Chapter 5

1. The quarterly interest rate is $j=.06 / 4=.015$. The end of the second year is the end of the eighth quarter. There are a total of 20 installment payments, so

$$
R=\frac{1000}{a_{20.015}}
$$

and using the prospective method

$$
B_{8}^{p}=R a_{\overline{121.015}}=\frac{1000 a_{\overline{12} .015}}{a_{20.015}}=\frac{1000(10.90751)}{17.16864}=\$ 635.32
$$

2. Use the retrospective method to bypass having to determine the final irregular payment. We then have

$$
\begin{aligned}
B_{5}^{r} & =10,000(1.12)^{5}-2000 s_{5.12} \\
& =(10,000)(1.76234)-(2000)(6.35283) \\
& =\$ 4918 \text { to the nearest dollar. }
\end{aligned}
$$

3. The quarterly interest rate is $j=.10 / 2=.025$. Applying the retrospective method we have $B_{4}^{r}=L(1+j)^{4}-R s_{\overline{4} j}$ and solving for L

$$
\begin{aligned}
L=\frac{B_{4}^{r}+R s_{\overline{4} j}}{(1+j)^{4}} & =\frac{12,000+1500(4.15252)}{1.10381} \\
& =\$ 16,514 \text { to the nearest dollar. }
\end{aligned}
$$

4. The installment payment is $R=\frac{20,000}{a_{\overline{12}}}$ and the fourth loan balance prospectively is $B_{4}^{p}=\frac{20,000}{a_{\overline{12}}} a_{\overline{8}}=\frac{20,000\left(1-v^{8}\right)}{1-v^{12}}=\frac{20,000\left(1-2^{-2}\right)}{1-2^{-3}}=\$ 17,143$ to the nearest dollar.
5. We have

$$
R=\frac{20,000}{a_{\overline{20}}} \text { and } \quad B_{5}^{P}=R a_{15 l} .
$$

The revised loan balance at time $t=7$ is $B_{7}^{\prime}=B_{5}^{p}(1+i)^{2}$, since no payments are made for two years. The revised installment payment thus becomes

$$
R^{\prime}=\frac{B_{7}}{a_{\overline{13}}}=20,000 \frac{a_{\overline{15}}(1+i)^{2}}{a_{\overline{20}} a_{\overline{13}}} .
$$

6. The installment payment is $R=\frac{L}{a_{\bar{n}}}=\frac{1}{a_{25}}$. Using the original payment schedule

$$
B_{5}^{p}=R a_{201}=\frac{a_{201}}{a_{\overline{251}}}
$$

and using the revised payment schedule $B_{5}^{p}=R a_{15}+K a_{5}$. Equating the two and solving for K we have

$$
K=\frac{1}{a_{5}}\left(\frac{a_{20}}{a_{25}}-\frac{a_{\overline{15}}}{a_{25}}\right)=\frac{a_{\overline{20}}-a_{15}}{a_{\overline{25}} a_{51}} .
$$

7. We have

$$
R=\frac{150,000}{a_{15.065}}=\frac{150,000}{9.4026689}=15,952.92
$$

and

$$
B_{5}^{p}=R a_{\overline{10.065}}(15,952.92)(7.1888302)=114,682.83 .
$$

The revised fifth loan balance becomes

$$
B_{5}^{\prime}=114,682.83+80,000=194,682.83
$$

and the revised term of the loan is $n^{\prime}=15-5+7=17$. Thus, the revised installment payment is

$$
R^{\prime}=\frac{194,682.83}{a_{17.075}}=\frac{194,682.83}{9.4339598}=\$ 20,636 \text { to the nearest dollar. }
$$

8. The quarterly interest rate is $j=.12 / 4=.03$. Directly from formula (5.5), we have

$$
P_{6}=1000 v_{.03}^{20-6+1}=1000(1.03)^{-15}=\$ 641.86 .
$$

9. The installment payment is

$$
R=\frac{10,000}{a_{20}}
$$

and applying formula (5.4) we have

$$
\begin{aligned}
I_{11} & =\frac{10,000}{a_{20}}\left(1-v^{20-11+1}\right)=\frac{10,000(.1)\left(1-v^{10}\right)}{1-v^{20}} \\
& =\frac{1000\left(1-v^{10}\right)}{\left(1-v^{10}\right)\left(1+v^{10}\right)}=\frac{1000}{1+v^{10}} .
\end{aligned}
$$

