Chapter 8

1. Let X be the total cost. The equation of value is

$$
X=\left(\frac{X}{10}\right) \ddot{a}_{\overline{12} \mid j} \text { where } j \text { is the monthly rate of interest or } \ddot{a}_{\overline{12} \mid j}=10
$$

The unknown rate j can be found on a financial calculator as 3.503%. The effective rate of interest i is then

$$
i=(1+j)^{12}-1=(1.03503)^{12}-1=.512, \text { or } 51.2 \%
$$

2. Per dollar of loan we have

$$
L=1 \quad K=.12 \quad n=18 \quad R=1.12 / 18
$$

and the equation of value

$$
\frac{1.12}{18} a_{18 \bar{j}}=1 \quad \text { or } \quad a_{18 \bar{j}}=16.07143
$$

The unknown rate j can be found on a financial calculator as .01221 . The APR is then

$$
\mathrm{APR}=12 j=(12)(.01221)=.1465, \text { or } 14.65 \%
$$

3. The equation of value is

$$
7.66 a_{16 j}=100 \quad \text { or } \quad a_{\overline{16}}=13.05483
$$

The unknown rate j can be found on a financial calculator as .025 . The APY is then

$$
\mathrm{APY}=(1+j)^{12}-1=(1.025)^{12}-1=.3449, \text { or } 34.49 \%
$$

4. (a) Amount of interest $=$ Total payments - Loan amount

Option A: $13(1000)-12,000=1,000.00$.
Option B: $12 \cdot\left(\frac{12,000}{a_{12.01}}\right)-12,000=794.28$.
Difference in the amount of interest $=1,000.00-794.28=\$ 205.72$.
(b) The equation of value is

$$
12,000-1000=1000 a_{\overline{12} j_{j}} \quad \text { or } \quad a_{\overline{12}]_{j}}=11
$$

Using a financial calculator $j=.013647$ and $\mathrm{APR}=12 j=.1638$, or 16.38%.
(c) $\mathrm{APR}=12(.01)=12.00 \%$, since the amortization rate directly gives the APR in the absence of any other fees or charges.
5. Bank 1: $X=\frac{L+(2)(.065) L}{24}=.04708 L$.

Bank 2: We have $j=(1.126)^{1 / 12}-1=.00994$ so that $Y=\frac{L}{a_{\overline{24 / j}}}=.04704 L$.
Bank 3: We have $j=.01$ and $Z=\frac{L}{a_{\overline{24 j}}}=.04707 L$.
Therefore $Y<Z<X$.
6. (a) The United States Rule involves irregular compounding in this situation. We have

$$
\begin{aligned}
B_{3} & =8000-[2000-(8000)(.03)]=6240 \\
B_{9} & =6240-[4000-(6240)(.06)]=2614.40 \\
X=B_{12} & =2614.40(1.03)=\$ 2692.83
\end{aligned}
$$

(b) The Merchant's Rule involves simple interest throughout. We have

$$
\begin{aligned}
X & =8000(1.12)-2000(1.09)-4000(1.03) \\
& =\$ 2660.00 .
\end{aligned}
$$

7. (a) The interest due at time $t=1$ is $10,000(.1)=1000$. Since only 500 is paid, the other 500 is capitalized. Thus, the amount needed to repay the loan at time $t=2$ is $10,500(1.1)=\$ 11,550$.
(b) Under the United States Rule, the interest is still owed, but is not capitalized. Thus, at time $t=2$ the borrower owes 500 carryover from year 1,1000 in interest in year 2 , and the loan repayment of 10,000 for a total of $\$ 11,500$.
8. (a) The equation of value is

$$
\begin{array}{r}
200(1+i)^{2}-1000(1+i)+1000=0 \\
(1+i)^{2}-5(1+i)+5=0
\end{array}
$$

Now solving the quadratic we obtain

$$
\begin{aligned}
1+i & =\frac{5 \pm \sqrt{(-5)^{2}-(4)(1)(5)}}{(2)(1)}=\frac{5 \pm \sqrt{5}}{2} \\
& =1.382 \text { and } 2.618
\end{aligned}
$$

so that $i=.382$ and 2.618 , or 38.2% and 261.8%.
(b) The method of equated time on the payments is

$$
\bar{t}=\frac{(200)(0)+(1000)(2)}{1200}=\frac{5}{3} .
$$

This method then uses a loan of 1000 made at time $t=1$ repaid with 1200 at time $t=5 / 3$. The equation of value is $1000(1+j)=1200$ or $j=.20$ for $2 / 3$ of a year. Thus, the $\mathrm{APR}=3 / 2 j=.30$, or 30%.
9. Consider a loan $L=a_{n}$ with level payments to be repaid by n payments of 1 at regular intervals. Instead the loan is repaid by A payments of 1 each at irregular intervals. Thus, $A-a_{n}$ represents the finance charge, i.e. total payments less the amount of loan.

