Chapter 7

1. The maintenance expense at time $t=6$ is $3000(1.06)^{6-0}=4255.56$. The projected annual return at time $t=6$ is $30,000(.96)^{6-1}=24,461.18$. Thus,

$$
R_{6}=24,461.18-4255.56=\$ 20,206 \text { to the nearest dollar. }
$$

2. (a) $P(i)=-7000+4000 v_{i}-1000 v_{i}^{2}+5500 v_{i}^{3}$.

Thus, $P(.09)=1000\left[-7+4(.91743)-(.91743)^{2}+5.5(.91743)^{3}\right]=75.05$.
(b) $P(.10)=1000\left[-7+4(.90909)-(.90909)^{2}+5.5(.90909)^{3}\right]=-57.85$.
3. Net cash flows are: $\underline{\text { Time }}$

0	-3000
1	$2000-1000=1000$
2	4000

The IRR is found by setting $P(i)=0$, i.e.

$$
\begin{aligned}
& -3000+1000 v+4000 v^{2}=0 \\
& 4 v^{2}+v-3=(4 v-3)(v+1)=0
\end{aligned}
$$

so that $v=\frac{3}{4}$, rejecting the root $v=-1$. Finally, $1+i=\frac{4}{3}$, and $i=\frac{1}{3}$, so $n=3$.
4. The equation of value equating the present values of cash inflows and cash outflows is

$$
2,000,000+X v^{5}=600,000 a_{\overline{10}}-300,000 a_{5} \text { at } i=12 \% .
$$

Therefore,

$$
\begin{aligned}
X & =\left[600,000 a_{10}-300,000 a_{5 \mid}-2,000,000\right](1.12)^{5} \\
& =\$ 544,037 .
\end{aligned}
$$

5. Project P: $P(i)=-4000+2000 v+4000 v^{2}$.

Project Q: $P(i)=2000+4000 v-X v^{2}$.
Now equating the two expressions, we have

$$
\begin{aligned}
& (X+4000) v^{2}-2000 v-6000=0 \\
& (X+4000)-2000(1.1)-6000(1.1)^{2}=0
\end{aligned}
$$

and

$$
X=2200+7260-4000=\$ 5460 .
$$

6. (a) This Exercise is best solved by using the NPV functionality on a financial calculator. After entering all the NCF's and setting $I=15 \%$, we compute $\mathrm{NPV}=P(.15)=-\$ 498,666$.
(b) We use the same NCF's as in part (a) and compute IRR $=13.72 \%$.
7. (a) The formula for $P(i)$ in Exercise 2 has 3 sign changes, so the maximum number of positive roots is 3 .
(b) Yes.
(c) There are no sign changes in the outstanding balances, i.e.

$$
7000 \text { to } 3000 \text { to } 4000 \text { at } i=0 .
$$

Taking into account interest in the range of 9% to 10% would not be significant enough to cause any sign changes.
8. The equation of value at time $t=2$ is

$$
\begin{gathered}
100(1+r)^{2}-208(1+r)+108.15=0 \\
(1+r)^{2}-2.08(1+r)+1.0815
\end{gathered}
$$

which can be factored as

$$
[(1+r)-1.05][(1+r)-1.03] .
$$

Thus, $r=.05$ and .03 , so that $|i-j|=.02$.
9. Using one equation of value at time $t=2$, we have

$$
\begin{aligned}
& 1000(1.2)^{2}+A(1.2)+B=0 \\
& 1000(1.4)^{2}+A(1.4)+B=0
\end{aligned} \quad \text { or } \quad \begin{aligned}
& 1.2 A+B=-1440 \\
& 1.4 A+B=-1960
\end{aligned}
$$

Solving two equations in two unknowns gives $A=-2600$ and $B=1680$.
10. (a) Adapting formula (7.6) we have:

Fund A: 10,000
Fund B: $\quad 600 s_{5.04}(1.04)^{5}=(600)(5.416323)(1.216653)=3953.87$
Fund $C: \quad 600 s_{5.05}=(600)(5.525631)=3315.38$.