10. The quarterly interest rate is $j=.10 / 4=.025$. The total number of payments is $n=5 \times 4=20$. Using the fact that the principal repaid column in Table 5.1 is a geometric progression, we have the answer

$$
\begin{aligned}
& 100\left[(1+i)^{13}+(1+i)^{14}+(1+i)^{15}+(1+i)^{16}+(1+i)^{17}\right] \\
& =100\left(s_{\overline{18}}-s_{131}\right)=100(22.38635-15.14044)=\$ 724.59 .
\end{aligned}
$$

11. (a) We have $B_{4}^{p}=a_{6 \mid i}+v_{i}^{6} a_{\overline{10} j}$ so that $I_{5}=i \cdot B_{4}=i\left(a_{6 \mid i}+v_{i}^{6} a_{\overline{10 j} j}\right)$.
(b) After 10 years, the loan becomes a standard loan at one interest rate. Thus applying formula (5.5)

$$
P_{15}=v_{j}^{20-15+1}=v_{j}^{6} .
$$

12. After the seventh payment we have $B_{7}^{p}=a_{13}$. If the principal $P_{8}=v^{20-8+1}=v^{13}$ in the next line of the amortization schedule is also paid at time $t=7$; then, in essence, the next line in the amortization schedule drops out and we save $1-v^{13}$ in interest over the life of the loan. The loan is exactly prepaid one year early at time $t=19$.
13. (a) The amount of principal repaid in the first 5 payments is

$$
B_{0}-B_{5}=L-B_{5}^{p}=L-\left(\frac{L}{a_{10}}\right) a_{50}=L\left(1-\frac{a_{50}}{a_{10}}\right)=L\left(1-\frac{1-v^{5}}{1-v^{10}}\right)=L\left(1-\frac{1-2 / 3}{1-4 / 9}\right)=.4 L .
$$

(b) The answer is

$$
B_{5}(1+i)^{5}=(L-.4 L) \frac{3}{2}=.9 L .
$$

14. We are given

$$
I_{8}=R\left(1-v^{28}\right)=135 \text { and } I_{22}=R\left(1-v^{14}\right)=108
$$

Taking the ratio

$$
\frac{I_{8}}{I_{22}}=\frac{1-v^{8}}{1-v^{14}}=1+v^{14}=\frac{135}{108}=1.25
$$

so that $v^{14}=.25$.

Now, we can solve for R

$$
R=\frac{108}{1-v^{14}}=\frac{108}{.75}=144
$$

Finally,

$$
I_{29}=R\left(1-v^{7}\right)=144\left[1-(.25)^{.5}\right]=\$ 72
$$

15. We have

$$
L=1000 a_{\overline{10}} .
$$

and using the column total from Table 5.1

$$
L=1000\left(10-a_{10}\right)
$$

Equating the two we have $a_{10}=5$ and solving for the unknown rate of interest using a financial calculator, we have $i=15.0984 \%$. Thus, the answer is

$$
I_{1}=i L=(.150984)(5000)=\$ 754.95 .
$$

16. We know that $X=R a_{n .125}$.

From (i) we have

$$
R(1-v)=153.86 \text { so that } \quad R=1384.74
$$

From (ii) we have

$$
\begin{aligned}
X & =6009.12+(1384.74-153.86)=7240.00 \\
& =1384.74 a_{\text {n. } 125} .
\end{aligned}
$$

Therefore, $a_{n .125}=7240 / 1384.74=5.228$ and solving for the unknown n using a financial calculator we obtain $n=9$.

From (iii) we have

$$
Y=R v^{9-1+1}=1384.74(1.125)^{-9}=\$ 479.73
$$

17. (a). $10(10,000)=\$ 1000$.
(b) $1500-1000=\$ 500$.
(c) $1000-.08(5000)=\$ 600$.
(d) $1500-600=\$ 900$.
(e) $5000(1.08)+500=\$ 5900$.

