Chapter 6

1. (a) $P=1000(1.10)^{-10}=\$ 385.54$.
(b) $P=1000(1.09)^{-10}=\$ 422.41$.
(c) The price increase percentage is $\frac{422.41-385.54}{385.54}=.0956$, or 9.56%.
2. The price is the present value of the accumulated value, so we have

$$
P=1000\left(1+\frac{.08}{2}\right)^{20}(1.1)^{-10}=\$ 844.77
$$

3. (a) The day counting method is actual/360. In 26 weeks there are $26 \times 7=182$ days. Using the simple discount method, we have

$$
9600=10,000\left(1-\frac{182}{360} d\right) \text { and } d=.0791 \text {, or } 7.91 \%
$$

(b) An equation of value with compound interest is

$$
9600=10,000(1+i)^{-1 / 2} \text { and } i=.0851, \text { or } 8.51 \%
$$

4. We have $F=100, C=105, r=.05, g=5 / 105, i=.04, \quad G=5 / .04=125$,

$$
K=105(1.04)^{-20}=47.921, \text { and } n=20
$$

Basic: $P=5 a_{20 \mid}+105 v^{20}=5(13.59031)+105(.45639)=\$ 115.87$.
Premium/discount: $P=105+(5-4.2) a_{\overline{20}}=\$ 115.87$.
Base amount: $P=125+(105-125)(1.04)^{-20}=\$ 115.87$.
Makeham: $\quad P=47.921+\frac{5}{.04(105)}(105-47.921)=\$ 115.87$.
5. We apply the premium/discount formula to the first bond to obtain

$$
1136.78=1000+1000(.025-.02) a_{n}
$$

which can be solved to obtain $a_{n}=27.356$. Now apply the premium/discount formula to the second bond to obtain

$$
P=1000+1000(.0125-.02)(27.356)=\$ 794.83
$$

6. Since the present value of the redemption value is given, we will use Makeham's formula. First, we find

$$
g=\frac{F r}{C}=\frac{45}{1125}=.04
$$

Now

$$
P=K+\frac{g}{i}(C-K)=225+\frac{.04}{.05}(1125-225)=\$ 945 .
$$

7. Since $K=C v^{n}$, we have $450=1000 v^{n}$ and $v^{n}=.45$. Now we will apply the base amount formula

$$
P=G+(C-G) v^{n}=G\left(1-v^{n}\right)+C v^{n}
$$

and substituting values

$$
1110=G(1-.45)+450 \text { and } G=\$ 1200 .
$$

8. The price of the 10 -year bond is

$$
P=1000(1.035)^{-20}+50 a_{20.035}=1213.19
$$

The price of the 8 -year bond is

$$
P=F(1.035)^{-16}+.03 F a_{16.035}=1213.19
$$

and solving

$$
F=\frac{1213.19}{.576706+(.03)(12.09412)}=\$ 1291 \text { to the nearest dollar. }
$$

9. Since n is unknown, we should use an approach in which n only appears once. We will use the base amount formula. First, we have

$$
G=\frac{F r}{i}=\frac{1000(.06)}{.05}=1200
$$

and

$$
P=1200+(1000-1200) v^{n}=1200-200 v^{n} .
$$

If we double the term of the bond we have

$$
P+50=1200+(1000-1200) v^{2 n}=1250-200 v^{n} .
$$

Thus we have a quadratic which reduces to

$$
200 v^{2 n}-200 v^{n}+50=0
$$

or

$$
4 v^{2 n}-4 v^{n}+1=0
$$

and factoring

$$
\left(2 v^{n}-1\right)^{2}=0
$$

Thus, $v^{n}=.5$ and $P=1200-200(.5)=\$ 1100$.
10. (a) The nominal yield is the annualized coupon rate of 8.40%.
(b) Here we want the annualized modified coupon rate, so

$$
2 g=2\left(\frac{F r}{C}\right)=2\left(\frac{42}{1050}\right)=8.00 \%
$$

(c) Current yield is the ratio of annualized coupon to price or $\frac{84}{919.15}=9.14 \%$.
(d) Yield to maturity is given as 10.00%.
11. Using the premium/discount formula, we have