If B is the exact single payment point then $A(1+i)^{-B}$ is the present value of total payments or the amount of the loan. Thus, $A-A(1+i)^{-B}$ is again the finance charge.
$C / 1000$ is the finance charge per 1000 of payment and there are A payments. Thus, $C\left(\frac{A}{1000}\right)$ is the total finance charge.
10. The monthly payments are:

$$
\begin{aligned}
& \text { Option } A=\frac{10,000}{a_{\overline{48.10 / 12}}}=253.626 . \\
& \text { Option } B=\frac{9000}{a_{\overline{48.09 / 12}}}=223.965 .
\end{aligned}
$$

To make the two options equal we have the equation of value

$$
(253.626-223.965) s_{\overline{48.09 / 12}}=1000(1+i)^{4}
$$

and solving for the effective rate i, we obtain $i=.143$, or 14.3%.
11. (a) The monthly payments are

$$
\begin{aligned}
& \text { Option } A=\frac{16,000}{24}=666.67 \\
& \text { Option } B=\frac{15,500}{a_{24.0349 / 12}}=669.57 .
\end{aligned}
$$

Option A has the lower payment and thus is more attractive.
(b) If the down payment is D, then the two payments will be equal if

$$
\frac{16,000-D}{24}=\frac{15,500-D}{a_{24.0349 / 12}}
$$

Therefore,

$$
\begin{aligned}
D & =\frac{(15,500)(24)-16,000 a_{24.0349 / 12}}{24-a_{24.0349 / 12}} \\
& =\$ 1898 \text { to the nearest dollar. }
\end{aligned}
$$

12. The monthly rate of interest equivalent to 5% effective is $j=(1.05)^{1 / 12}-1=.004074$. Thus, the monthly loan payment is

$$
R=\frac{15,000}{a_{\overline{48.004074}}}=344.69 .
$$

The present value of these payments at 12% compounded monthly is

$$
344.69 a_{48.01}=13,089.24 .
$$

Thus, the cost to the dealer of the inducement is

$$
15,000-13,089.24=\$ 1911 \text { to the nearest dollar. }
$$

13. (a) Prospective loan balance for A is

$$
\frac{20,000}{a_{48.07 / 12}} a_{36.07 / 12}=\$ 15,511>\$ 15,000
$$

Prospective loan balance for B is

$$
\frac{20,000}{a_{24.07 / 12}} a_{\overline{12.07 / 12}}=\$ 10,349<\$ 15,000
$$

(b) The present value of the cost is the present value of the payments minus the present value of the equity in the automobile.
Cost to A:

$$
\frac{20,000}{a_{\overline{48.07 / 12}}} a_{\overline{12.005}}-(15,000-15,511)(1.005)^{-12}=(478.92)(11.62)+(511)(.942)
$$

$=\$ 6047$ to the nearest dollar.
Cost to B:

$$
\frac{20,000}{a_{24.07 / 12}} a_{12.005}-(15,000-10,349)(1.005)^{-12}=(895.45)(11.62)-(4651)(.942)
$$

$$
=\$ 6026 \text { to the nearest dollar. }
$$

14. (a) Formula (8.6) is

$$
\begin{aligned}
R & =B_{0} i+\frac{D}{S_{n}} \\
& =(20,000)(.005)+\frac{20,000-13,000}{s_{\text {位.005 }}} \\
& =\$ 375.24 .
\end{aligned}
$$

(b) The equation of value is

$$
\begin{aligned}
20,000-300 & =375.24 a_{\overline{24 j}}+(13,000+200) v_{j}^{24} \\
19,700 & =375.24 a_{\overline{24 j}}+13,200 v_{j}^{24} .
\end{aligned}
$$