As a check, note that $5900-5000=900$, the answer to part (d).
18. (a) $B_{5}=1000(1.08)^{5}-120 s_{5}$ by the retrospective definition of the outstanding loan balance.
(b) $B_{5}=1000\left[1+i s_{5}\right]-120 s_{5}=1000+80 s_{5}-120 s_{5}=1000-40 s_{51}$. The total annual payment 120 is subdivided into 80 for interest on the loan and 40 for the sinking fund deposit. After five years the sinking fund balance is $40 s_{5}$. Thus, B_{5} is the original loan less the amount accumulated in the sinking fund.
19. We have $X \ddot{s}_{\overline{10.07}}=10,000$ so that $X=\frac{10,000}{\ddot{s}_{\overline{10} .07}}=\frac{10,000}{14.7836}=\$ 676.43$.
20. Amortization payment: $\frac{.5 L}{a_{\overline{10.05}}}$.

Sinking fund payment: $(.05)(.5 L)+\frac{.5 L}{s_{\overline{10.04}}}$.
The sum of the two is equal to 1000 . Solving for L we obtain
$L=\frac{1000}{\frac{.5}{a_{10.05}}+.025+\frac{.5}{s_{10.04}}}=\frac{1000}{.06475+.025+.04165}=\$ 7610 \quad$ to the nearest dollar.
21. The interest on the loan and sinking fund deposits are as follows:

Years	$\underline{\text { Interest }}$	$\underline{\text { SFD }}$
$1-10$	$.06(12,000)=720$	$1000-720=280$
$11-20$	$.05(12,000)=600$	$1000-600=400$

The sinking fund balance at time $t=20$ is

$$
\begin{aligned}
280 s_{\overline{10.04}}(1.04)^{10}+400 s_{\overline{10.04}} & =(280)(12.00611)(1.48024)+(400)(12.00611) \\
& =9778.57
\end{aligned}
$$

Thus the shortage in the sinking fund at time $t=20$ is $12,000-9778.57=\$ 2221$ to the nearest dollar.
22. (a) The total payment is

$$
3000(.04)+\frac{\frac{1}{3}(3000)}{s_{20.025}}+\frac{\frac{2}{3}(3000)}{s_{\overline{20.035}}}=120+39.15+70.72=\$ 229.87
$$

(b) We have

$$
\frac{1}{3} D s_{20.025}+\frac{2}{3} D s_{20.035}=3000
$$

so that

$$
D=\frac{3000}{8.5149+18.8531}=109.62 .
$$

and the total payment is

$$
120+109.62=\$ 229.62
$$

(c) In part (a) more than $1 / 3$ of the sinking fund deposit goes into the lower-earning sinking fund, whereas in part (b) exactly $1 / 3$ does. Therefore, the payment in part (a) must be slightly higher than in part (b) to make up for the lesser interest earned.
23. We have

$$
36,000=400,000 i+\frac{400,000}{s_{\overline{31.03}}}=400,000 i+8000
$$

and

$$
i=\frac{36,000-8000}{400,000}=.07, \quad \text { or } 7 \% .
$$

24. We have $P=\frac{1000}{a_{\overline{10.10}}}=\frac{1000}{6.14457}=162.745$.

The interest on the loan is $.10(1000)=100$, so that $D=162.745-100=62.745$. The accumulated value in the sinking fund at time $t=10$ is

$$
62.745 s_{\overline{10.14}}=(62.745)(19.3373)=1213.32 .
$$

Thus, the excess in the sinking fund at time $t=10$ is $1213.32-1000=\$ 213.32$.
25. Total interest $=$ total payments minus the loan amount, so

$$
(500)(4)(10)-(500)(4) a_{10.08}^{(4)}=20,000-2000(6.90815)
$$

$=\$ 6184$ to the nearest dollar.
26. Semiannual interest payment $=(10,000)(.12 / 2)=600$.