$$
P_{1}=1+p=1+(1.5 i-i) a_{n}=1+.5 i a_{n}
$$

and

$$
P_{2}=1+(.75 i-i) a_{\text {П }}=1-.25 i a_{n}=1-.5 p
$$

12. Let X be the coupon amount and we have $X=5+.75 X$ so $X=20$.
13. We have $n=20$ and are given that $P_{19}=C(i-g) v^{2}=8$. We know that the principal adjustment column is a geometric progression. Therefore, we have

$$
\begin{aligned}
\sum_{t=1}^{8} P_{t} & =8\left(v^{11}+v^{12}+\cdots+v^{18}\right) \text { at } 4.5 \% \\
& =8 v^{10} a_{8}=8(1.045)^{-10}(6.59589)=\$ 33.98
\end{aligned}
$$

14. Since $i>g$, the bond is bought at a discount. Therefore, the total interest exceeds total coupons by the amount of the discount. We have

$$
\begin{aligned}
\Sigma I_{t} & =n \cdot C g+d=(10)(50)+1000(.06-.05) a_{10.06} \\
& =500+10(7.36009)=\$ 573.60
\end{aligned}
$$

15. We have semiannual yield rate j
(i) $X=(40-1000 j) a_{20}$
(ii) $Y=-(45-1000 j) a_{\overline{20}}$
(iii) $2 X=-(50-1000 j) a_{\overline{20}}$.

By inspection, we have $2(X+Y)=X+2 X$, so that $2 Y=X$ and $Y=\frac{X}{2}$.
16. (a) The total premium is $1037.17-1000=37.17$ amortized over four periods, with each amortization equal to $37.17 / 4=9.2925$. Thus, we have

$$
\begin{aligned}
& B_{0}=1037.17 \\
& B_{1}=1037.17-9.2925=1027.88 \\
& B_{2}=1027.8775-9.2925=1018.59 \\
& B_{3}=1018.585-9.2925=1009.29 \\
& B_{4}=1009.2925-9.2925=1000.00
\end{aligned}
$$

(b) The total discount is $1000-964.54=35.46$ amortized over four periods, with each amortization equal to $35.46 / 4=8.865$. Thus, we have

$$
\begin{aligned}
& B_{0}=964.54 \\
& B_{1}=965.54+8.865=973.41 \\
& B_{2}=973.405+8.865=982.27 \\
& B_{3}=982.27+8.865=991.14 \\
& B_{4}=991.135+8.865=1000.00
\end{aligned}
$$

(c) For premium bonds the straight line values are less than true book values. For discount bonds the opposite is the case.
17. (a) Since $k<1$, then $1+k i>(1+i)^{k}$, so

$$
\text { Theoretical = Semi-Theoretical }<\text { Practical. }
$$

(b) Since $\frac{(1+i)^{k}-1}{i}<k$, then for the accrued coupon, we have
Theoretical < Semi-Theoretical = Practical.

Finally, $B^{m}=B^{f}-A C$ and combining results
Semi-Theoretical < Theoretical
Semi-Theoretical < Practical
but Practical \lesseqgtr Theoretical is indeterminate.
18. Theoretical method:

$$
\begin{aligned}
& B_{1 / 3}^{f}=964.54(1.05)^{1 / 3}=980.35 \\
& A C=40\left[\frac{(1.05)^{1 / 3}-1}{.05}\right]=13.12 \\
& B_{1 / 3}^{m}=980.35-13.12=967.23
\end{aligned}
$$

Practical method:

$$
\begin{aligned}
& B_{1 / 3}^{f}=964.54\left[1+\left(\frac{1}{3}\right)(.05)\right]=980.62 \\
& A C=\frac{1}{3}(40)=13.33 \\
& B_{1 / 3}^{m}=980.62-13.33=967.29
\end{aligned}
$$

Semi-Theoretical:

$$
\begin{aligned}
B_{1 / 3}^{f} & =964.54(1.05)^{1 / 3}=980.35 \\
A C & =\frac{1}{3}(40)=13.33 \\
B_{1 / 3}^{m} & =980.35-13.33=967.02
\end{aligned}
$$

