Chapter 9

1. A: A direct application of formula (9.7) for an investment of X gives

$$
A=X \frac{(1.08)^{10}}{(1.05)^{10}}=X\left(\frac{1.08}{1.05}\right)^{10}=1.32539 X
$$

B: A direct application of formula (9.3a) for the same investment of X gives

$$
1+i^{\prime}=\frac{1.08}{1.05}=1.028571
$$

and the accumulated value is

$$
B=X(1.028571)^{10}=1.32539 X
$$

The ratio $A / B=1.00$.
2. Proceeding similarly to Exercise 1 above:

$$
\begin{aligned}
& A=\frac{\ddot{s}_{\overline{10.08}}}{(1.05)^{10}}=9.60496 . \\
& B=\ddot{s}_{\overline{10.028571}}=11.71402
\end{aligned}
$$

The ratio $A / B=.82$.
3. Again applying formula (9.7) per dollar of investment

$$
\frac{(1.07)^{5}}{(1.10)^{5}}=.87087
$$

so that the loss of purchasing power over the five-year period is

$$
1-.87087=.129, \text { or } 12.9 \% \text {. }
$$

4. The question is asking for the summation of the "real" payments, which is

$$
\begin{aligned}
& 18,000\left[\frac{1}{1.032}+\frac{1}{(1.032)^{2}}+\cdots+\frac{1}{(1.032)^{15}}\right] \\
& =18,000 a_{15.032}=\$ 211,807 \text { to the nearest dollar. }
\end{aligned}
$$

5. The last annuity payment is made at time $t=18$ and the nominal rate of interest is a level 6.3% over the entire period. The "real" rate over the last 12 years is

$$
i^{\prime}=\frac{i-r}{1+r}=\frac{.063-.012}{1+.012}=.0504
$$

Thus, the answer is

$$
\begin{aligned}
X & =50(1.063)^{-6} a_{12.0504} \\
& =(50)(.693107)(8.84329)=\$ 306 \text { to the nearest dollar. }
\end{aligned}
$$

6. The profitability index (PI) is computed using nominal rates of interest. From formula (9.3a)

$$
1.04=\frac{1+i}{1.035} \quad \text { and } \quad i=(1.04)(1.035)-1=.0764
$$

The profitability index is defined in formula (7.20)

$$
\mathrm{PI}=\frac{\mathrm{NPV}}{\mathrm{I}}=\frac{2000 a_{8.0764}}{10,000}=1.17
$$

7. (a) Coupon $1=10,000(1.04)(.05)=\$ 520$.

Coupon $2=10,000(1.04)(1.05)(.05)=\$ 546$.
Maturity value $=10,000(1.04)(1.05)=\$ 10,920$.
(b) Nominal yield: The equation of value is

$$
-10,500+520(1+i)^{-1}+(546+10,920)(1+i)^{-2}=0
$$

and solving the quadratic we obtain .0700 , or 7.00%.
Real yield: The equation of value is

$$
-10,500+500(1+i)^{-1}+(500+10,000)(1+i)^{-2}=0
$$

and solving the quadratic we obtain .0241 , or 2.41%.
8. Bond A: Use a financial calculator and set

$$
\mathrm{N}=5 \quad \mathrm{PV}=-950 \quad \mathrm{PMT}=40 \quad \mathrm{FV}=1000 \quad \text { and } \quad \mathrm{CPT} \mathrm{I}=5.16 \%
$$

Bond B: The coupons will constitute a geometric progression, so

$$
\begin{aligned}
P & =40\left[\left(\frac{1.05}{1.0516}\right)+\left(\frac{1.05}{1.0516}\right)^{2}+\cdots+\left(\frac{1.05}{1.0516}\right)^{5}\right]+1000(1.05)^{5}(1.0516)^{-5} \\
& =40(1.05) \frac{1-\left(\frac{1.05}{1.0516}\right)^{5}}{.0516-.05}+992.416=\$ 1191.50
\end{aligned}
$$

9. (a) The final salary in the $25^{\text {th }}$ year will have had 24 increases, so that we have

$$
10,000(1.04)^{24}=\$ 25,633 \text { to the nearest dollar. }
$$

(b) The final five-year average salary is

$$
\frac{10,000}{5}\left[(1.04)^{20}+(1.04)^{21}+\cdots+(1.04)^{24}\right]=\$ 23,736 \text { to the nearest dollar. }
$$