Annual sinking fund deposit $=\frac{10,000}{s_{5.08}}=\frac{10,000}{5.8666}=1704.56$.
Total payments $=(600)(2)(5)+(1704.56)(5)=\$ 14,523$ to the nearest dollar.
27. The quarterly interest rate is $j=.10 / 4=.025$. We are given $R=3000$ and $I_{3}=2000$, so therefore $P_{3}=1000$. There are $3 \times 4=12$ interest conversion periods between P_{3} and P_{6}. Therefore $P_{6}=P_{3}(1+j)^{12}=1000(1.025)^{12}=\$ 1344.89$.
28. The quarterly interest rate on the loan is $j_{1}=.10 / 4=.025$. The semiannual interest rate on the sinking fund is $j_{2}=.07 / 2=.035$. The equivalent annual effective rate is $i_{2}=(1.035)^{2}-1=.07123$. Thus, the required annual sinking fund deposit is

$$
D=\frac{5000(1.025)^{40}}{s_{10.07123}}=\frac{5000(2.865064)}{13.896978}=\$ 966.08
$$

29. There are 17 payments in total. We have $B_{3}=300 a_{\overline{14}}+50(I a)_{14}$ and

$$
\begin{aligned}
P_{4} & =350-i B_{3} \\
& =350-300\left(1-v^{14}\right)-50\left(\ddot{a}_{\overline{14}}-14 v^{14}\right) \\
& =50+1000 v^{14}-50 \ddot{a}_{\overline{14}} \\
& =50+1000(.577475)-50(10.9856) \\
& =\$ 78.20 .
\end{aligned}
$$

30. The semiannual loan interest rate is $j_{1}=.06 / 2=.03$. Thus, the semiannual interest rate payments are $30,27,24, \ldots, 3$. The semiannual yield rate is $j_{2}=.10 / 2=.05$. The price is the present value of all the payments at this yield rate, i.e.

$$
\begin{aligned}
& 100 a_{\overline{10.05}}+3(D a)_{\overline{10.05}} \\
& =100 a_{\overline{10.05}}+(3)(20)\left(10-a_{\overline{10.05}}\right) \\
& =600+40 a_{\overline{10.05}}=600+40(7.7217)=\$ 908.87
\end{aligned}
$$

31. (a) Retrospectively, we have

$$
B_{3}=2000(1.1)^{3}-400\left[(1.1)^{2}+(1.04)(1.1)+(1.04)^{2}\right]=\$ 1287.76
$$

(b) Similarly to part (a)

$$
B_{2}=2000(1.1)^{2}-400(1.1+1.04)=1564.00
$$

so that

$$
P_{3}=B_{2}-B_{3}=1564.00-1287.76=\$ 276.24 .
$$

32. A general formula connecting successive book values is given by

$$
B_{t}=B_{t-1}(1+i)-(1.625 t)\left(i \cdot B_{t-1}\right) .
$$

Letting $t=16$, we have

$$
B_{16}=B_{15}(1+i)-26 i B_{15}=0
$$

since the fund is exactly exhausted. Therefore $1+i-26 i=0$ and $i=\frac{1}{25}$ or 4%.
33. Under option (i)

$$
P=\frac{2000}{a_{\text {10.0807 }}}=\frac{2000}{6.68895}=299
$$

and total payments $=299(10)=2990$.
Under option (ii) the total interest paid needs to be $2990-2000=990$. Thus, we have

$$
990=i(2000+1800+1600+\cdots+200)=11,000 i
$$

so that

$$
i=\frac{990}{11,000}=.09, \text { or } 9 \% .
$$

34. There are a total of 60 monthly payments. Prospectively B_{40} must be the present value of the payments at times 41 through 60 . The monthly interest rate is $j=.09 / 12=.0075$. Payments decrease 2% each payment, so we have

$$
\begin{aligned}
B_{40} & =1000\left[(.98)^{40}(1.0075)^{-1}+(.98)^{41}(1.0075)^{-2}+\cdots+(.98)^{59}(1.0075)^{-20}\right] \\
& =1000(.98)^{40}(1.0075)^{-1} \frac{1-(.98 / 1.0075)^{20}}{1-(.98 / 1.0075)}
\end{aligned}
$$

