Chapter 3

1. The equation of value using a comparison date at time $t=20$ is

$$
50,000=1000 s_{\overline{20}}+X s_{\overline{10}} \text { at } 7 \% .
$$

Thus,

$$
X=\frac{50,000-1000 s_{\overline{20}}}{s_{\overline{10}}}=\frac{50,000-40,995.49}{13.81645}=\$ 651.72
$$

2. The down payment (D) plus the amount of the loan (L) must equal the total price paid for the automobile. The monthly rate of interest is $j=.18 / 12=.015$ and the amount of the loan (L) is the present value of the payments, i.e.

$$
L=250 a_{48.015}=250(34.04255)=8510.64 .
$$

Thus, the down payment needed will be

$$
D=10,000-8510.64=\$ 1489.36
$$

3. The monthly interest rate on the first loan $\left(L_{1}\right)$ is $j_{1}=.06 / 12=.005$ and

$$
L_{1}=500 a_{48.005}=(500)(42.58032)=21,290.16
$$

The monthly interest rate on the second loan $\left(L_{2}\right)$ is $j_{2}=.075 / 12=.00625$ and

$$
L_{2}=25,000-L_{1}=25,000-21,290.16=3709.84
$$

The payment on the second loan (R) can be determined from

$$
3709.84=R a_{\overline{12} .00625}
$$

giving

$$
R=\frac{3709.84}{11.52639}=\$ 321.86
$$

4. A's loan: $20,000=R a_{8.085}$

$$
R=\frac{20,000}{5.639183}=3546.61
$$

so that the total interest would be

$$
(8)(3546.61)-20,000=8372.88
$$

B's loan: The annual interest is

$$
(.085)(20,000)=1700.00
$$

so that the total interest would be

$$
(8)(1700.00)=13,600.00 .
$$

Thus, the difference is

$$
13,600.00-8372.88=\$ 5227.12 .
$$

5. Using formula (3.2), the present value is

$$
n a_{n}=\frac{n\left[1-(1+i)^{-n}\right]}{i} \text { where } i=\frac{1}{n} .
$$

This expression then becomes

$$
\frac{n\left[1-\left(\frac{n+1}{n}\right)^{-n}\right]}{\frac{1}{n}}=n^{2}\left[1-\left(\frac{n}{n+1}\right)^{n}\right]
$$

6. We are given $a_{n}=\frac{1-v^{n}}{i}=x$, so that $v^{n}=1-i x$. Also, we are given $a_{2 n}=\frac{1-v^{2 n}}{i}=y$, so that $v^{2 n}=1-i y$. But $v^{2 n}=\left(v^{n}\right)^{2}$ so that $1-i y=(1-i x)^{2}$. This equation is the quadratic $x^{2} i^{2}-(2 x-y) i=0$ so that $i=\frac{2 x-y}{x^{2}}$. Then applying formula (1.15a), we have $d=\frac{i}{1+i}=\frac{2 x-y}{x^{2}+2 x-y}$.
7. We know that $d=1-v$, and directly applying formula (3.8), we have

$$
\ddot{a}_{81}=\frac{1-v^{8}}{d}=\frac{1-(1-d)^{8}}{d}=\frac{1-(.9)^{8}}{.1}=5.695
$$

8. The semiannual interest rate is $j=.06 / 2=.03$. The present value of the payments is

$$
100\left(\ddot{a}_{211}+\ddot{a}_{91}\right)=100(15.87747+8.01969)=\$ 2389.72
$$

9. We will use a comparison date at the point where the interest rate changes. The equation of value at age 65 is

$$
3000 \ddot{s}_{25.08}=R \ddot{a}_{15.07}
$$

so that

$$
R=\frac{3000 \ddot{s}_{25.08}}{\ddot{a}_{15.07}}=\frac{236,863.25}{9.74547}=\$ 24,305
$$

to the nearest dollar.
10. (a) Using formulas (3.1) and (3.7)

$$
\begin{aligned}
\ddot{a}_{n} & =\left(1+v+v^{2}+\cdots+v^{n-1}\right)+v^{n}-v^{n} \\
& =\left(v+v^{2}+\cdots+v^{n}\right)+1-v^{n}=a_{n}+1-v^{n} .
\end{aligned}
$$