(c) The career average salary is

$$
\frac{10,000}{25}\left[1+(1.04)+(1.04)^{2}+\cdots+(1.04)^{24}\right]=\$ 16,658 \text { to the nearest dollar. }
$$

10. The annual mortgage payment under option A is

$$
R_{A}=\frac{240,000-40,000}{a_{10.10}}=32,549.08
$$

The annual mortgage payment under option B is

$$
R_{B}=\frac{240,000-40,000}{a_{\overline{10.08}}}=29,805.90 .
$$

The value of the building in 10 years is

$$
240,000(1.03)^{10}=322,539.93
$$

Thus, the shared appreciation mortgage will result in a profit to Lender B

$$
.50(322,539.93-240,000)=41,269.97
$$

(a) The present value of payments under Option A is

$$
P V_{A}=40,000+32,549.08 a_{10.08}=\$ 258,407 \text { to the nearest dollar. }
$$

The present value of payments under Option B is

$$
\begin{aligned}
P V_{B} & =40,000+29,805.90 a_{\overline{10} .08}+41,269.97(1.08)^{-10} \\
& =\$ 259,116 \text { to the nearest dollar. }
\end{aligned}
$$

Thus, at 8% choose Option A.
(b) Similar to (a) using 10%, we have

$$
P V_{A}=40,000+32,549.08 a_{\overline{10.10}}=\$ 240,000
$$

which is just the original value of the property. Then,

$$
\begin{aligned}
P V_{B} & =40,000+29,805.90 a_{\overline{10} \cdot 10}+41,269.97(1.10)^{-10} \\
& =\$ 223,145 \text { to the nearest dollar. }
\end{aligned}
$$

Thus, at 10% choose Option B.
11. The price of the 3 -year bond is

$$
P=1000(1.03)^{-6}+40 a_{6.03}=1054.17
$$

The investor will actually pay $P+12=1066.17$ for the bond. Solving for the semiannual yield rate j with a financial calculator, we have

$$
1066.17=1000(1+j)^{-6}+40 a_{6 j} \text { and } j=.027871
$$

The yield rate then is $2 j=.0557$, or 5.57% compared to 5.37% in Example 9.3. The yield rate is slightly higher, since the effect of the expense is spread over a longer period of time.
12. The actual yield rate to A if the bond is held to maturity is found using a financial calculator to solve

$$
910.00=1000(1+i)^{-5}+60 a_{5 i}
$$

which gives $i=.0827$, or 8.27%. Thus, if A sells the bond in one year and incurs another $\$ 10$ commission, the price to yield 8.27% could be found from

$$
910.00=(P+60-10)(1.0827)^{-1}
$$

which gives $P=\$ 935.26$.
13. With no expenses the retirement accumulation is

$$
10,000(1.075)^{35}=125,688.70
$$

With the 1.5 expense ratio the retirement accumulation becomes

$$
10,000(1.06)^{35}=76,860.87
$$

The percentage reduction is

$$
\frac{125,688.70-76,850.87}{125,688.70}=.389, \text { or } 38.9 \% \text { compared to } 34.4 \% \text {. }
$$

14. The expense invested in the other account in year k is

$$
10,000(1.06)^{k-1}(.01) \text { for } k=1,2, \ldots, 10
$$

The accumulated value of the account after 10 years will be

$$
\begin{aligned}
& 100\left[(1.09)^{9}+(1.06)(1.09)^{8}+\cdots+(1.09)^{9}\right] \\
= & 100\left[\frac{(1.09)^{10}-(1.06)^{10}}{.09-.06}\right]=\$ 1921.73
\end{aligned}
$$

by a direct application of formula (4.34).
15. The daily return rate j is calculated from

$$
(i+j)^{365}=1.075 \text { or } j=.000198
$$

The daily expense ratio r is calculated from

$$
\begin{gathered}
(1+.000198-r)^{365}=1.075-.015=1.06 \\
\text { or } r=.00003835
\end{gathered}
$$

Thus the nominal daily expense ratio is

$$
(.00003835)(365)=.0140, \text { or } 1.40 \%
$$

16. Let the underwriting cost each year be $\$ X$ million. The present value of the cash flows to the corporation equals zero at a 7% effective rate of interest. The equation of value (in millions) at time $t=0$ is given by

$$
10-X-X(1.07)^{-1}-(.06)(10) a_{\overline{10.07}}-10(1.07)^{-10}=0
$$

and

$$
\begin{aligned}
X & =\frac{10-.6 a_{\overline{10.07}}-10(1.07)^{-10}}{1+(.107)^{-1}} \\
& =.363 \text { million, or } \$ 363,000 \text { to the nearest } \$ 1000 .
\end{aligned}
$$

17. Basis A:

The interest income $=(1.08)^{20}-1=3.66096$ and the after-tax accumulated value is

$$
A=1+(.75)(3.66096)=3.74572
$$

Basis B:
The after-tax accumulated value is

$$
B=[1+(.75)(.08)]^{20}=(1.06)^{20}=3.20714
$$

The ratio $A / B=1.168$, or 116.8%.
18. The tax deduction is 35% of the depreciation charge.