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=10,000+3953.87+3315.38=\$ 17,269 \text { to the nearest dollar. }
$$

(b) We then have the equation of value

$$
10,000\left(1+i^{\prime}\right)^{10}=17,269
$$

so that

$$
i^{\prime}=(1.7269)^{1 / 10}-1=.0562, \text { or } 5.62 \% .
$$

11. If the deposit is D, then the reinvested interest is $.08 D, .16 D, .24 D, \ldots, .80 D$. We must adapt formula (7.7) for an annuity-due rather than an annuity-immediate. Thus, we have the equation of value

$$
10 D+.08 D(\text { Is })_{\overline{10} .04}=1000
$$

so that

$$
D=\frac{1000}{10+\frac{.08}{.04}\left(\ddot{s}_{\overline{10} \mid .04}-10\right)}=\frac{1000}{2 \ddot{s}_{\overline{10} .04}-10}=\frac{1000}{\ddot{s}_{\ddot{11}_{1.04}}-12} .
$$

12. The lender will receive a total accumulated value of $1000 s_{20.05}=33,065.95$ at the end of 20 years in exchange for the original loan of 10,000 . Thus, we have the equation of value applying formula (7.9)

$$
10,000\left(1+i^{\prime}\right)^{20}=33,065.95
$$

and

$$
i^{\prime}=(3.306595)^{1 / 20}-1=.0616, \text { or } 6.16 \% .
$$

13. From formula (7.7) the total accumulated value in five years will be

$$
5(1000)+40 \frac{s_{5.03}-5}{.03}=5412.18
$$

The purchase price P to yield 4% over these five years is

$$
P=5412.18(1.04)^{-5}=\$ 4448 \text { to the nearest dollar. }
$$

14. Applying formula (7.10) we have

$$
110\left(1+i^{\prime}\right)^{24}=5 s_{24.035}+100=283.3326
$$

so that

$$
\left(1+i^{\prime}\right)^{24}=2.57575 \text { and } i^{\prime}=(2.57575)^{1 / 24}-1=.04021
$$

The answer is

$$
2 i^{\prime}=2(.04021)=.0804, \text { or } 8.04 \%
$$

15. The yield rate is an annual effective rate, while the bond coupons are semiannual. Adapting formula (7.10) for this situation we have

$$
1000(1.07)^{10}=30 s_{\overline{20 j}}+1000
$$

and

$$
s_{\overline{20} j}=32.23838
$$

We now use a financial calculator to solve for the unknown rate j to obtain $j=.047597$. The answer is the annual effective rate i equivalent to j, i.e. $i=(1+j)^{2}-1=.0975$, or 9.75%.
16. The equation of value is

$$
300 \ddot{\check{S}}_{\overline{20.08}}=(20)(300)+300 i(\text { Is })_{\overline{201} 1 / 2}
$$

or

$$
\begin{aligned}
14,826.88 & =6000+300 i\left(\frac{s_{\overline{211} / 2}-21}{i / 2}\right) \\
& =6000+600 s_{\overline{21} 1 / 2}-12,600
\end{aligned}
$$

and

$$
s_{\overline{21} 1 / 2}=35.711467 .
$$

We now use a financial calculator to solve for the unknown rate $i / 2$ to obtain $i / 2=.050$, so that $i=.100$, or 10.0%.
17. The loan is 25,000 and if it is entirely repaid at the end of one year the amount paid will be

$$
25,000(1.08)=27,000
$$

This money can be reinvested by the lender at only 6% for the next three years. Thus, over the entire four-year period we have a lender yield rate of

$$
25,000\left(1+i^{\prime}\right)^{4}=27,000(1.06)^{3}=32,157.43
$$

or

$$
i^{\prime}=(1.286)^{1 / 4}-1=.0649, \text { or } 6.49 \%
$$

18. The accumulated value of the 50,000 payments at time $t=4$ is

$$
50,000 s_{3.08}=162,300
$$

Thus we have

$$
\mathrm{NPV}=P(.1)=-100,000+(1.1)^{-4}(162,300)=\$ 10,867 \text { to the nearest dollar. }
$$

19. We have

$$
\begin{aligned}
B & =1000(1.04)+200\left[1+\frac{3}{4}(.04)\right]-300\left[1+\frac{1}{4}(.04)\right] \\
& =\$ 943 .
\end{aligned}
$$

20. First, we apply formula (7.11)

$$
\begin{aligned}
B & =A+C+I \\
10,636 & =10,000+1800-K+900+I
\end{aligned}
$$

so that $I=K-2064$. Next, we apply formula (7.15)

$$
i=.06=\frac{I}{A+\sum_{t} C_{t}(1-t)}=\frac{K-2064}{10,000+1800\left(\frac{5}{6}\right)-K\left(\frac{1}{2}\right)+900\left(\frac{1}{3}\right)}=\frac{K-2064}{11,800-\frac{1}{2} K}
$$

and solving for K

$$
.06\left(11,800-\frac{1}{2} K\right)=K-2064
$$

$$
1.03 K=2772 \text { giving } K=\$ 2691 \text { to the nearest dollar. }
$$

21. We have

$$
\begin{aligned}
2,000,000 & =.08(25,000,000)+.04(X-2,200,000-750,000) \\
& =1,882,000+.04 X \\
\text { and } X & =2,950,000 .
\end{aligned}
$$