Using a financial calculator, we find that $j=.63 \%$ monthly.
(c) The equation of value is

$$
\begin{aligned}
20,000-300 & =375.24 a_{\overline{121 j}}+(16,000+800) v_{j}^{12} \\
19,700 & =375.24 a_{\overline{\overline{2} \mid j}}+16,800 v_{j}^{12}
\end{aligned}
$$

Using a financial calculator, we find that $j=.73 \%$ monthly.
15. We modify the formula in Example 8.4 part (2) to

$$
\begin{aligned}
19,600-341.51 & =341.51 a_{\overline{36 j}}+(10,750+341.51) v_{j}^{36} \\
19,258.49 & =341.51 a_{\overline{36 j}}+11,091.51 v_{j}^{36} .
\end{aligned}
$$

Using a financial calculator, we find that $j=.74 \%$ monthly. The nominal rate of interest convertible monthly is $12 j=8.89 \%$. This compares with the answer of 7.43% in Example 8.4. Thus, the effect of making a security deposit that does not earn interest is significant.
16. (a) The NPV of the "buy" option is

$$
50,000(1.01)^{-72}-\left(400,000+4000 a_{721.01}\right)=24,424.80-604,601.57=-\$ 580,177 .
$$

(b) The NPV of the "lease" option is

$$
-12,000 a_{72.01}=-\$ 613,805
$$

(c) The "buy" option should be chosen since it is the least negative.
17. (a)

Mortgage loan $L=.75(160,000)=120,000$.
Mortgage payment $R=\frac{120,000}{a_{\overline{360.0075}}}=965.55$.
Interest as points $Q=(.015)(120,000)=1800.00$.
September 16 interest $=.09\left(\frac{15}{365}\right)(120,000)=443.84$.
November 1 interest $=(.0075)(120,000)=900.00$.
December 1 interest $=.0075[120,000-(965.55-900.00)]$

$$
=899.51 .
$$

Total interest $\quad=\quad 1800.00+443.84+900.00+899.51$ $=\$ 4043.35$.
(b) Interest as points $Q=(.015)(120,000)=1800.00$
Adjusted loan $L^{*}=120,000-1800=118,200$
APR calculation $a_{\overline{360} j}=\frac{L^{*}}{R}=\frac{118,200}{965.55}=122.41728$.

Use a financial calculator to find $j=.007642, \mathrm{APR}=12 j=12(.007642)=.0917$, or 9.17%.
18. The interest saved by this payment scheme is the interest in each even-numbered payment in the original $12 \times 15=180$ payment amortization schedule. Thus, we have

$$
\begin{aligned}
& 1000\left[\left(1-v^{179}\right)+\left(1-v^{177}\right)+\cdots+(1-v)\right] \\
= & 1000\left[90-\left(v+v^{3}+\cdots+v^{177}+v^{179}\right)\right] \\
= & 90,000-1000 v\left(1+v^{2}+\cdots+v^{176}+v^{178}\right) \\
= & 90,000-1000 v \frac{1-v^{180}}{1-v^{2}} \\
= & 90,000-1000(1+i)\left[\frac{1-v^{180}}{(1+i)^{2}-1}\right] \\
= & 90,000-1000 \frac{\ddot{a}_{\overline{180}}}{s_{2}} .
\end{aligned}
$$

19. At time $t=2$ the accumulated value of the construction loan is

$$
1,000,000(1.075)^{4}+500,000(1.075)^{3}+500,000(1.075)^{2}=2,534,430.08
$$

which becomes the present value of the mortgage payments. Thus, we have the equation of value

$$
\begin{aligned}
& 2,534,430.08=P \ddot{a}_{\overline{60.01}}+2 P \ddot{a}_{\overline{300.01}}(1.01)^{-60} \\
& \text { and } P=\frac{2,534,430.08}{\ddot{a}_{\overline{60.01}}+2(1.01)^{-60} \ddot{a}_{\overline{300.01}}}=\$ 16,787
\end{aligned}
$$

to the nearest dollar. The $12^{\text {th }}$ mortgage payment is equal to P, since it is before the payment doubles. Also, note the annuity-due, since the first mortgage payment is due exactly two years after the initial construction loan disbursement.
20. The loan origination fee is $.02(100,000)=2000$.