$\frac{\text { Year }}{1}$	Depreciation charge	Tax deduction
2	33,330	11,666
3	44,450	15,558
4	14,810	5,184
	7,410	2,594

The after-tax yield rate is $(.12)(.65)=.078$.

Thus, the present value of the tax deductions is

$$
\frac{11,666}{1.078}+\frac{15,558}{(1.078)^{2}}+\frac{5184}{(1.078)^{3}}+\frac{2594}{(1.078)^{4}}=\$ 30,267 \text { to the nearest dollar. }
$$

19. (a) The semiannual before-tax yield rate j^{b} can be found from

$$
670=700\left(1+j^{b}\right)^{-10}+35 a_{10 j^{b}}
$$

which gives $j^{b}=.05571$. The before-tax effective yield rate is $(1.05571)^{2}-1=.1145$, or 11.45%.
(b) The earnings on the bond are $(35)(10)+(700-670)=380$ and the tax on that amount is $(.25)(380)=95$. Then, $670=(700-95)\left(1+j^{a}\right)^{-10}+35 a_{10 j^{a}}$ giving $j^{a}=.04432$ and an after-tax effective yield rate of $(1.04432)^{2}-1=.0906$, or 9.06\%.
20. Before-tax: The equation of value is

$$
97.78\left(1+i^{b}\right)=10+102.50 \text { and } i^{b}=.151, \text { or } 15.1 \%
$$

After-tax: The equation of value is

$$
\begin{aligned}
97.78\left(1+i^{a}\right) & =10+102.50-.40(10)-.20(102.50-97.78) \\
& =107.556 \text { and } i^{a}=.100, \text { or } 10.0 \% .
\end{aligned}
$$

21. (a) The installment payment is

$$
R=\frac{10,000}{a_{\overline{30.05}}}=650.51
$$

The income tax in the $10^{\text {th }}$ year is 25% of the portion of the $10^{\text {th }}$ installment that is interest, i.e.

$$
(.25)(650.51)\left(1-v^{30-10+1}\right)=\$ 104.25
$$

(b) The total of the interest paid column in the amortization schedule is

$$
650.51\left(30-a_{30.05}\right)=\$ 9515.37
$$

The total tax on this amount of interest is

$$
(.25)(9515.37)=\$ 2378.84
$$

(c) The payment in the $k^{\text {th }}$ year after taxes is

$$
650.51\left[v^{30-k+1}+.75\left(1-v^{30-k+1}\right)\right]=650.51\left(.75+.25 v^{31-k}\right) \text { for } k=1,2, \ldots, 30 .
$$

The present value of these payments at the before-tax yield rate is

$$
\begin{aligned}
& \sum_{k=1}^{30} 650.51\left(.75+.25 v^{31-k}\right) v^{k} \text { at } i=5 \% \\
& =(.75)(650.51) a_{30.05}+(.25)(650.51)(30)(1.05)^{-31} \\
& =\$ 8575 \text { to the nearest dollar. }
\end{aligned}
$$

22. The annual installment payment is

$$
10,000(.05)+\frac{10,000}{s_{30.04}}=500+178.30=678.30
$$

Total installment payments over 30 years are

$$
30(678.30)=20,349.00
$$

Total interest on the sinking fund is

$$
10,000-(30)(178.30)=4651.00
$$

Taxes on the sinking fund interest are

$$
.25(4651.00)=1162.75
$$

Total cost of the loan to A is

$$
20,349.00+1162.75=\$ 21,512 \text { to the nearest dollar. }
$$

23. The after-tax interest income on the fund is

$$
800-(240+200+300)=60 .
$$

Since the income tax rate is 25%, the before-tax interest income on the fund is

$$
60 / .75=80 .
$$

Thus, the fund balance at the beginning of the third year before taxes is actually