Now

$$
B=25,000,000+2,950,000+2,000,000-2,200,000-750,000=27,000,000 .
$$

Finally, we apply formula (7.16) to obtain

$$
i=\frac{2 I}{A+B-I}=\frac{(2)(2,000,000)}{25,000,000+27,000,000-2,000,000}=.08, \text { or } 8 \% .
$$

22. Under compound interest theory

$$
\left(1+{ }_{t} i_{0}\right)\left(1+{ }_{1-t} i_{t}\right)=1+i
$$

without approximation.
(a) ${ }_{t} i_{0}=\frac{1+i}{1+(1-t) i}-1=\frac{t i}{1+(1-t) i}$.
(b) ${ }_{1-t} i_{t}=\frac{1+i}{1+t i}-1=\frac{(1-t) i}{1+t i}$.
23. We combine formula (7.11)

$$
B=A+C+I
$$

and formula (7.15) with one term in the denominator to obtain

$$
\begin{aligned}
i & \approx \frac{I}{A+\sum_{t} C_{t}(1-t)}=\frac{I}{A+C(1-k)} \\
& =\frac{I}{A+(B-A-I)(1-k)}=\frac{I}{k A+(1-k) B-(1-k) I} .
\end{aligned}
$$

24. (a) Yes. The rate changes because the new dates change the denominator in the calculation of $i^{D W}$.
(b) No. The rate does not change because the calculation of $i^{T W}$ depends on the various fund balances, but not the dates of those balances.
25. (a) The equation of value is

$$
\begin{gathered}
1000(1+i)^{2}+1000(1+i)=2200 \\
\text { or }(1+i)^{2}+(1+i)-2.2
\end{gathered}
$$

Solving the quadratic $1+i=\frac{-1 \pm \sqrt{1^{2}-4(1)(-2.2)}}{(2)(1)}=1.06524$ rejecting the negative root. Thus, $i^{D W}=i=.0652$, or 6.52%.
(b) Over the two-year time period formulas (7.18) and (7.19) give

$$
1+i^{T W}=\left(\frac{1200}{1000}\right)\left(\frac{2200}{2200}\right)=1.2
$$

The equivalent annual effective rate is

$$
i=\left(1+i^{T W}\right)^{1 / 2}-1=(1.2)^{.5}-1=.0954, \text { or } 9.54 \%
$$

26. Dollar-weighted calculation:

$$
\begin{gathered}
2000(1+i)+1000\left(1+\frac{1}{2} i\right)=3200 \\
i^{D W}=i=\frac{200}{2500}=.08 .
\end{gathered}
$$

Time-weighted calculation:

$$
\begin{aligned}
& i^{T W}=i^{D W}+.02=.08+.02=.10 \\
& \text { and } 1+i=1.1=\frac{X}{2000} \cdot \frac{3200}{X+1000}=1.6 \frac{X}{X+1000} \text {. }
\end{aligned}
$$

Solving for X we obtain $X=\$ 2200$.
27. (a) The equation of value is

$$
\begin{aligned}
& 2000(1+i)+1000(1+i)^{1 / 2}=3213.60 \\
& 2+(1+i)+(1+i)^{1 / 2}-3.2136=0
\end{aligned}
$$

which is a quadratic in $(1+i)^{1 / 2}$. Solving the quadratic

$$
(1+i)^{1 / 2}=\frac{-1 \pm \sqrt{1^{2}-(4)(2)(-3.2136)}}{(2)(2)}=1.042014
$$

rejecting the negative root. Finally, $i^{D W}=i=(1.042014)^{2}-1=.0857$, or 8.57%.
(b) $1+i=\left(\frac{2120}{2000}\right)\left(\frac{3213.60}{3120}\right)=1.0918$
so $i^{T W}=.0918$, or 9.81%.
28. The 6-month time-weighted return is

$$
i^{T W}=\left(\frac{40}{50}\right)\left(\frac{80}{60}\right)\left(\frac{157.50}{160}\right)-1=.05 .
$$