The mortgage payment is $R=\frac{100,000}{a_{\overline{30.08}}}=8882.74$.
Loan balance at $t=1: B_{1}=100,000(1.08)-8882.74=99,117.26$.
Loan balance at $t=2$: before any payments $B_{2}^{\prime}=99,117.26(1.08)=107,046.64$.
Adjusted loan $L^{*}=100,000-2000=98,000$.
Thus, the equation of value becomes

$$
98,000=8882.74 v+107,046.64 v^{2}
$$

and solving the quadratic

$$
v=\frac{-8882.74 \pm \sqrt{(8882.74)^{2}-(4)(107,046.64)(-98,000)}}{2(107,046.64)}
$$

$$
=.91622 \text { rejecting the negative root. }
$$

Finally, $i=\frac{1}{v}-1=.0914$, or 9.14%.
21. There are $10 \times 4=40$ payments on this loan. The quarterly interest rates are $j_{1}=\frac{.12}{4}=.03$ and $\frac{j_{2}}{4}=.035$. The loan balance $B_{12}=1000 a_{28.03}=18,764.12$. The loan balance after 12 more payments is

$$
\begin{aligned}
B_{24} & =(18,764.12)(1.035)^{12}-1000 s_{\overline{12} .035} \\
& =\$ 13,752 \text { to the nearest dollar. }
\end{aligned}
$$

22. (a) The equation of value is

$$
\begin{aligned}
100,000= & R\left[v+1.05 v^{2}+(1.05)^{2} v^{3}+(1.05)^{3} v^{4}+(1.05)^{4} v^{5}\right. \\
& \left.+(1.05)^{4} v^{6}+(1.05)^{4} v^{7}+\cdots+(1.05)^{4} v^{30}\right] \\
= & \frac{R}{1.09}\left[1+\frac{1.05}{1.09}+\left(\frac{1.05}{1.09}\right)^{2}+\left(\frac{1.05}{1.09}\right)^{3}+\left(\frac{1.05}{1.09}\right)^{4}\left(1+v+\cdots+v^{25}\right)\right]
\end{aligned}
$$

and $R=\frac{100,000(1.09)}{\frac{1-\left(\frac{1.05}{1.09}\right)^{5}}{1-\left(\frac{1.05}{1.09}\right)}+\left(\frac{1.05}{1.09}\right)^{4} a_{25.09}}=\$ 8318$ to the nearest dollar.
(b) $I_{1}=(.09)(100,000)=9000$ and
$R_{1}=\$ 8318 ;$ so, yes, negative amortization does occur.
23. The payment on the assumed mortgage is

$$
R_{1}=\frac{60,000}{a_{30.08}}=5329.64
$$

The loan balance $B_{10}=5329.64 a_{20.08}=52,327.23$. The amount of the "wraparound" mortgage is $(.85)(120,000)-52,327.23=49,672.77$. The payment on the "wraparound" mortgage is $R_{2}=\frac{49,672.77}{a_{20.10}}=5834.54$. The total payment required is $R_{1}+R_{2}=\$ 11,164$ to the nearest dollar.
24. The equity in the house will be

$$
100,000(1.06)^{5}-500 s_{\overline{60.01}}=133,882.56-40,834.83=\$ 92,988
$$

to the nearest dollar.
25. The monthly payment is $\frac{1200+108}{12}=109$.
(a) All the early payments are principal, so

$$
B_{4}=1200-4(109)=\$ 764 .
$$

(b) All interest is paid from the first payment, so

$$
B_{4}=1200-(109-108)-3(109)=\$ 872 .
$$

(c) The ratio 1200/1308 of each payment is principal, so

$$
B_{4}=1200-4\left(\frac{1200}{1308}\right)(109)=\$ 800 .
$$

(d) The interest in the first four payments is

$$
\begin{aligned}
& \left(\frac{12+11+10+9}{78}\right)(108)=58.15, \text { so } \\
& B_{4}=1200-4(109)+58.15=\$ 822.15 .
\end{aligned}
$$

26. Under the direct ratio method

$$
I_{2}=K \frac{8}{S_{9}}=20 \quad \text { and } \quad I_{8}=K \cdot \frac{2}{S_{9}}
$$