(b) Using formulas (3.3) and (3.9)

$$
\begin{aligned}
\ddot{s}_{n} & =\left[(1+i)^{n}+(1+i)^{n-1}+\cdots+(1+i)\right]+1-1 \\
& =\left[(1+i)^{n-1}+\cdots+(1+i)+1\right]+(1+i)^{n}-1 \\
& =s_{n}-1+(1+i)^{n} .
\end{aligned}
$$

(c) Each formula can be explained from the above derivations by putting the annuity-immediate payments on a time diagram and adjusting the beginning and end of the series of payments to turn each into an annuity-due.
11. We know that

$$
\ddot{a}_{\vec{p} \mid}=x=\frac{1-v^{p}}{d} \quad \text { and } \quad s_{\widetilde{q}}=y=\frac{(1+i)^{q}-1}{i} .
$$

Thus, $v^{p}=1-d x=1-i v x$ and $(1+i)^{q}=1+i y$, so that $v^{q}=(1+i y)^{-1}$.
Finally,

$$
\begin{aligned}
a_{\overline{p+q}} & =\frac{1-v^{p+q}}{i}=\frac{1}{i}\left(1-\frac{1-i v x}{1+i y}\right) \\
& =\frac{(1+i y)-(1-i v x)}{i(1+i y)}=\frac{v x+y}{1+i y} .
\end{aligned}
$$

12. We will call September 7, $z-1 \quad t=0$
so that \quad March $7, z+8$ is $t=34$
and June 7, $z+12$ is $t=51$
where time t is measured in quarters. Payments are made at $t=3$ through $t=49$, inclusive. The quarterly rate of interest is $j=.06 / 4=.015$.
(a) $\mathrm{PV}=100\left(a_{\text {49| }}-a_{21}\right)=100(34.5247-1.9559)=\$ 3256.88$.
(b) $\mathrm{CV}=100\left(s_{\overline{32}}+a_{15}\right)=100(40.6883+13.3432)=\$ 5403.15$.
(c) $\mathrm{AV}=100\left(s_{\overline{49} \mid}-s_{21}\right)=100(71.6087-2.0150)=\$ 6959.37$.
13. One approach is to sum the geometric progression

$$
a_{\overline{15}}\left(1+v^{15}+v^{30}\right)=a_{\overline{151}} \frac{1-v^{45}}{1-v^{15}}=a_{15 \mid} \frac{a_{45}}{a_{15}}=a_{\overline{45}} .
$$

The formula also can be derived by observing that

$$
a_{15}\left(1+v^{15}+v^{30}\right)=a_{15 \mid}+{ }_{15}\left|a_{15 \mid}+{ }_{30}\right| a_{15}=a_{\text {河 }}
$$

by splitting the 45 payments into 3 sets of 15 payments each.
14. We multiply numerator and denominator by $(1+i)^{4}$ to change the comparison date from time $t=0$ to $t=4$ and obtain

$$
\frac{a_{71}}{a_{\overline{11}}}=\frac{a_{7}(1+i)^{4}}{a_{\overline{11}}(1+i)^{4}}=\frac{a_{3 \mid}+s_{\overline{4}}}{a_{77}+s_{4}} .
$$

Therefore $x=4, y=7$, and $z=4$.
15. The present value of annuities X and Y are:

$$
\begin{aligned}
& \mathrm{PV}_{X}=a_{301}+v^{10} a_{\overline{10}} \text { and } \\
& \mathrm{PV}_{Y}=K\left(a_{\overline{10}}+v^{20} a_{\overline{10}}\right) .
\end{aligned}
$$