$$
800+(80-60)=820 .
$$

The equation of value for the before-tax yield rate is

$$
240\left(1+i^{b}\right)^{2}+200\left(1+i^{b}\right)+300=820 .
$$

Solving the quadratic, we obtain

$$
i^{b}=.113, \text { or } 11.3 \%
$$

24. (a) The NPV for the company is

$$
62,000 \ddot{a}_{6.08}=\$ 309,548 .
$$

(b) The NPV for the lessor reflecting taxes and depreciation is

$$
(.65)(62,000) \ddot{a}_{6.08}+(.35)(250,000 / 5) a_{5.08}=\$ 271,079
$$

25. Applying formula (9.11)

$$
\begin{aligned}
1+i^{d} & =\left(1+i^{f}\right) \frac{e^{c}}{e^{e}} \\
1+.075 & =(1+.049) \frac{118}{e^{e}} \text { and } e^{e}=115.1
\end{aligned}
$$

26. The change in the real exchange rate is equal to the change in the nominal exchange rate adjusted for the different inflation rates, i.e.

$$
\frac{1.5}{1.25} \times \frac{1.03}{1.02}-1=+.212, \text { or }+21.2 \%
$$

27. Line 1 - We have

$$
1+i^{d}=\left(1+i^{f}\right) \frac{e^{c}}{e^{e}} \text { or } 1+i^{d}=(1.0932) \frac{56.46}{60.99} \text { and } i^{d}=.012, \text { or } 1.2 \%
$$

Line 2 - We have

$$
(1.01)^{.25}=\left(1+i^{f}\right)^{.25} \frac{56.46}{57.61} \text { and } i^{f}=.0948, \text { or } 9.48 \%
$$

Line 3 - We have

$$
(1.01)^{1 / 12}=(1.0942)^{1 / 12} \frac{56.46}{e^{e}} \text { and } e^{e}=56.84 .
$$

28. (a) For a $\$ 1000$ maturity value, the price of the two-year coupon bond is

$$
P_{0}=1000(1.0365)^{-2}=\$ 930.81
$$

The price one year later is

$$
P_{1}=1000(1.03)^{-1}=\$ 970.87
$$

Thus, the one-year return is $\frac{970.87-930.81}{930.81}=.043$, or 4.3%.
(b) Assume the person from Japan buys $\$ 930.81$ with yen, which costs

$$
(930.81)(120.7)=¥ 112,349 .
$$

After one year the person receives $\$ 970.87$ which is worth

$$
(970.87)(115)=¥ \geq 111,650 \text {. }
$$

Thus, the one year return is

$$
\frac{111,650-112,349}{112,349}=-.0062, \text { or }-.62 \% .
$$

29. (a) NPV $=-80+10(1.06)^{-1}+20(1.06)^{-2}+23(1.06)^{-3}+27(1.06)^{-4}+25(1.06)^{-5}$
$=€ 6.61$ million.
(b) The expected exchange rate expressed in dollars per €1 (not in euros per \$1) at time $t=1$ is $\frac{1.08}{1.06}=\frac{e^{e}}{1.2}$ and $e^{e}=1.223$. The cash flow at time $t=1$ in dollars then is

$$
(10)(1.223)=\$ 12.23 \text { million } .
$$

Using the same procedure to calculate the expected exchange rate and cash flow in dollars each year gives the following:

Time	0	1	2	3	4	5
e^{e}	1.2	1.223	1.246	1.269	1.293	1.318
\$ million	-96	12.23	24.91	29.19	34.92	32.94

(c) NPV $=-96+12.23(1.08)^{-1}+24.91(1.08)^{-2}+29.19(1.08)^{-3}+34.92(1.08)^{-4}$ $+32.94(1.08)^{-5}=\$ 7.94$ million.

Interestingly, this answer could also be obtained from the answer in part (a), as $(6.613)(1.2)=7.94$. This demonstrates the internal consistency in using interest rate parity.
30. The equation of value is

$$
(1+i)^{2}=.4(1+i)+.5 \text { which simplifies to } i^{2}+1.6 i+.1=0 .
$$

Solving the quadratic we obtain

$$
i=-.0652, \text { or }-6.52 \% .
$$

31. The equation of value is

$$
10,000(1+i)^{10}=1500 s_{\overline{10.08}}=21,729.84
$$

and

$$
i=(2.172984)^{1 / 10}-1=.0807, \text { or } 8.07 \% .
$$

32. Use the basic formula for valuing bonds with an adjustment for the probability of default to obtain

$$
\begin{aligned}
P & =80 a_{10.12}+(.98)(1000)(1.12)^{-10} \\
& =452.018+315.534=\$ 767.55 .
\end{aligned}
$$