Therefore $I_{8}=\frac{2}{8}(20)=\$ 5$.
27. The total payments are $6(50)+6(75)=750$. Now, $K=750-690=60$, so that $60 / 750=.08$ of each payment is interest and .92 is principal. Therefore, principal payments are 46 for the first six months and 69 for the last 6 months. The 12 successive loan balances are:

$$
690,644,598,552,506,460,414,345,276,207,138,69
$$

which sum to 4899 . We then have

$$
i^{c r}=\frac{(12)(60)}{4899}=.147, \text { or } 14.7 \% .
$$

28. We are given:

$$
i^{\max }=\frac{2 m K}{L(n+1)-K(n-1)}=.20 \quad \text { and } \quad i^{\min }=\frac{2 m K}{L(n+1)+K(n-1)}=.125 .
$$

Taking reciprocals

$$
\frac{L(n+1)}{2 m K}-\frac{K(n-1)}{2 m K}=5 \quad \text { and } \quad \frac{L(n+1)}{2 m K}+\frac{K(n-1)}{2 m K}=8 .
$$

We have two equations in two unknowns which can be solved to give

$$
\frac{L(n+1)}{2 m K}=6.5 \quad \text { and } \quad \frac{K(n-1)}{2 m K}=1.5 .
$$

Now taking the reciprocal of formula (8.19)

$$
\frac{1}{i^{d r}}=\frac{L(n+1)+\frac{1}{3} K(n-1)}{2 m K}=6.5+\frac{1}{3}(1.5)=7
$$

so that $i^{d r}=\frac{1}{7}=.143$, or 14.3%.
29. For annual installments R, we have $m=1$ and $n=5$. The finance charge is $K=5 R-L$. We then have

$$
B_{2}^{d r}=3 P-\frac{6}{15}(5 R-L)=R+\frac{6}{15} L .
$$

For the amortized loan, we have

$$
B_{2}^{P}=R a_{3.05}=2.72317 R .
$$

Equating the two we have

$$
\frac{6}{15} L=1.72317 R \quad \text { or } \quad L=4.30793 R
$$

However, since $L=R a_{5 \mid i}$, we have $a_{5 \mid i}=4.31$.
30. We have

$$
\begin{aligned}
& I_{1}=\frac{i}{m} \cdot L \\
& I_{2}=\frac{i}{m}\left[L-\frac{L+K}{n}\right] \\
& \vdots \\
& I_{n}=\frac{i}{m}\left[1-(n-1)\left(\frac{L+K}{n}\right)\right] .
\end{aligned}
$$

However, these interest payments do not earn additional interest under simple interest. The finance charge is the sum of these interest payments

$$
K=\sum_{t-0}^{n-1} \frac{i}{m}\left[1-t \cdot \frac{L+K}{n}\right]=\frac{i}{m}\left[L n-\frac{L+K}{n} \cdot \frac{n(n-1)}{2}\right]
$$

which can be solved to give formula (8.14)

$$
i^{\max }=\frac{2 m K}{L(n+1)-K(n-1)} .
$$

31. The reciprocal of the harmonic mean is the arithmetic mean of the two values given. In symbols,

$$
\begin{aligned}
\frac{1}{2}\left[\frac{1}{i^{\max }}+\frac{1}{i^{\min }}\right] & =\frac{1}{2}\left[\frac{L(n+1)-K(n-1)}{2 m K}+\frac{L(n+1)+K(n-1)}{2 m K}\right] \\
& =\frac{1}{2}\left[\frac{2 L(n+1)}{2 m K}\right]=\frac{L(n+1)}{2 m K}=\frac{1}{i^{c r}} .
\end{aligned}
$$

32. (a) The outstanding loan balances are

$$
L, L-\left(\frac{L+K}{n}\right), L-2\left(\frac{L+K}{n}\right), \ldots, L-(n-r)\left(\frac{L+K}{n}\right)
$$

after $n-r$ payments have been made. Since r payments are enough to pay K, then $B_{n-r+1}=0$. The denominator of formula (8.13) then becomes

$$
(n-r+1) L-\left(\frac{L+K}{n}\right)\left[\frac{(n-r)(n-r+1)}{2}\right]
$$

Finally, applying formula (8.13) and multiplying numerator and denominator by $2 n$, we obtain

$$
i^{\max }=\frac{2 m n K}{2 n(n-r+1) L-(n-r)(n-r+1)(L+K)}
$$

(b) The first $r-1$ payments are all interest, so that the outstanding balances are all equal to L followed by

$$
(n-r)\left(\frac{L+K}{n}\right),(n-r+1)\left(\frac{L+K}{n}\right), \ldots, \frac{L+K}{n} .
$$