$=\$ 6889$ to the nearest dollar upon summing the geometric progression.
35. We have $B_{0}=1000$. For the first 10 years only interest is paid, so we have $B_{10}=1000$. For the next 10 years each payment is equal to 150% of the interest due. Since the lender charges 10% interest, 5% of the principal outstanding will be used to reduce the principal each year. Thus, we have $B_{20}=1000(1-.05)^{10}=598.74$. The final 10 years follows a normal loan amortization, so

$$
X=\frac{598.74}{a_{10.10}}=\frac{598.74}{6.14457}=\$ 97.44 .
$$

36. We have $B_{t}=\bar{a}_{25-t}$ and the interest paid at time t is $\delta B_{t} d t$ by applying formulas (5.12) and (5.14). Thus, the interest paid for the interval $5 \leq t \leq 10$ is

$$
\int_{5}^{10} \delta \bar{a}_{25-t} d t=\int_{5}^{10}\left(1-v^{25-t}\right) d t=\left[t-\frac{v^{25-t}}{\delta}\right]_{5}^{10}=(10-5)-\frac{1}{\delta}\left(v^{15}-v^{20}\right) .
$$

Evaluating this expression for $i=.05$, we obtain

$$
5-\frac{1}{\ln (1.05)}\left[(1.05)^{-15}-(1.05)^{-20}\right]=2.8659
$$

37. (a) $(1+i)^{t}-\frac{\bar{s}_{\bar{t}}}{\bar{a}_{\vec{n}}}=(1+i)^{t}-\frac{(1+i)^{t}-1}{1-v^{n}}=\frac{(1+i)^{t}-v^{n-t}-(1+i)^{t}+1}{1-v^{n}}=\frac{1-v^{n-t}}{1-v^{n}}=\frac{\bar{a}_{\overline{n-t}}}{\bar{a}_{\bar{n}}}$.
(b) The LHS is the retrospective loan balance and the RHS is the prospective loan balance for a loan of 1 with continuous payment $1 / \bar{a}_{\vec{n}}$.
38. The loan is given by

$$
L=\int_{0}^{n} t v^{t} d t=\left(\begin{array}{ll}
\bar{I} & \bar{a}
\end{array}\right)_{\bar{n}} .
$$

(a) $\quad B_{k}^{p}=\int_{k}^{n} t v^{t-k} d t=\int_{0}^{n-k}(k+s) v^{s} d s=k \bar{a}_{\overline{n-k}}+(\bar{I} \bar{a})_{\overline{n-k}}$.
(b) $\quad B_{k}^{r}=L(1+i)^{k}-\int_{0}^{k} t(1+i)^{k-t} d t=(\bar{I} \bar{a})_{\bar{n}}(1+i)^{k}-(\bar{I} \bar{s})_{\bar{k}}$.
39. (a) Since $B_{0}=1$ and $B_{10}=0$ and loan balances are linear, we have

$$
B_{t}=1-t / 10 \text { for } 0 \leq t \leq 10 \text {. }
$$

The principal repaid over the first 5 years is $B_{0}-B_{5}=1-.5=.5$.
(b) The interest paid over the first 5 years is

$$
\int_{0}^{5} \delta B_{t} d t=\int_{0}^{5} \delta\left(1-\frac{t}{10}\right)=\delta\left[t-\frac{t^{2}}{20}\right]_{0}^{5}=.10\left(5-\frac{25}{20}\right)=.375
$$

40. (a) The undiscounted balance is given by

$$
B_{t}=\int_{t}^{\infty} P(s) d s=\alpha e^{-B t}
$$

The rate of payment is the rate of change in B_{t}, i.e.

$$
P(t)=-\frac{d}{d t} B_{t}=-\frac{d}{d t} \alpha e^{-B t}=\alpha \beta e^{-B t} .
$$