The equivalent annual rate is

$$
(1.05)^{2}-1=.1025 .
$$

The 1-year time-weighted return is

$$
i^{T W}=\left(\frac{40}{50}\right)\left(\frac{80}{60}\right)\left(\frac{175}{160}\right)\left(\frac{X}{250}\right)-1=.1025 .
$$

and solving, we obtain $X=236.25$.
29. Time-weighted return:

$$
i^{T W}=0 \quad \text { means } \quad \frac{12}{10} \cdot \frac{X}{12+X}=1 \quad \text { so } \quad X=60 .
$$

Dollar-weighted return:

$$
I=X-X-10=-10
$$

so that

$$
i^{D W}=Y=\frac{-10}{10+(.5)(60)}=-25 \% .
$$

30. (a) Dollar-weighted:

$$
A\left(1+i^{D W}\right)=C \quad \text { and } \quad i^{D W}=\frac{C}{A}-1=\frac{C-A}{A} .
$$

Time-weighted:

$$
1+i^{T W}=\left(\frac{B}{A}\right)\left(\frac{C}{B}\right) \quad \text { and } \quad i^{D W}=\frac{C}{A}-1=\frac{C-A}{A} .
$$

(b) Dollar-weighted:

The interest earned is $I=C-A-D$
and the "exposure" is $A+\frac{1}{2} D$, so $i^{D W}=\frac{C-A-D}{A+\frac{1}{2} D}$.
Time-weighted:

$$
i^{T W}=\left(\frac{B}{A}\right)\left(\frac{C}{B+D}\right)-1
$$

(c) Dollar-weighted:

$$
\text { same as part (b), so } i^{D W}=\frac{C-A-D}{A+\frac{1}{2} D}
$$

Time-weighted:

$$
i^{T W}=\left(\frac{B-D}{A}\right)\left(\frac{C}{B}\right)-1
$$

(d) Dollar-weighted calculations do not involve interim fund balances during the period of investment. All that matters are cash flows in or out of the fund and the dates they occur.
(e) Assume $i_{b}^{T W} \leq i_{c}^{T W}$, then

$$
\left(\frac{B}{A}\right)\left(\frac{C}{B+D}\right) \leq\left(\frac{B-D}{A}\right)\left(\frac{C}{B}\right) \text { or } \frac{B}{B+D} \leq \frac{B-D}{B}
$$

which implies that $B^{2} \leq B^{2}-D^{2}$, a contradiction. Therefore we must have $i_{b}^{T W}>i_{c}^{T W}$.
31. We have

$$
\begin{aligned}
& B_{2}=10,000(1.0825)(1.0825)=11,718.06 \\
& B_{6}=10,000(1.0825)(1.0825)(1.0840)(1.0850)(1.0850)(1.0835)=16,202.18
\end{aligned}
$$

so the amount of interest earned is

$$
B_{6}-B_{2}=16,202.18-11,718.06=\$ 4484.12 .
$$

32. Deposit in $z+3(1.090)(1.090)(1.091)(1.091)(1.092)=1.54428$

Deposit in $z+4$
Deposit in $z+5$
Deposit in $z+6$
Deposit in $z+7$

$$
(1.090)(1.091)(1.092)(1.093)=1.41936
$$

$$
(1.0925)(1.0935)(1.095)=1.30814
$$

$$
(1.095)(1.095)=1.19903
$$

$$
1.100=\underline{1.10000}
$$

6.5708 .
33. $P=1000(1.095)(1.095)(1.096)=1314.13$
$Q=1000(1.0835)(1.086)(1.0885)=1280.82$
$R=1000(1.095)(1.10)(1.10)=1324.95$
Thus, $R>P>Q$.
34. Let $i=.01 j$. Interest earned on:

Deposit in z $100(1.1)(1.1)(1+i)(.08)=9.68(1+i)$
Deposit in $z+1 \quad 100(1.12)(1.05)(.10)=11.76$
Deposit in $z+2100(1.08)(i-.02)=108(i-.02)$.
Thus, total interest is

$$
\begin{gathered}
9.68+9.68 i+11.76+108 i-2.16=28.40 \\
117.68 i=9.12 \text { and } i=.0775
\end{gathered}
$$

The answer is $j=100 i=7.75 \%$.
35. The accumulated value is

$$
\begin{aligned}
1000\left(1+i_{1}^{5}\right)\left(1+i_{2}^{5}\right)\left(1+i_{3}^{5}\right) & =1000(1.085)^{1.05}(1.090)^{1.05}(1.095)^{1.05} \\
& =1000(1.31185) .
\end{aligned}
$$