We are given that $\mathrm{PV}_{X}=\mathrm{PV}_{Y}$ and $v^{10}=.5$. Multiplying through by i, we have

$$
1-v^{30}+v^{10}\left(1-v^{10}\right)=K\left(1-v^{10}\right)\left(1+v^{20}\right)
$$

so that

$$
K=\frac{1+v^{10}-v^{20}-v^{30}}{1-v^{10}+v^{20}-v^{30}}=\frac{1+.5-.25-.125}{1-.5+.25-.125}=\frac{1.125}{.625}=1.8 .
$$

16. We are given ${ }_{5}\left|a_{\overline{10}}=3 \cdot{ }_{10}\right| a_{5 \mid}$ or $v^{5} a_{\overline{10}}=3 v^{10} a_{5 \mid}$ and $v^{5} \frac{1-v^{10}}{i}=3 v^{10} \frac{1-v^{5}}{i}$.

Therefore, we have

$$
v^{5}-v^{15}=3 v^{10}-3 v^{15} \text { or } 2 v^{15}-3 v^{10}+v^{5}=0 \text { or } 2-3(1+i)^{5}+(1+i)^{10}=0
$$

which is a quadratic in $(1+i)^{5}$. Solving the quadratic

$$
(1+i)^{5}=\frac{3 \pm \sqrt{(-3)^{2}-(4)(2)(1)}}{2}=\frac{3 \pm 1}{2}=2
$$

rejecting the root $i=0$.
17. The semiannual interest rate is $j=.09 / 2=.045$. The present value of the annuity on October 1 of the prior year is $2000 a_{10}$. Thus, the present value on January 1 is

$$
\begin{gathered}
2000 a_{\overline{10}}(1.045)^{5} \\
=(2000)(7.91272)(1.02225)=\$ 16,178
\end{gathered}
$$

to the nearest dollar.
18. The equation of value at time $t=0$ is

$$
1000 \ddot{a}_{20}=R \cdot v^{30} \cdot \ddot{a}_{\infty}
$$

or

$$
1000 \frac{1-v^{20}}{d}=R \cdot v^{30} \frac{1}{d}
$$

so that

$$
\begin{aligned}
R= & 1000 \frac{1-v^{20}}{v^{30}}=1000\left(1-v^{20}\right)(1+i)^{30} \\
= & 1000\left[(1+i)^{30}-(1+i)^{10}\right] .
\end{aligned}
$$

19. We are given $i=\frac{1}{9}$ so that $d=\frac{i}{1+i}=\frac{1}{10}$. The equation of value at time $t=0$ is

$$
6561=1000 v^{n} \ddot{a}_{\infty} \text { or } \quad 6.561=\frac{(1-d)^{n}}{d}=\frac{(1-.1)^{n}}{.1}
$$

Therefore, $(.9)^{n}=(.1)(6.561)=.6561$ and $n=4$.
20. The equation of value at age 60 is

$$
50,000 a_{\text {क }}=R v^{5} a_{\overline{20}}
$$

or

$$
\frac{50,000}{i}=R v^{5} \frac{1-v^{20}}{i}
$$

so that

$$
\begin{aligned}
R & =\frac{50,000}{v^{5}-v^{25}} \text { at } i=.05 \\
& =\frac{50,000}{.7835262-.2953028}=\$ 102,412
\end{aligned}
$$

to the nearest dollar.
21. Per dollar of annuity payment, we have $P V_{A}=P V_{D}$ which gives

$$
\frac{1}{3} a_{n}=v^{n} \cdot a_{\infty} \quad \text { or } a_{n}=3 v^{n} a_{\infty}
$$

and $1-v^{n}=3 v^{n}$, so that

$$
4 v^{n}=1 \quad \text { or } \quad v^{n}=.25 \quad \text { and } \quad(1+i)^{n}=4 .
$$

22. Per dollar of annuity payment, we have

$$
\mathrm{PV}_{A}=a_{n}, \quad \mathrm{PV}_{B}=v^{n} a_{n}, \quad \mathrm{PV}_{C}=v^{2 n} a_{n} \quad \text { and } \quad \mathrm{PV}_{D}=v^{3 n} a_{\infty} .
$$