Again applying formula (8.13)

$$
i=\frac{m K}{r L+r\left(\frac{L+K}{n}\right)\left[\frac{(n-r)(n-r+1)}{2}\right]}=\frac{2 m n K}{2 n r L+(n-r)(n-r+1)(L+K)} .
$$

33. (a) (1) $D_{3}=\frac{A}{s_{10}}(1+j)^{2}$ and $D_{9}=\frac{A}{s_{10}}(1+j)^{8}$

Therefore, $D_{9}=D_{3}(1+j)^{6}=(1000)(1.05)^{6}=\$ 1340.10$.
(2) $D_{9}=D_{3}=\$ 1000.00$.
(3) $D_{3}=\frac{8 A}{S_{10}}$ and $D_{9}=\frac{2 A}{S_{10}}$.

Therefore, $D_{9}=\frac{1}{3} D_{3}=\frac{1}{4}(1000)=\$ 250.00$.
(b) (1) $D_{3}=\frac{A}{s_{\overline{10}}}(1.05)^{2}=1000$, so that $A=1000 s_{\overline{10 \mid}} v^{2}=\$ 11,408.50$.
(2) $D_{3}=\frac{A}{10}=1000$, so that $A=\$ 10,000.00$
(3) $D_{3}=\frac{8 A}{S_{10}}=\frac{8 A}{\frac{1}{2}(10)(11)}=1000$, so that $A=\frac{(1000)(10)(11)}{(2)(8)}=\$ 6875.00$.
34. The present value of the depreciation charges is

$$
\sum_{t=1}^{10} \frac{2000-400}{s_{\overline{10} i}}(1+i)^{t-1} v_{i}^{t}=\sum_{t=1}^{10} \frac{1600}{s_{\overline{10} i}(1+i)}=\frac{16,000}{\ddot{s}_{\overline{\overline{10} i}}}=1000, \text { or } \ddot{s}_{\overline{10} i}=16 .
$$

Using a financial calculator, we obtain $i=.0839$, or 8.39%.
35. We have the following:
(i) $D=\frac{X-Y}{n}=1000$ or $X-Y=1000 n$.
(ii) $D_{3}=\frac{n-3+1}{S_{n}}(X-Y)=\frac{n-2}{\frac{1}{2} n(n+1)}(X-Y)=800$ or $(n-2)(X-Y)=400 n(n+1)$.
Now substituting (i) into (ii), we have

$$
\begin{aligned}
1000 n(n-2) & =400 n(n+1) \\
1000 n-2000 & =400 n+400 \\
600 n & =2400 \text { or } n=4 .
\end{aligned}
$$

Therefore, $X-Y=4000$.
(iii) $d=1-\left(\frac{Y}{X}\right)^{.25}=.33125$ or $\left(\frac{Y}{X}\right)^{.25}=.66875$

$$
\frac{Y}{X}=(.66875)^{4}=.2 \quad Y=.2 X
$$

Therefore, $X-.2 X=4000$, and $X=\$ 5000$.
36. Under the constant percentage method

$$
\begin{array}{cl}
D_{1}=.2 B_{0}=.2(20,000) & =4000 \\
D_{2}=.2 B_{1}=.2(16,000) & =4000(.8) \\
D_{3}=.2 B_{2}=.2(12,800) & =4000(.8)^{2} \\
\vdots & \\
\vdots \\
D_{15} & =4000(.8)^{14}
\end{array}
$$

The depreciation charges constitute an annuity whose payments vary in geometric progression. The accumulated value is

$$
\begin{aligned}
& 4000\left[(1.06)^{14}+(.8)(1.06)^{13}+\cdots+(.8)^{13}(1.06)+(.8)^{14}\right] \\
& =4000 \frac{\left[\frac{(1.06)^{15}}{8}-(.8)^{14}\right]}{\frac{1.06}{.8}-1}=\$ 36,329 \text { to the nearest dollar. }
\end{aligned}
$$