The equivalent level effective rate is

$$
i=(1.31185)^{1 / 3}-1=.0947, \text { or } 9.47 \%
$$

36. (a) $\delta_{s, t}=\frac{\frac{\partial}{\partial t} a(s, t)}{a(s, t)}=\frac{\partial}{\partial t} \ln a(s, t)$.
(b) $a(s, s)=1$ and $a(s, t)=e^{\int_{0}^{t} \delta_{s, r} d r}$.
(c) Using an average portfolio rate

$$
a(s) a(s, t)=a(t) \quad \text { and } \quad a(s, t)=\frac{a(t)}{a(s)} .
$$

(d) $a(0, t)=(1+i)^{t}$.
(e) $a(t, t)=1$, since no interest has yet been earned.
37. The margin is 1000 m and the interest on it is $(.08)(1000 \mathrm{~m})=80 \mathrm{~m}$. The net profit is $200+80 \mathrm{~m}-60=140+80 \mathrm{~m}$ on a deposit of 1000 m . Thus, the yield rate is

$$
\frac{140+80 m}{1000 m}=\frac{7+4 m}{50 m}
$$

38. The margin is $(.08)(50)=40$

Interest on margin $=4$
Dividend on stock $=2$
Profit on short sale $=50-X$
Thus, $.2=\frac{(50-X)+4-2}{40}$ and $X=44$.
39. The margin is $(.40)(25,000)=10,000$

Interest on margin $=(.08)(10,000)=800$
Profit on short sale $=25,000-X$
Thus, $.25=\frac{(25,000-X)+800}{10,000}$ and $X=\$ 23,300$.
40. A's transaction:

The margin is $(.50)(1000)=500$
Interest on margin $=(.60)(500)=30$
Dividend on the stock $=X$
Profit on short sale $=1000-P$
Thus, $.21=\frac{(1000-P)+30-X}{500}$.
B's transaction:

$$
.21=\frac{(1000-P+25)+30-2 X}{500} .
$$

Solving the two equations in two unknowns gives

$$
X=\$ 25 \text { and } P=\$ 900
$$

41. Earlier receipt of dividends. Partial release of margin.
42. The yield rate in Exercise 2 is between 9% and 10% and thus less than the interest preference rate of 12%. Thus, the investment should be rejected.
43. The yield rate of the financing arrangement can be determined from the equation of value

$$
\begin{gathered}
5000=2400+1500 v+1500 v^{2} \\
\text { or } 1.5 v+1.5 v-2.6=0 .
\end{gathered}
$$

Solving the quadratic, we have

$$
v=\frac{-1.5 \pm \sqrt{(1.5)^{2}(-4)(1.5)(-2.6)}}{(2)(1.5)}=.90831
$$

rejecting the negative root. Thus, $i=.10095$. Since the buyer would be financing at a rate higher than the interest preference rate of 10%, the buyer should pay cash.
44. (a) In Example 7.4 we have

$$
\begin{aligned}
P(i) & =-100+200 v-101 v^{2}=0 \\
\text { or } P(i) & =100(1+i)^{2}-200(1+i)+101 \\
& =1+100 i^{2}=0
\end{aligned}
$$

The graph has a minimum at $(0,1)$ and is an upward quadratic in either direction.
(b) There are no real roots, since the graph does not cross the x-axis.
45. Option (i):

$$
800(1+i)=900 \quad i=\frac{900}{800}-1=.125
$$

Option (ii):

$$
1000(1+i)=1125 \quad i=\frac{1125}{1000}-1=.125
$$

Thus they are equivalent, but both should be rejected. They both exceed the borrower's interest preference rate of 10%.
46. We have

$$
P(i)=-100+230(1+i)^{-1}-132(1+i)^{-2}
$$

and

$$
P^{\prime}(i)=-230(1+i)^{-2}+264(1+i)^{-3}=0
$$

so that

$$
(1+i)^{-1}=\frac{230}{264} \quad i=\frac{264}{230}-1=.1478, \text { or } 14.78 \% .
$$