We are given

$$
\frac{\mathrm{PV}_{C}}{\mathrm{PV}_{A}}=v^{2 n}=.49 \text { or } v^{n}=.7
$$

Finally,

$$
\begin{aligned}
\frac{\mathrm{PV}_{B}}{\mathrm{PV}_{D}} & =\frac{v^{n} a_{n}}{v^{3 n} a_{\bar{\infty}}}=\frac{v^{n}\left(1-v^{n}\right)}{v^{3 n}} \\
& =\frac{1-v^{n}}{v^{2 n}}=\frac{1-.7}{(.7)^{2}}=\frac{.30}{.49}=\frac{30}{49} .
\end{aligned}
$$

23. (a) $a_{5.25}=a_{5 \mid}+v^{5.25}\left[\frac{(1+i)^{.25}-1}{i}\right]$ at $i=.05$

$$
=4.32946+(.77402)\left[\frac{(1.05)^{.25}-1}{.05}\right]=4.5195
$$

(b) $a_{\overline{5.25}}=a_{51}+.25 v^{5.25}$

$$
=4.32946+(.25)(.77402)=4.5230
$$

(c) $a_{5.25 \mid}=a_{51}+.25 v^{6}$

$$
=4.23946+(.25)(.74621)=4.5160
$$

24. At time $t=0$ we have the equation of value

$$
\begin{aligned}
1000 & =100\left(a_{\text {त }}-a_{4}\right) \text { or } \\
a_{n} & =10+a_{4}=13.5875 \text { at } i=.045 .
\end{aligned}
$$

Now using a financial calculator, we find that $n=21$ full payments plus a balloon payment. We now use time $t=21$ as the comparison date to obtain

$$
1000(1.045)^{21}=100 s_{\overline{17}}+K
$$

or

$$
\begin{aligned}
K & =1000(1.045)^{21}-100 s_{17} \\
& =2520.2412-100(24.74171)=46.07
\end{aligned}
$$

Thus, the balloon payment is

$$
100+46.07=\$ 146.07 \text { at time } t=21 .
$$

25. We are given $P V_{1}=P V_{2}$ where

$$
\mathrm{PV}_{1}=4 a_{\overline{36}} \quad \text { and } \quad \mathrm{PV}_{2}=5 a_{\overline{18}}
$$

We are also given that $(1+i)^{n}=2$. Thus, we have

$$
\begin{aligned}
& 4 \cdot \frac{1-v^{36}}{i}=5 \frac{1-v^{18}}{i} \text { or } \\
& 4\left(1-v^{36}\right)=4\left(1-v^{18}\right)\left(1+v^{18}\right)=5\left(1-v^{18}\right)
\end{aligned}
$$

Thus, we have

$$
4\left(1+v^{18}\right)=5 \text { or } v^{18}=.25 .
$$

Finally, we have $(1+i)^{18}=4$, so that $(1+i)^{9}=2$ which gives $n=9$.
26. At time $t=20$, the fund balance would be

$$
500 \ddot{s}_{20}=24,711.46 \text { at } i=.08 .
$$

Let n be the number of years full withdrawals of 1000 can be made, so that the equation of value is

$$
1000 s_{\bar{n} \mid}=24,711.46 \text { or } s_{\bar{n} \mid}=24.71146
$$

Using a financial calculator we find that only $n=14$ full withdrawals are possible.
27. (a) The monthly rate of interest is $j=.12 / 12=.01$. The equation of value at time $t=0$ is

$$
\begin{aligned}
6000 v^{k} & =100 a_{\overline{60 \mid}}=4495.5038 \\
v^{k} & =.749251 \text { so that } k=\frac{-\ln (.749251)}{\ln (1.01)}=29 .
\end{aligned}
$$