37. Under the sum of the years digits method

$$
(5000-S) \frac{10+9+8+7}{55}=5000-2218=2782
$$

and solving $S=5000$. The level depreciation charge over the next six years will be

$$
\frac{2218-500}{6}=\$ 286.33 .
$$

38. Machine I: $B_{18}=S+\frac{S_{2}}{S_{20}}(A-S)=5000+\frac{3}{210}(35,000)=5500$.

Machine II: $B_{18}=A-\frac{A-S}{S_{20}} S_{\overline{18}}=5346.59+.86633 S$.
Equating the two and solving for S gives

$$
S=\frac{5500-5346.59}{.86633}=\$ 177 \text { to the nearest dollar. }
$$

39. Under the compound interest method

$$
B_{10}=A-\left(\frac{A-S}{S_{151}}\right) s_{10}=15,000-\left(\frac{13,000}{21.5786}\right)(12.5778)=7422.52 .
$$

Continuing thereafter on the straight-line method gives

$$
B_{12}=7422.52-\frac{2}{5}(7442.52-2000)=\$ 5253 \text { to the nearest dollar. }
$$

40. Machine A: $D=\frac{2450-1050}{14}=100$ and the present value of these depreciation charges is

$$
100 a_{14.10}=736.67
$$

Machine B: $S_{14}=\frac{1}{2}(14)(15)=105$.
The pattern of depreciation charges is

$$
\frac{14}{105}(Y-1050), \frac{13}{105}(Y-1050), \ldots, \frac{1}{105}(Y-1050)
$$

The present value of these depreciation charges is

$$
\frac{Y-1050}{105}\left(14 v^{14}+13 v^{13}+\cdots+v^{14}\right)=\frac{Y-1050}{105}(D a)_{144} .
$$

Now evaluating $(D a)_{141}=\frac{14-a_{14.1}}{.1}=66.3331$
we obtain

$$
\frac{(Y-1050)(66.3331)}{105}=736.67
$$

and solving $Y=\$ 2216$ to the nearest dollar.
41. We have

$$
\begin{gathered}
\frac{d}{d t}\left(B_{t}^{S L}-B_{t}^{C P}\right)=\frac{d}{d t}\left[\left\{A-\frac{t}{n}(A-S)\right\}-A(1-d)^{t}\right] \\
=\frac{-A-S}{n}-A(1-d)^{t} \ln (1-d)=0
\end{gathered}
$$

Now $A(1-d)^{n}=S$, so that $1-d=(S / A)^{1 / n}$. Substituting for $1-d$, we obtain

$$
\frac{A-S}{n}=-A\left[(S / A)^{1 / 7}\right]^{t} \ln \left[(S / A)^{1 / /}\right] .
$$

After several steps of algebraic manipulation we find that

$$
t=n \frac{\ln (1-S / A)-\ln [-\ln (S / A)]}{n \ln (S / A)} .
$$

42. (a) $H=10,000(.05)+\frac{9000}{s_{\overline{10.05}}}+500=\$ 1715.55$.
(b) $K=\frac{1715.55}{.05}=\$ 34,311$ to the nearest dollar.
43. Equating periodic charges, we have

$$
1000 i+\frac{950}{s_{9}}=1100 i+\frac{900}{s_{9}} .
$$

This simplifies to

$$
\begin{array}{ll}
\frac{50}{s_{9}}=100 i & \text { or } \\
(1+i)^{9}=1.5 & \text { and }
\end{array} \quad i=(1.5)^{1 / 9}-1=.0461, \text { or } 4.61 \%\left[(1+i)^{9}-1\right] .
$$

44. Plastic trays:

To cover 48 years, six purchases will be necessary at the prices:

$$
20,20(1.05)^{8}, 20(1.05)^{16}, 20(1.05)^{24}, 20(1.05)^{32}, 20(1.05)^{40}
$$

The present value of these purchases is

$$
\begin{aligned}
& 20\left[1+\left(\frac{1.05}{1.1025}\right)^{8}+\left(\frac{1.05}{1.1025}\right)^{16}+\cdots+\left(\frac{1.05}{1.1025}\right)^{40}\right] \\
= & 20\left[1+(1.05)^{-8}+(1.05)^{-16}+\cdots+(1.05)^{-40}\right] \\
= & 20 \frac{1-v^{48}}{1-v^{8}}=55.939 .
\end{aligned}
$$

