\text { 1942: } & 365 & \\
\text { 1943: } & 365 & \\
\text { 1944: } & 366 & \text { (leap year) } \\
\text { 1945: } & \underline{220} & \\
\text { Total }= & 1340 & \text { days. }
\end{array}
$$

(b) Applying formula (2.5)

$$
\begin{aligned}
& 360\left(Y_{2}-Y_{1}\right)+30\left(M_{2}-M_{1}\right)+\left(D_{2}-D_{1}\right) \\
& =360(1945-1941)+30(8-12)+(8-7)=1321 \text { days. }
\end{aligned}
$$

20. (a) $\quad I=(10,000)(.06)\left(\frac{62}{365}\right)=\$ 101.92$.
(b) $I=(10,000)(.06)\left(\frac{60}{360}\right)=\$ 100.00$.
(c) $I=(10,000)(.06)\left(\frac{62}{360}\right)=\$ 103.33$.
21. (a) Bankers Rule: $I=\operatorname{Pr}\left(\frac{n}{360}\right)$

Exact simple interest: $I=\operatorname{Pr}\left(\frac{n}{365}\right)$
where n is the exact number of days in both. Clearly, the Banker's Rule always gives a larger answer since it has the smaller denominator and thus is more favorable to the lender.
(b) Ordinary simple interest: $I=\operatorname{Pr}\left(\frac{n^{*}}{360}\right)$
where n^{*} uses 30 -day months. Usually, $n \geq n^{*}$ giving a larger answer which is more favorable to the lender.
(c) Invest for the month of February.
22. (a) The quarterly discount rate is

$$
\begin{aligned}
& (100-96) / 100=.04 . \\
& d^{(4)}=4(.04)=.16, \text { or } 16 \% .
\end{aligned}
$$

(b) With an effective rate of interest

$$
\begin{gathered}
96(1+i)^{.25}=100 \\
\text { and } i=\left(\frac{100}{96}\right)^{4}-1=.1774, \text { or } 17.74 \% .
\end{gathered}
$$

23. (a) Option A - 7\% for six months:

$$
(1.07)^{.5}=1.03441
$$

Option B - 9\% for three months:

$$
(1.09)^{.25}=1.02178
$$

The ratio is

$$
\frac{1.03441}{1.02178}=1.0124
$$

(b) Option A-7\% for 18 months:

$$
(1.07)^{1.5}=1.10682
$$

Option B - 9\% for 15 months:

$$
(1.07)^{1.25}=1.11374
$$

The ratio is

$$
\frac{1.10682}{1.11374}=.9938
$$

24. The monthly interest rates are:

$$
y_{1}=\frac{.054}{12}=.0045 \quad \text { and } \quad y_{2}=\frac{.054-.018}{12}=.003
$$

The 24-month CD is redeemed four months early, so the student will earn 16 months at .0045 and 4 months at .003 . The answer is

$$
5000(1.0045)^{16}(1.003)^{4}=\$ 5437.17
$$

25. The APR $=5.1 \%$ compounded daily. The APY is obtained from

$$
1+i=\left(1+\frac{.051}{365}\right)^{365}=1.05232
$$

or $\mathrm{APY}=.05232$. The ratio is

$$
\frac{\mathrm{APY}}{\mathrm{APR}}=\frac{.05232}{.051}=1.0259 .
$$

Note that the term "APR" is used for convenience, but in practice this term is typically used only with consumer loans.
26. (a) No bonus is paid, so $i=.0700$, or 7.00%.
(b) The accumulated value is $(1.07)^{3}(1.02)=1.24954$, so the yield rate is given by

$$
(1+i)^{3}=1.24954 \text { or } i=(1.24954)^{1 / 3}-1=.0771, \text { or } 7.71 \% .
$$

(c) The accumulated value is

$$
(1.07)^{3}(1.02)(1.07)=(1.07)^{4}(1.02)=1.33701
$$

so the yield rate is given by

$$
(1+i)^{3}=1.33701 \text { or } i=(1.33701)^{1 / 3}-1=.0753 \text {, or } 7.53 \% .
$$

27. This exercise is asking for the combination of CD durations that will maximize the accumulated value over six years. All interest rates are convertible semiannually. Various combinations are analyzed below:

4 -year/2-year: $1000(1.04)^{8}(1.03)^{4}=1540.34$.
3 -year/3-year: $1000(1.035)^{12}=1511.08$.
All other accumulations involving shorter-term CD's are obviously inferior. The maximum value is $\$ 1540.34$.
28. Let the purchase price be R. The customer has two options:

One: Pay $9 R$ in two months.
Two: Pay ($1-.01 X$) R immediately.
The customer will be indifferent if these two present values are equal. We have

$$
\begin{aligned}
(1-.01 X) R & =.9 R(1.08)^{-1 / 6} \\
1-.01 X & =.9(1.08)^{-1 / 6}=.88853
\end{aligned}
$$

and

$$
X=100(1-.88853)=11.15 \% .
$$

29. Let the retail price be R. The retailer has two options:

One: Pay .70 R immediately.
Two: Pay $.75 R$ in six months.
The retailer will be indifferent if these two present values are equal. We have

$$
\begin{aligned}
& .70 R=.75 R(1+i)^{-.5} \\
& .70(1+i)^{.5}=.75
\end{aligned}
$$

and

$$
i=\left(\frac{.75}{.70}\right)^{2}-1=.1480, \text { or } 14.80 \%
$$

30. At time 5 years

$$
1000(1+i / 2)^{10}=X .
$$

At time 10.5 years:

$$
1000(1+i / 2)^{14}(1+2 i / 4)^{14}=1980 .
$$

We then have

$$
\begin{aligned}
& (1+i / 2)^{28}=1.98 \\
& (1+i / 2)^{10}=(1.98)^{10 / 28}=1.276
\end{aligned}
$$

and the answer is

$$
1000(1.276)=\$ 1276 .
$$

31. We are given

$$
\begin{aligned}
& A(1.06)^{20}+B(1.08)^{20}=2000 \\
& 2 A(1.06)^{10}=B(1.08)^{10}
\end{aligned}
$$

which is two linear equations in two unknowns. Solving these simultaneous equations gives:

$$
A=182.82 \text { and } B=303.30
$$

The answer then is

$$
\begin{aligned}
A(1.06)^{5}+B(1.08)^{5} & =(182.82)(1.06)^{5}+(303.30)(1.08)^{5} \\
& =\$ 690.30
\end{aligned}
$$

32. We are given that

$$
10,000(1+i)(1+i-.05)=12,093.75
$$

Solving the quadratic

$$
\begin{aligned}
& 1+i-.05+i+i^{2}-.05 i=1.209375 \\
& i^{2}+1.95 i-.259375=0 \\
& i=\frac{-1.95 \pm \sqrt{(1.95)^{2}-(4)(1)(-.259375)}}{2} \\
& =.125 \text { rejecting the negative root. }
\end{aligned}
$$

We then have

$$
\begin{aligned}
10,000(1+.125+.09)^{3} & =10,000(1.215)^{3} \\
& =\$ 17,936
\end{aligned}
$$

33. The annual discount rate is

$$
d=\frac{1000-920}{1000}=\frac{80}{1000}=.08 .
$$

The early payment reduces the face amount by X. We then have

$$
X\left[1-\frac{1}{2}(.08)\right]=288
$$

so that

$$
X=\frac{288}{.96}=300
$$

and the face amount has been reduced to

$$
1000-300=\$ 700
$$