(b) Applying formula (2.2) we have

$$
\bar{t}=\frac{1000(1+2+\cdots+60)}{100(60)}=\frac{(60)(61)}{2(60)}=\frac{61}{2}=30.5 .
$$

28.(a) Set: $\mathrm{N}=48 \mathrm{PV}=12,000 \quad \mathrm{PMT}=-300$ and CPT I to obtain $j=.7701 \%$. The answer is $12 j=9.24 \%$.
(b) We have $300 a_{\overline{48}}=12,000$ or $a_{48}=40$. Applying formula (3.21) with $n=48$ and $g=40$, we have

$$
j \approx \frac{2(n-g)}{g(n+1)}=\frac{2(48-40)}{40(48+1)}=.8163 \%
$$

The answer is $12 j=9.80 \%$.
29. We have

$$
a_{21}=v+v^{2} \text { or } 1.75=(1+i)^{-1}+(1+i)^{-2} .
$$

Multiplying through $(1+i)^{2}$ gives

$$
\begin{aligned}
& 1.75(1+i)^{2}=(1+i)+1 \\
& 1.75\left(1+2 i+i^{2}\right)=2+i
\end{aligned}
$$

and $1.75 i^{2}+2.5-.25$ or $7 i^{2}+10-1=0$ which is a quadratic. Solving for i

$$
\begin{aligned}
i & =\frac{-10 \pm \sqrt{(10)^{2}-(4)(7)(-1)}}{(2)(7)}=\frac{-10 \pm \sqrt{128}}{14} \\
& =\frac{4 \sqrt{2}-5}{7} \text { rejecting the negative root. }
\end{aligned}
$$

30. We have the following equation of value

$$
10,000=1538 a_{10}=1072 a_{\overline{20}} .
$$

Thus $1538\left(1-v^{10}\right)=1072\left(1-v^{20}\right)=1072\left(1-v^{10}\right)\left(1+v^{10}\right)$, so that $1+v^{10}=\frac{1538}{1072}$ or $v^{10}=.43470$.
Solving for i, we obtain

$$
(1+i)^{-10}=.43470 \text { and } i=(.43470)^{-.1}-1=.0869, \quad \text { or } 8.69 \% .
$$

31. We are given that the following present values are equal

$$
a_{\infty \emptyset 7.25 \%}=a_{50{ }_{j}}=a_{\overline{n j} j-1} .
$$

Using the financial calculator

$$
a_{50 \mid j}=\frac{1}{.0725}=13.7931
$$

and solving we obtain $j=7.00 \%$. Since $j-1=6 \%$, we use the financial calculator again

$$
a_{\bar{n} 6 \%}=13.7931 \text { to obtain } n=30.2
$$

32. (a) We have $j_{1}=.08 / 2=.04$ and $j_{2}=.07 / 2=.035$. The present value is

$$
\begin{aligned}
a_{6.04}+a_{41.035}(1.04)^{-6} & =5.2421+(3.6731)(.79031) \\
& =8.145 .
\end{aligned}
$$

(b) The present value is

$$
\begin{aligned}
a_{\text {6.04 }}+a_{\text {4..035 }}(1.035)^{-6} & =5.2421+(3.6731)(.81350) \\
& =8.230
\end{aligned}
$$

(c) Answer (b) is greater than answer (a) since the last four payments are discounted over the first three years at a lower interest rate.
33. (a) Using formula (3.24)

$$
\begin{aligned}
a_{5} & =v+v^{2}+v^{3}+v^{4}+v^{5} \\
& =\frac{1}{1.06}+\frac{1}{(1.062)^{2}}+\frac{1}{(1.064)^{3}}+\frac{1}{(1.066)^{4}}+\frac{1}{(1.068)^{5}} \\
& =4.1543
\end{aligned}
$$