(b) This is $B_{0}=\left.\alpha e^{-B t}\right|_{t=0}=\alpha$.
(c) The present value of the payment at time $t=0$ is

$$
\int_{0}^{\infty} v^{t} P(t) d t=\int_{0}^{\infty} e^{-\delta t} \alpha \beta e^{-B t} d t=\alpha \beta \int_{0}^{\infty} e^{-(\beta+\delta) t} d t=\frac{\alpha \beta}{\beta+\delta} .
$$

(d) Similarly to part (c)

$$
\int_{t}^{\infty} v^{s-t} P(s) d s=\alpha \beta \int_{t}^{\infty} e^{-\delta(s-t)} e^{-B s} d s=\alpha \beta \int_{t}^{\infty} e^{\delta t} e^{-(\beta+\delta) s} d s=\frac{\alpha \beta}{\beta+\delta} e^{-\beta t}
$$

41. The quarterly interest rate is $.16 / 4=.04$ on the first 500 of loan balance and $.14 / 4=.035$ on the excess. Thus, the interest paid at time t is $I_{t}=(.04)(500)+.035\left(B_{t-1}-500\right)=2.50+.035 B_{t-1}$ as long as $B_{t} \geq 500$. We can generate values recursively as follows:

$$
\begin{aligned}
& I_{1}=2.50+.035(2000)=72.50 \\
& P_{1}=P-I_{1}=P-72.50 \\
& B_{1}=B_{0}-P_{1}=2072.50-P \\
& I_{2}=2.50+.035(2072.50-P)=75.04-.035 P \\
& P_{2}=P-I_{2}=1.035 P-75.04 \\
& B_{2}=B_{1}-P_{2}=2147.54-2.035 P \\
& I_{3}=2.50+.035(2147.54-2.035 P)=77.664-.071225 P \\
& P_{3}=P-I_{3}=1.071225 P-77.664 \\
& B_{3}=B_{2}-P_{3}=2225.204-3.106225 P \\
& I_{4}=2.50+.035(2225.204-3.106225 P)=80.382-.108718 P \\
& P_{4}=P-I_{4}=1.108718 P-80.382 \\
& B_{4}=B_{3}-P_{4}=2305.586-4.214943 P=1000.00
\end{aligned}
$$

Solving for $P=\frac{2305.586-1000.00}{4.214943}=\$ 310$ to the nearest dollar.
42. The quarterly interest rate is $.12 / 4=.03$ on the first 500 of loan balance and $.08 / 4=.02$ on the excess.
(a) For each payment of 100 , interest on the first 500 of the loan balance is $.03(500)=15$. Thus, the remaining loan balance of $1000-500=500$ is amortized with payments of $100-15=85$ at 2% interest. Retrospectively,

$$
\begin{aligned}
B_{3} & =500(1.02)^{3}-85 s_{3.02}=270.46 \\
I_{4} & =.02(270.46)=5.41 \\
P_{4} & =85-I_{4}^{\prime}=85-5.41=\$ 79.59
\end{aligned}
$$

(b) Prior to the crossover point, the successive principal repayments form a geometric progression with common ratio 1.02 (see Table 5.5 for an illustration).
43. We have $B_{0}=3000$.

Proceeding as in Exercise 41, we find that

$$
B_{5}=3191.289-5.101005 P
$$

Proceeding further, we find that

$$
B_{9}=3364.06-9.436502 P .
$$

However, prospectively we also know that

$$
B_{9}=P a_{3.015} .
$$

Equating the two expressions for B_{9}, we have

$$
P=\frac{3364.06}{9.436502+a_{\text {33. } 015}}=\$ 272.42 .
$$

44. (a) We have

$$
a_{\vec{n}}+i \sum_{t=0}^{n-1} a_{\overline{n-t \mid}}=a_{\vec{n} \mid}+\sum_{t=0}^{n-1}\left(1-v^{n-t}\right)=a_{n}+n-a_{\vec{n} \mid}=n .
$$