19. From Appendix A

April 15	is	Day 105
June 28	is	Day 179
October 15	is	Day 288

The price on April $15, Z$ is

$$
P=1000+(30-35) a_{311.035}=906.32 .
$$

The price on June $25, Z$ is

$$
906.32\left[1+\frac{179-105}{288-105}(.035)\right]=\$ 919.15 .
$$

20. (a) Using a financial calculator

$$
\begin{aligned}
\mathrm{N} & =12 \times 2=24 \\
\mathrm{PMT} & =100\left(\frac{.10}{2}\right)=5 \\
\mathrm{FV} & =100 \\
\mathrm{PV} & =-110 \\
\text { and } \mathrm{CPT} \mathrm{I} & =4.322 .
\end{aligned}
$$

Answer $=2(4.322)=8.64 \%$.
(b) Applying formula (6.24), we have

$$
\begin{aligned}
i & \approx \frac{g-\frac{k}{n}}{1+\frac{n+1}{2 n} k} \text { where } k=\frac{P-C}{C}=\frac{110-100}{100}=.1 \\
& =\frac{.05-.1 / 24}{1+\frac{25}{48}(.1)}=.04356 .
\end{aligned}
$$

$$
\text { Answer }=2(.04356)=.0871, \text { or } 8.71 \%
$$

21. Bond 1: $P=500+(45-500 i) a_{\overline{40}}$.

Bond 2: $P=1000+(30-1000 i) a_{40}$.
We are given that

$$
(45-500 i) a_{\overline{40}}=2(1000 i-30) a_{40}
$$

so

$$
45-500 i=2000 i-60
$$

and

$$
i=\frac{105}{2500}=.042 .
$$

The answer is $2 i=.084$, or 8.4%.
22. Using the premium/discount formula

$$
92=100\left[1-.01 a_{\overline{15} i}\right]
$$

so that

$$
a_{15 \mid i}=8 .
$$

Using a financial calculator and the technique in Section 3.7 we have

$$
i=9.13 \% .
$$

23. Using the basic formula, we have

$$
P=1000 v^{n}+42 a_{n}
$$

(i) $P+100=1000 v^{n}+52.50 a_{\text {п }}$
(ii) $42 a_{n}=1000 v^{n}$.

Subtracting the first two above

$$
10.50 a_{\bar{n}}=100 \quad \text { or } \quad a_{\text {司 }}=9.52381 .
$$

From (ii)

$$
\begin{aligned}
42 a_{\text {П }} & =42(9.52381)=400=1000 v^{n} \\
& =1000\left(1-i a_{n}\right)=1000-9523.81 i
\end{aligned}
$$

so that $i=\frac{1000-400}{9523.81}=.063$, or 6.3%.
24. (a) Premium bond, assume early:

$$
P=1000+(40-30) a_{20.03}=\$ 1148.77
$$

(b) Discount bond, assume late:

$$
P=1000+(40-50) a_{30.05}=\$ 846.28 .
$$

(c) Use a financial calculator:
$\mathrm{N}=20 \quad \mathrm{PMT}=40 \quad \mathrm{FV}=1000 \quad \mathrm{PV}=-846.28$ and $\mathrm{CPT} \mathrm{I}=5.261$.
Answer $=2(5.261)=10.52 \%$.
(d) Premium bond, assume late:

$$
P=1000+(40-30) a_{\text {300.03 }}=\$ 1196.00 .
$$

(e) Discount bond, assume early:

$$
P=1000+(40-50) a_{\overline{20.05}}=\$ 875.38
$$

25. Note that this bond has a quarterly coupon rate and yield rate. The price assuming no early call is

$$
P=1000(1.015)^{-40}+20 a_{40.015}=1149.58
$$

The redemption value at the end of five years to produce the same yield rate would have to be

$$
\begin{aligned}
& 1149.58=C(1.015)^{-20}+20 a_{\text {20.015 }} \\
& \text { and } C=1149.58(1.015)^{20}-20 s_{20.015} \\
& =\$ 1086 \text { to the nearest dollar. }
\end{aligned}
$$

26. In Example 6.8 we had a premium bond and used the earliest possible redemption date in each interval. In this Exercise we have a discount bond and must use the latest possible redemption date in each interval:

At year 6: $\quad P=1050+(20-26.25) a_{121.025}=985.89$
At year 9: $\quad P=1025+(20-25.625) a_{\overline{18.025}}=944.26$
At year 10: $P=1000+(20-25) a_{20.025}=922.05$
Assume no early call, so the price is $\$ 922.05$. If the bond is called early, the yield rate will be higher than 5%.
27. Using Makeham's formula $g=\frac{1000(.045)}{1100}=\frac{.045}{1.1}$.