(b) Using formula (3.23)

$$
\begin{aligned}
a_{5 \mid} & =\frac{1}{1.06}+\frac{1}{(1.06)(1.062)}+\frac{1}{(1.06)(1.062)(1.064)}+\frac{1}{(1.06)(1.062)(1.064)(1.066)} \\
& +\frac{1}{(1.06)(1.062)(1.064)(1.066)(1.068)}=4.1831 .
\end{aligned}
$$

34. Payments are R at time $t=.5$ and $2 R$ at time $t=1.5,2.5, \ldots, 9.5$. The present value of these payments is equal to P. Thus, we have

$$
P=R\left[1+2 a_{\overline{4} i}+2 a_{\vec{a} j}(1+i)^{-4}\right](1+i)^{-1 / 2}
$$

and

$$
R=\frac{P(1+i)^{1 / 2}}{1+2 a_{4 \mid i}+2(1+i)^{-4} a_{5 j}} .
$$

35. The payments occur at $t=0,1,2, \ldots, 19$ and we need the current value at time $t=2$ using the variable effective rate of interest given. The current value is

$$
\begin{aligned}
& \left(1+\frac{1}{9}\right)\left(1+\frac{1}{10}\right)+\left(1+\frac{1}{10}\right)+1+\left(1+\frac{1}{11}\right)^{-1}+\left(1+\frac{1}{11}\right)^{-1}\left(1+\frac{1}{12}\right)^{-1} \\
& \quad+\cdots+\left(1+\frac{1}{11}\right)^{-1}\left(1+\frac{1}{12}\right)^{-1} \cdots\left(1+\frac{1}{27}\right)^{-1} \\
& =\left(\frac{10}{9}\right)\left(\frac{11}{10}\right)+\frac{11}{10}+1+\frac{11}{12}+\left(\frac{11}{12}\right)\left(\frac{12}{13}\right)+\cdots+\left(\frac{11}{12} \cdot \frac{12}{13} \cdots \frac{27}{28}\right) \\
& =\frac{11}{9}+\frac{11}{10}+\frac{11}{11}+\frac{11}{12}+\frac{11}{13}+\cdots+\frac{11}{28}=\sum_{t=9}^{28} \frac{11}{t} .
\end{aligned}
$$

36. We know that $a^{-1}(t)=1-d t$ using simple discount. Therefore, we have

$$
a_{n}=\sum_{t=1}^{n} a^{-1}(t)=\sum_{t=1}^{n}(1-d t)=n-\frac{1}{2} n(n+1) d
$$

by summing the first n positive integers.
37. We have $a(t)=\frac{1}{\log _{2}(t+2)-\log _{2}(t+1)}=\frac{1}{\log _{2} \frac{t+2}{t+1}}$, so that $a^{-1}(t)=\log _{2} \frac{t+2}{t+1}$.

Now

$$
\begin{aligned}
\ddot{a}_{n} & =\sum_{t=0}^{n-1} a^{-1}(t)=\sum_{t=0}^{n-1} \log _{2} \frac{t+2}{t+1} \\
& =\log _{2} \frac{2}{1}+\log _{2} \frac{3}{2}+\cdots+\log _{2} \frac{n+1}{n} \\
& =\log _{2}\left(\frac{2}{1} \cdot \frac{3}{2} \cdot \cdots \cdot \frac{n+1}{n}\right)=\log _{2}(n+1) .
\end{aligned}
$$

38. The accumulated value of 1 paid at time t accumulated to time 10 is

$$
e^{\int_{t}^{10} \delta_{r} d r}=e^{\int_{t}^{10} \frac{1}{20-r} d r}=e^{\ln (20-r)-\ln 10}=\frac{20-r}{10} .
$$

Then

$$
s_{\overline{10}}=\sum_{r=1}^{10} \frac{20-r}{10}=\frac{19}{10}+\frac{18}{10}+\cdots+\frac{10}{10}=14.5 .
$$