33. (a) $\mathrm{EPV}=\frac{(.90)(1000)+(.10)(0)}{1.25}=\$ 720$.
(b) $\mathrm{E}\left(x^{2}\right)=.90\left(\frac{1000}{1.25}\right)^{2}+.10(0)^{2}=576,000$
$\operatorname{Var}(x)=576,000-(720)^{2}=57,600$
S.D. $(x)=\sqrt{57,600}=\$ 240$.
(c) $720=1000(1+i)^{-1}$ so that $i=.3889$. Thus, the risk premium is

$$
.3889-.25=.1389, \text { or } 13.89 \%
$$

34. From formula (9.15) we have

$$
\mathrm{EPV}=\sum_{t=1}^{n} R_{t}\left(\frac{p}{1+i}\right)^{t}
$$

We can consider p to be the probability of payment that will establish equivalency between the two interest rates. Thus, we have

$$
\frac{p}{1.0875}=\frac{1}{1.095} \text { or } p=.99315
$$

and the annual probability of default is $1-p=.00685$.
35. (a) $\mathrm{EPV}=\sum_{t=1}^{n} R_{t}\left(\frac{p}{1+i}\right)^{t}=\sum_{t=1}^{n} R_{t} e^{-c t} e^{-\delta t}$.
(b) We can interpret the formula in part (a) as having force of interest δ, force of default c, and present values could be computed at the higher force of interest $\delta^{\prime}=\delta+c$. The risk premium is $\delta^{\prime}-\delta=c$.
(c) The probability of default is

$$
1-p=1-e^{-c} .
$$

(d) The probability of non-default over n periods is $p^{n}=e^{-c n}$, so the probability of default is $1-e^{-c n}$.
36. (a) Assume that the borrower will prepay if the interest rate falls to 6\%, but not if it rises to 10%. The expected accumulated to the mortgage company is

$$
\begin{aligned}
& .5[80,000(1.06)+1,000,000(1.06)]+.5[580,000(1.10)+500,000(1.08)] \\
= & .5(1,144,800)+.5(1,178,000)=\$ 1,161,400 .
\end{aligned}
$$

(b) $\operatorname{Var}=.5(1,144,800-1,161,400)^{2}+.5(1,178,000-1,161,400)^{2}=275,560,000$ and S.D. $=\sqrt{275,560,000}=\$ 16,600$.
(c) We have $1,161,400=1,000,000(1+i)^{2}$ which solves for $i=.0777$, or 7.77%.
(d) The option for prepayment by the borrower has a value which reduces the expected yield rate of 8% that the lender could obtain in the absence of this option.
37. (a) Form formula (9.15) we have

$$
\mathrm{EPV}=\sum_{t=1}^{n} R_{t}\left(\frac{p}{1+i}\right)^{t}
$$

so that

$$
150,000=\sum_{t=1}^{n} R\left(\frac{.99}{1.12}\right)^{t} .
$$

We can define an adjusted rate of interest i^{\prime}, such that

$$
1+i^{\prime}=\frac{1.12}{.99} \text { and } i^{\prime}=.131313
$$

We then obtain $R=\frac{150,000}{a_{15.131313}}=23,368.91$.
If the probability of default doubles, we can define

$$
1+i^{\prime \prime}=\frac{1.12}{.98} \quad \text { and } \quad i^{\prime \prime}=.142857
$$

We then have

$$
\mathrm{EPV}=23,368.91 a_{\overline{15.142857}}=\$ 141,500 \text { to the nearest } \$ 100
$$

(b) We now have

$$
1+i^{\prime \prime \prime}=\frac{1.14}{.98} \text { and } i^{\prime \prime \prime}=.163265
$$

and

$$
\mathrm{EPV}=23,368.91 a_{15.163265}=\$ 128,300 \text { to the nearest } \$ 100
$$

38. If the bond is not called, at the end of the 10 years the investor will have

$$
100 s_{\overline{10.07}}+1000=2381.65
$$

If the bond is called, at the end of 10 years, the investor will have

$$
100 s_{5.07}(1.07)^{5}+1050(1.07)^{5}=2279.25
$$

Thus, the expected accumulated value (EAV) is

$$
(.75)(2381.65)+(.25)(2279.25)=2356.05
$$

The expected yield rate to the investor can be obtained from

$$
1100(1+i)^{10}=2356.05
$$

and

$$
i=\left(\frac{2356.05}{1100}\right)^{1 / 10}-1=.0791, \text { or } 7.91 \% .
$$