47. The following is an Excel spreadsheet for this Exercise.

Year	Contributions	Returns	PV Factors	PV Contributions	PV Returns
0	10,000	0	1.0000000	$10,000.00$	0.00
1	5,000	0	0.9090909	$4,545.45$	0.00
2	1,000	0	0.8264463	826.45	0.00
3	1,000	0	0.7513148	751.31	0.00
4	1,000	0	0.6830135	683.01	0.00
5	1,000	0	0.6209213	620.92	0.00
6	1,000	8,000	0.5644739	564.47	$4,515.79$
7	1,000	9,000	0.5131581	513.16	$4,618.42$
8	1,000	10,000	0.4665074	466.51	$4,665.07$
9	1,000	11,000	0.4240976	424.10	$4,665.07$
10		12,000	0.3855433	0.00	$4,626.52$
	23,000	50,000		$19,395.39$	$23,090.88$
				PI $=$	1.191

48. We have

$$
\begin{aligned}
100+132(1.08)^{-2} & =230(1+i)^{-1} \\
213.16872 & =230(1+i)^{-1}
\end{aligned}
$$

so that

$$
1+i=\frac{230}{213.16872}=1.0790 .
$$

Thus, the $\operatorname{MIRR}=7.90 \%$, which is less than the required return rate of 8%. The project should be rejected.
49. The investor is in lender status during the first year, so use $r=.15$. Then $B_{1}=100(1.15)-230=-115$. The investor is now in borrower status during the second year, so use f. Then $B_{2}=0=-115(1+f)+132$ and $f=\frac{132}{115}-1=.1478$, or 14.78%.
50. We compute successive balances as follows:

$$
\begin{aligned}
& B_{0}=1000 \\
& B_{1}=1000(1.15)+2000=3150 \\
& B_{2}=3150(1.15)-4000=-377.50 \\
& B_{3}=-377.50(1.1)+3000=2584.75 \\
& B_{4}=2584.75(1.15)-4000=-1027.54 \\
& B_{5}=-1027.54(1.1)+5000=\$ 3870 \text { to the nearest dollar. }
\end{aligned}
$$

51. The price of the bond is

$$
1000(1.03)^{-20}+40 a_{20.03}=1148.77
$$

Thus, the loan and interest paid is

$$
1148.77(1.05)^{10}=1871.23
$$

The accumulated bond payments are

$$
1000+40 s_{\overline{20.02}} 1971.89
$$

Thus, the net gain is $1971.89-1871.23=\$ 100.66$.
52. A withdrawal of $W=1000$ would exactly exhaust the fund at $i=.03$. We now proceed recursively:

$$
\begin{aligned}
F_{0} & =1000 a_{\overline{10.03}} \\
F_{1} & =F_{0}(1.04)=1000 \ddot{a}_{\overline{10.03}}(1.04) \\
W_{1} & =\frac{1000 a_{\overline{10.03}}(1.04)}{\ddot{a}_{\overline{10.03}}}=\frac{1000(1.04)}{1.03} \\
F_{1}-W_{1} & =1000(1.04)\left[a_{\overline{10.03}}-v_{.03}\right]=\frac{1000(1.04) a_{9 . .03}}{1.03} \\
F_{2} & =\frac{1000(1.04)^{2} a_{\overline{9} .03}}{1.03} \\
W_{2} & =\frac{1000(1.04)^{2} a_{\text {9. } .03}}{1.03 \ddot{a}_{9.03}}=\frac{1000(1.04)^{2}}{(1.03)^{2}}
\end{aligned}
$$

Continuing this recursive process 8 more times and reflecting the interest rate change at time $t=4$, we arrive at

$$
W_{10}=\frac{1000(1.04)^{4}(1.05)^{6}}{(1.03)^{10}}=\$ 1167 \text { to the nearest dollar. }
$$

53. We are given:

$$
A=273,000 \quad B=372,000 \quad I=18,000
$$

so that

$$
C=B-A-I=81,000 .
$$

Using the simple interest approximation $273,000(1.06)+81,000(1+.06 t)=372,000$ which can be solved to give $t=1 / 3$. Thus, the average date for contributions and withdrawals is September 1, i.e. the date with four months left in the year.
54. The accumulation factor for a deposit made at time t evaluated at time n, where $0 \leq t \leq n$, is

$$
\begin{aligned}
e^{\int_{t}^{n} \delta_{r} d r} & =e^{\int_{t}^{n} \frac{d r}{1+r}}=e^{\ln (1+n)-\ln (1+t)} \\
& =\frac{1+n}{1+t}
\end{aligned}
$$

Then, the accumulated value of all deposits becomes

$$
1 \cdot\left(\frac{1+n}{1+0}\right) \int_{0}^{n}(1+t)\left(\frac{1+n}{1+t}\right) d t=(1+n)+n(1+n)=(n+1)^{2} .
$$