39. A: $\mathrm{PV}_{A}=\frac{1}{1.01}+\frac{1}{1.02}+\frac{1}{1.03}+\frac{1}{1.04}+\frac{1}{1.05}=4.8553$

B: $\quad \mathrm{AV}_{B}=1.04+1.03+1.02+1.01+1.00=5.1000$
and taking the present value

$$
\mathrm{PV}_{B}=\frac{5.1000}{1.05}=4.8571 .
$$

The answers differ by $4.8571-4.8553=.0018$.
40. The present value of the payments in (ii) is

$$
30 a_{\overline{10 \mid}}+60 v^{10} a_{\overline{10 \mid}}+90 v^{20} a_{\overline{10 \mid}}=a_{\overline{10 \mid}}\left(30+60 v^{10}+90 v^{20}\right)
$$

The present value of the payments in (i) is

$$
55 a_{20}=55 a_{10}\left(1+v^{10}\right) .
$$

Equating the two values we have the quadratic $90 v^{20}+5 v^{10}-25=0$. Solving the quadratic

$$
v^{10}=\frac{-5 \pm \sqrt{(5)^{2}-(4)(90)(-25)}}{(2)(90)}=\frac{90}{180}=.5
$$

rejecting the negative root. Now $v^{10}=.5$ or $(1+i)^{10}=2$ and $i=.0718$. Finally, $X=55 a_{\text {20.0718 }}=574.60$.
41. We have the equation of value at time $t=3 n$

$$
98 s_{\overline{3 n}}+98 s_{2 n}=8000
$$

$$
\frac{(1+i)^{3 n}-1}{i}+\frac{(1+i)^{2 n}-1}{i}=\frac{8000}{98}=81.6327
$$

We are given that $(1+i)^{n}=2$. Therefore, $\frac{2^{3}-1}{i}+\frac{2^{2}-1}{i}=\frac{10}{i}=81.6327$ and $i=.1225$, or 12.25%.
42. At time $t=0$ we have the equation of value

$$
10,000=4 k a_{20}-k a_{15}-k a_{10 \mid}-k a_{5}
$$

so that

$$
k=\frac{10,000}{4 a_{\overline{20}}-a_{\overline{151}}-a_{\overline{10}}-a_{51}} .
$$

43. The present values given are:

$$
\begin{equation*}
2 a_{2 n}+a_{n}=36 \text { or } 2\left(1-v^{2 n}\right)+\left(1-v^{n}\right)=36 i \text {, and } \tag{i}
\end{equation*}
$$

(ii) $2 v^{n} a_{\text {П }}=6$ or $2 v^{n}\left(1-v^{n}\right)=6 i$.

Thus, $2\left(1-v^{2 n}\right)+\left(1-v^{n}\right)=(6)(2) v^{n}\left(1-v^{n}\right)$ which simplifies to the quadratic

$$
10 v^{2 n}-13 v^{n}+3=0
$$

Solving,

$$
v^{n}=\frac{13 \pm \sqrt{(-13)^{2}-(4)(10)(3)}}{(2)(10)}=\frac{6}{20}=.3
$$

rejecting the root $v^{n}=1$. Substituting back into (ii)
(2) (.3) $\frac{1-.3}{i}=6$, so that $i=\frac{(2)(.3)(.7)}{6}=.07$, or 7%.
44. An equation of value at time $t=10$ is

$$
\begin{aligned}
10,000(1.04)^{10} & -K(1.05)(1.04)^{6}-K(1.05)(1.04)^{5} \\
& -K(1.04)^{4}-K(1.04)^{3}=10,000
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
K & =\frac{10,000\left[(1.04)^{10}-1\right]}{(1.05)(1.04)^{6}+(1.05)(1.04)^{5}+(1.04)^{4}+(1.04)^{3}} \\
& =\$ 980 \text { to the nearest dollar. }
\end{aligned}
$$

45. $\sum_{n=15}^{40} s_{n \mid}=\frac{1}{i} \sum_{n=15}^{40}\left[(1+i)^{n}-1\right]=\frac{s_{\overline{41}}-s_{\overline{15}}-26}{i}$
using formula (3.3) twice and recognizing that there are 26 terms in the summation.