Now, $P=K+\frac{g}{i}(C-K)$ and we have

$$
\begin{aligned}
918 & =1100 v^{n}+\frac{.045}{(1.1)(.05)}\left(1100-1100 v^{n}\right) \\
& =200 v^{n}+900 \\
v^{n}= & \frac{18}{200}=.09 \text { and } n=\frac{-\ln (.09)}{\ln (1.05)}=49.35 .
\end{aligned}
$$

The number of years to the nearest integer $=\frac{49.35}{2}=25$.
28. The two calculated prices define the endpoints of the range of possible prices. Thus, to guarantee the desired yield rate the investor should pay no more than $\$ 897$.
The bond is then called at the end of 20 years at 1050 . Using a financial calculator, we have

$$
\mathrm{N}=20 \quad \mathrm{PMT}=80 \quad \mathrm{FV}=1050 \quad \mathrm{PV}=-897 \quad \text { and } \quad \mathrm{CPT} \mathrm{I}=9.24 \%
$$

29. Use Makeham's formula

$$
\begin{aligned}
P & =\sum_{t=1}^{10} 1000 v_{.04}^{t}+\frac{.06}{.04}\left[10,000-\sum_{t=1}^{10} 1000 v_{.04}^{t}\right] \\
& =1000 a_{\overline{10.04}}+\frac{3}{2}\left[10,000-1000 a_{\overline{10 l .04}}\right] \\
& =15,000-500 a_{\overline{10} .04}=\$ 10,945 \text { to the nearest dollar. }
\end{aligned}
$$

30. Use Makeham's formula
$P=K+\frac{.06}{.10}[10,000-K]$ where $K=500\left(a_{25}-a_{51}\right)=2643.13$ and $P=6000+.4(2643.13)=\$ 7057$ to the nearest dollar.
31. Use Makeham's formula

$$
P=K+\frac{g}{i}(C-K)=\frac{g}{i} C+\left(1-\frac{g}{i}\right) K
$$

where

$$
\frac{g}{i}=\frac{g}{1.25 g}=.8 \quad C=100,000
$$

and

$$
K=10,000\left(v^{10}+v^{16}+v^{22}+2 v^{28}+2 v^{34}+3 v^{40}\right) .
$$

Applying formula (4.3) in combination with the technique presented in Section 3.4 we obtain

$$
K=10,000\left[\frac{3 a_{\overline{46}}-a_{\overline{40}}-a_{281}-a_{\overline{10}}}{a_{\overline{6}}}\right] .
$$

Thus, the answer is

$$
80,000+2000\left[\frac{3 a_{\overline{46}}-a_{\overline{40}}-a_{28}-a_{\overline{10}}}{a_{6}}\right] .
$$

32. From the first principles we have

$$
\begin{aligned}
P & =105 v^{n}+8 a_{n}^{(2)}=105 v^{n}+\frac{8\left(1-v^{n}\right)}{i^{(2)}} \\
& =\left(105-\frac{8}{i^{(2)}}\right) v^{n}+\frac{8}{i^{(2)}} .
\end{aligned}
$$

Thus, $A=105 i^{(2)}-8$ and $B=8$.
33. From first principles we have

$$
\begin{aligned}
P & =1000(1.06)^{-20}+40 a_{20.06}+10 a_{\overline{10.06}} \\
& =311.8047+458.7968+73.6009=\$ 844.20 .
\end{aligned}
$$