(b) For a loan $L=a_{n}$, then a_{n} is the sum of the principal repaid column. The summation of $i a_{\overline{n-t}}$ is the sum of the interest paid column. The two together sum to the total installment payments which is n.
45. (a) Prospectively, we have

$$
\begin{aligned}
& B_{t}=R a_{\overline{n-t}}=\frac{R}{i}\left(1-v^{n-t}\right)=\frac{R}{i}\left(1-v^{n}-v^{n-t}+v^{n}\right) \\
& =\frac{R}{i}\left[\left(1-v^{n}\right)-v^{n}\left\{(1+i)^{t}-1\right\}\right]=R\left(a_{\vec{n}}-v^{n} s_{\hat{t}}\right) .
\end{aligned}
$$

(b) The outstanding loan balance B_{t} is equal to the loan amount $R a_{n}$ minus the sum of the principal repaid up to time t.
46. The initial fund is $B_{0}=10,000 a_{\overline{10.035}}$. After 5 years, fund balance is retrospectively

$$
B_{5}^{\prime}=10,000 a_{10.035}(1.05)^{5}-10,000 s_{5.05}
$$

The outstanding balance on the original schedule is

$$
B_{5}=10,000 a_{5.035} .
$$

Thus, the excess interest at time $t=5$ is
$B_{5}^{\prime}-B_{5}=10,000[(8.3166)(1.27628)-5.5256-4.5151]=\$ 5736$ to the nearest dollar.
47. (a) The original deposit is

$$
D_{1}=\frac{10,000}{\ddot{s}_{10.05}}=\frac{10,000}{13.20679}=\$ 757.19 .
$$

(b) After 5 years the balance is

$$
D_{1} \ddot{s}_{5.05}=(757.19)(5.80191)=4393.14
$$

Then, the revised deposit is

$$
D_{2}=\frac{10,000-4393.14(1.04)^{5}}{\ddot{s}_{51.04}}=\$ 826.40 .
$$

48. We have $R_{L}=\frac{L}{a_{30.04}}$.

The payment for loan M is $L / 30$ in principal plus a declining interest payment. The loan balances progress linearly as

$$
L, \frac{29 L}{30}, \frac{28 L}{30}, \cdots, \frac{31-k}{30} L
$$

in year k. We have $P_{L}=P_{M}$, so that

$$
\begin{aligned}
\frac{L}{a_{\overline{30.04}}} & =\frac{L}{30}+\frac{.04(31-k) L}{30} \\
\text { or } \quad \frac{L}{a_{30.04}} & =\frac{2.24-.04 k}{30}
\end{aligned}
$$

and solving, we obtain $k=12.63$. Thus, P_{L} first exceeds P_{M} at time $t=13$.
49. (a) We have on the original mortgage

$$
R=\frac{80,000}{a_{20.08}} \quad \text { and } \quad B_{9}=\left(\frac{80,000}{a_{20.08}}\right) a_{\overline{11.08}}
$$

and on the revised mortgage

$$
B_{9}^{\prime}=B_{9}-5000=R^{\prime} a_{9.09} .
$$

Thus,

$$
R^{\prime}=\frac{\left(\frac{80,000}{a_{20.08}}\right) a_{\overline{11.08}}-5000}{a_{\overline{99.09}}} .
$$

(b) We have at issue

$$
80,000=\left(\frac{80,000}{a_{20.08}}\right) a_{9.09}+5000 v_{.09}^{9}+R^{\prime} v_{.09}^{9} a_{99.09}
$$

so that

$$
R^{\prime}=\frac{80,000(1.09)^{9}-\left(\frac{80,000}{a_{\overline{20.08}}}\right) s_{\text {9‥09 }}-5000}{a_{9 . .09}} .
$$

50. The regular payment is

$$
R=\frac{1000}{a_{\overline{10.05}}}=\frac{1000}{7.72173}=129.50 .
$$

The penalties are:

$$
\begin{aligned}
.02(300-129.50) & =3.41 \text { at } t=1 \\
\text { and } .02(250-129.50) & =2.41 \text { at } t=2 .
\end{aligned}
$$

Thus, only 296.59 and 247.59 go toward principal and interest. Finally,

$$
B_{3}=1000(1.05)^{3}-296.59(1.05)^{2}-247.59(1.05)=\$ 571 \text { to the nearest dollar. }
$$