Metal trays:
Two purchases will be necessary at the prices: $X, X(1.05)^{24}$. The present value of these purchases is

$$
X \frac{1-v^{48}}{1-v^{24}}=1.3101 X
$$

Therefore, $1.3101 X=55.939$ or $X=\$ 42.70$.
45. Without preservatives the periodic charge for the first 14 years is

$$
H=100 i+\frac{100}{s_{14}}=\frac{100}{a_{14}} .
$$

For the next 14 years it is $H(1.02)^{14}$, continuing indefinitely. Thus, the capitalized cost is

$$
\begin{aligned}
K & =H a_{\overline{14}}+H(1.02)^{14} v^{14} a_{14}+\cdots \\
& =H a_{\overline{14}}\left[1+\left(\frac{1.02}{1.04}\right)^{14}+\cdots\right]=100\left[\frac{1}{1-\left(\frac{1.02}{1.04}\right)^{14}}\right]=420.108 .
\end{aligned}
$$

With preservatives we replace 100 with $100+X$ and 14 with 22 to obtain

$$
K=(100+X)\left[\frac{1}{1-\left(\frac{1.02}{1.04}\right)^{22}}\right]=2.87633(100+X) .
$$

Equating and solving for X we obtain

$$
X=\frac{420.108}{2.87633}-100=\$ 46.06
$$

46. We can equate periodic charges to obtain

$$
\begin{aligned}
& 1000(.035)+\frac{950}{s_{\overline{10.035}}}=(1000+X)(.035)+\frac{950+X}{s_{\overline{151.035}}} \\
& \frac{950}{s_{\overline{10} 0.035}}=X(.035)+\frac{950+X}{s_{\overline{15} .035}} \\
& 80.9793=.035 X+49.2338+.05183 X \\
& \text { and } X=\frac{31.7455}{.08683}=\$ 365.63 .
\end{aligned}
$$

47. Machine 1:

For the first 20 years periodic charges are

$$
\begin{gathered}
H_{1}=100,000 i+\frac{100,000}{s_{\overline{20}}}+3000(1.04)^{t-1}=\frac{100,000}{a_{\overline{20}}}+3000(1.04)^{t-1} \\
\text { for } t=1,2, \ldots, 20 .
\end{gathered}
$$

The present value is

$$
100,000+3000\left[1+\left(\frac{1.04}{1.08}\right)+\left(\frac{1.04}{1.08}\right)^{2}+\cdots+\left(\frac{1.04}{1.08}\right)^{19}\right]=142,921.73
$$

For the next 20 years it is $H(1.04)^{20}$ continuing indefinitely. Thus, the capitalized cost is

$$
142,921.73\left[1+\left(\frac{1.04}{1.08}\right)^{20}+\left(\frac{1.04}{1.08}\right)^{40}+\cdots\right]=269,715.55
$$

Machine 2:

$$
H_{2}=\frac{A}{a_{15}}+10,000(1.04)^{t-1} \text { for } t=1,2, \ldots, 15
$$

The present value is

$$
X+10,000\left[1+\left(\frac{1.04}{1.08}\right)+\cdots+\left(\frac{1.04}{1.08}\right)^{14}\right]=116,712.08+X
$$

The capitalized cost is
$(116,712.08+A)\left[1+\left(\frac{1.04}{1.08}\right)^{15}+\left(\frac{1.04}{1.08}\right)^{30}+\cdots\right]=(2.31339)(116,712.08+A)$.
Since Machine 2 produces output twice as fast as Machine 1, we must divide by 2 before equating to Machine 1. Finally, putting it all together we obtain

$$
A=\frac{2(269,715.55)}{2.31339}-116,712.08=\$ 116,500 \text { to the nearest } \$ 100
$$

48. The sinking fund deposit is

$$
D=\frac{A-S}{s_{\eta_{j}}}
$$

From (i), (ii), and (iii) we obtain

$$
B_{6}=A-D s_{6.09} \quad \text { or } \quad 55,216.36=A-7.52334 D .
$$

From (ii), (v), and (vi) we obtain

$$
\begin{gathered}
H=A i+\frac{A-S}{S_{\vec{n}_{j}}}+M \text { or } \\
11,749.22=.09 A+D+3000 .
\end{gathered}
$$

Thus, we have two equations in two unknowns which can be solved to give

$$
D=2253.74 \text { and } A=\$ 72,172
$$