34. From first principles we have

$$
\begin{aligned}
P & =1050(1.0825)^{-20}+75\left[\frac{1}{1.0825}+\frac{1.03}{(1.0825)^{2}}+\cdots+\frac{(1.03)^{19}}{(1.0825)^{20}}\right] \\
& =1050(1.0825)^{-20}+\frac{75}{1.0825}\left[\frac{1-\left(\frac{1.03}{1.0825}\right)^{20}}{1-\frac{1.03}{1.0825}}\right] \\
& =\$ 1115 \text { to the nearest dollar. }
\end{aligned}
$$

35. Applying formula (6.28)

$$
P=\frac{D}{i-g}=\frac{10}{.12-.05}=142.857
$$

The level dividend that would be equivalent is denoted by D and we have

$$
142.857=D a_{\infty}=\frac{D}{.12} \text { or } D=\$ 17.14
$$

36. Modifying formula (6.28) we have

$$
P=v^{5} \frac{D}{i-g}=(1.15)^{-5} \frac{(.5)(6)(1.08)^{6}}{.15-.08}=\$ 33.81
$$

37. If current earnings are E, then the earnings in 6 years will be $1.6 E$. The stock price currently is $10 E$ and in 6 years will be $15(1.6 E)=24 E$. Thus, the yield rate can be determined from

$$
10 E(1+i)^{6}=24 E
$$

which reduces to

$$
i=(2.4)^{1 / 6}-1=.157, \text { or } 15.7 \%
$$

38. The price at time $t=0$ would be

$$
2.50 a_{\infty \cdot .02}=\frac{2.50}{.02}=125
$$

The bond is called at the end of 10 years. Using a financial calculator we have

$$
\mathrm{N}=40 \quad \mathrm{PMT}=2.50 \quad \mathrm{FV}=100 \quad \mathrm{PV}=-125 \quad \text { and } \quad \mathrm{CPT} \mathrm{I}=.016424 .
$$

The answer is $4(.016424)=.0657$, or 6.57%.
39. (a) MV for the bonds $=1000(900)=900,000$.

MV for the stocks $=10,000(115)=1,150,000$.
Total MV = \$2,050,000.
(b) BV for the bonds $=1,000,000$, since the yield rate equals the coupon rate.

BV for the stocks $=1,000,000$, their cost.
Total BV = \$2,000,000.
(c) $\mathrm{BV}_{B}+\mathrm{MV}_{S}=1,000,000+1,150,000=\$ 2,150,000$.
(d) $\mathrm{PV}_{B}=40,000 a_{\overline{15.05}}+1,000,000 v_{.05}^{15}=896,208$.
$\mathrm{PV}_{S}=60,000 a_{\text {क.. } .05}=\frac{60,000}{.05}=1,2000,000$.
Total PV $=\$ 2,096,200$ to the nearest $\$ 100$.
40. From first principles we have

$$
\begin{aligned}
P & =9 \bar{a}_{\overline{12}}+100 v^{12}=9\left(\frac{1-v^{12}}{\delta}\right)+100 v^{12} \\
& =9\left(\frac{1-e^{-12 \delta}}{\delta}\right)+100 e^{-12 \delta} \\
& =\frac{1}{\delta}\left[(100 \delta-9) e^{-12 \delta}+9\right] .
\end{aligned}
$$

41. From the premium/discount formula we have

$$
p=(g-i) a_{n} \text { and } q=\left(\frac{1}{2} g-i\right) a_{n} .
$$

We then have

$$
(2 g-i) a_{n}=A p+B q=A(g-i) a_{n}+B\left(\frac{1}{2} g-i\right) a_{n} .
$$

Equating coefficients gives

$$
\begin{aligned}
A+\frac{1}{2} B & =2 \\
A+B & =1
\end{aligned}
$$

Solving these simultaneous equations gives $A=3$ and $B=-2$.
42. Using Makeham's formula for the first bond

$$
\begin{aligned}
P & =K+\frac{g}{i}(C-K)=C v_{.04}^{5}+\frac{.06}{.04}\left(C-C v_{.04}^{5}\right) \\
& =C\left[1.5-.5(1.04)^{-5}\right]=1.089036 C .
\end{aligned}
$$

Using Makeham's formula again for the second bond

$$
1.089036 C=C\left[1.25-.25(1.04)^{-n}\right]
$$

Thus $(1.04)^{-n}=.643854$ and $n=\frac{-\ln (.643854)}{\ln 1.04}=11.23$ or 11 years to the nearest year.
43. Since $r=g>i$, the bond is a premium bond. Therefore $B_{19}>C=1000$. We then have $P_{20}=B_{19}-1000$ and $I_{20}=i B_{19}$ so that

$$
\begin{aligned}
F r & =1000 r=P_{20}+I_{20} \\
& =B_{19}-1000+i B_{19}=B_{19}(1+i)-1000 .
\end{aligned}
$$

Thus, we have

$$
B_{19}=1000 \frac{1+r}{1+i}=1000 \frac{1.03+i}{1+i}
$$

We are also given

$$
i \cdot B_{19}=.7\left(B_{19}-1000\right) \text { so that } B_{19}=\frac{700}{.7-i} .
$$

Therefore

$$
1000 \frac{1.03+i}{1+i}=\frac{700}{.7-i}
$$

which can be solved to obtain $i=.02$. Finally, we can obtain the price of the bond as

$$
\begin{aligned}
P & =1000+1000(.05-.02) a_{\overline{20.02}} \\
& =1000+30(16.35149)=\$ 1490.54 .
\end{aligned}
$$

44. If suspended coupon interest accrues at the yield rate, then there is no difference between the restructured bond and the original bond. We have

$$
\begin{aligned}
P & =33.75 a_{20.037}+1000(1.037)^{-20} \\
& =33.75(13.95861)+1000(.483532) \\
& =\$ 955 \text { to the nearest dollar. }
\end{aligned}
$$

45. The redemption value C is the same for both bonds.

Bond X: Use the base amount formula. We have $F r=G i$, so that

$$
G=F \frac{r}{i}=1000(1.03125)=\$ 1031.25
$$

and $K=C v^{n}=381.50$.
Bond Y: We have

$$
C v^{n / 2}=647.80 .
$$

Taking the ratio $\frac{C v^{n}}{C v^{n / 2}}=v^{n / 2}=\frac{381.50}{647.80}=.5889163$

$$
\begin{aligned}
& \text { so } v^{n}=(.5889163)^{2}=.3468224 \\
& \text { and } C=\frac{381.50}{.3468224}=1100
\end{aligned}
$$

Finally,

$$
\begin{aligned}
P_{X} & =G+(C-G) v^{n} \\
& =1031.25+(1100-1031.25)(.3468224) \\
& =\$ 1055 \text { to the nearest dollar. }
\end{aligned}
$$

46. (a) Prospectively, $B_{t}=C+(F r-C i) a_{\overline{n-t}}$ so that

$$
\begin{aligned}
i \sum_{t=0}^{n-1} B_{t} & =\sum_{t=0}^{n-1}\left[C i+(F r-C i)\left(1-v^{n-t}\right)\right] \\
& =\sum_{t=0}^{n-1}\left[\operatorname{Civ}{ }^{n-t}+F r\left(1-v^{n-t}\right)\right] \\
& =C i a_{n}+n F r-F r a_{\bar{n}} .
\end{aligned}
$$

However $P=C+(F r-C i) a_{n}$ so that

$$
P+i \sum_{t=0}^{n-1} B_{t}=C+n \cdot F r .
$$

(b) In a bond amortization schedule

- $i \sum_{t=0}^{n-1} B_{t}$ is the sum of the interest earned column.
- $\quad P-C=C(g-i) a_{\hat{n}}$ is the sum of the principal adjustment column.
- $n \cdot F r$ is the sum of coupon column.

The sum of the first two is equal to the third.
47. (a) From Exercise 50 in Chapter 4

$$
\frac{d}{d i} a_{n}=-v(I a)_{n} .
$$

Then $\frac{d P}{d i}=\frac{d}{d i}\left[C g a_{n}+C v^{n}\right]=C g\left[-v\left(I a_{n}\right)\right]-C v^{n+1}=-C v\left[g(I a)_{n}+n v^{n}\right]$.
(b) $\frac{d P}{d g}=\frac{d}{d g}\left[C g a_{n}+C v^{n}\right]=C a_{n}$.

