Chapter 12

- 1. $\mathbf{E}[a^{-1}(n)] = \mathbf{E}\left[\prod_{t=1}^{n} (1+i_t)^{-1}\right]$ $= \prod_{t=1}^{n} \mathbf{E}[1+i_t]^{-1} \text{ from independence}$ $= (1+\overline{i})^{-n}.$ 2. $\mathbf{E}[a_{\overline{n}}] = \mathbf{E}\left[\sum_{t=1}^{n} \prod_{s=1}^{t} (1+i_s)^{-1}\right]$ $= \sum_{t=1}^{n} \prod_{s=1}^{t} \mathbf{E}[1+i_s]^{-1} \text{ from independence}$ $= \sum_{t=1}^{n} (1+\overline{i})^{-t} = a_{\overline{n}|\overline{i}}.$
- 3. (a) Year 1: 8% given.

Year 2: .5(.07+.09) = .08, or 8%. Year 3: .25[.06+2(.08)+.10] = .08, or 8%.

(b) Year 1: $\sigma = 0$, no variance.

Year 2:
$$\sigma^2 = .5[(.07 - .08)^2 + (.09 - .08)^2] = .0001$$

 $\sigma = \sqrt{.0001} = .01.$
Year 3: $\sigma^2 = .25[(.06 - .08)^2 + 2(.08 - .08)^2 + (.10 - .08)^2]$
 $= .0002$
 $\sigma = \sqrt{.0002} = .01\sqrt{2}$

- (c) 1000(1.08)(1.09)(1.10) = \$1294.92.
- (d) 1000(1.08)(1.07)(1.06) = \$1224.94.
- (e) $1000(1.08)^3 = 1259.71 .

(f)
$$.25(1000)[(1.08)(1.09)(1.10) + (1.08)(1.09)(1.08) + (1.08)(1.07)(1.08) + (1.08)(1.07)(1.06)]$$

= $.25[1294.92 + 1271.38 + 1248.05 + 1224.94]$
= \$1259.82

(g)
$$\sigma^2 = .25 [(1294.92 - 1259.82)^2 + (1271.38 - 1259.82)^2 + (1248.05 - 1259.82)^2 + (1224.94 - 1259.82)^2]$$

= 2720.79
 $\sigma = \sqrt{2720.79} = 52.16.$

4. (a)
$$E[(1+i_t)^{-1}] = \frac{1}{.09-.07} \int_{.07}^{.09} \frac{1}{1+t} dt$$

 $= \frac{1}{.09-.07} \ln(1+t) \int_{.07}^{.09} = .925952.$
Then set $(1+\overline{i})^{-1} = .925952$ and solve $\overline{i} = .07997.$
(b) We have $a^{-1}(3) = (1.07997)^{-3} = .79390.$
(c) $E[(1+i_t)^{-2}] = \frac{1}{.09-.07} \int_{.07}^{.09} \frac{1}{(1+t)^2} dt$
 $= [\frac{-1}{.09-.07} \cdot \frac{1}{1+t}]_{.07}^{.09} = .857412.$
Then set $(1+\overline{k})^{-1} = .857412$ and solve $\overline{k} = .16630.$

(d) Applying formula (12.10), we have

$$\operatorname{Var}[a^{-1}(3)] = (.857412)^3 - (.925952)^6 = .0000549$$

and the standard deviation is $\sqrt{.0000549} = .00735$.

5. (*b*) Applying formula (12.11), we have

$$\mathbf{E}[a_{\overline{3}}] = a_{\overline{3}|_{i}} = a_{\overline{3}|_{.07997}} = 2.5772.$$

(d) Applying formula (12.14), we have

$$\operatorname{Var}\left[a_{\overline{3}|}\right] = \frac{m_{2}^{a} + m_{1}^{a}}{m_{2}^{a} - m_{1}^{a}} a_{\overline{3}|\overline{k}} - \frac{2m_{2}^{a}}{m_{2}^{a} - m_{1}^{a}} a_{\overline{3}|\overline{i}} - \left(a_{\overline{3}|\overline{i}}\right)^{2}$$

= $\frac{.857412 + .925952}{.857412 - .925952} (2.2229) - \frac{(2)(.857412)}{.857412 - .925952} (2.5772) - (2.5772)^{2}$
= .005444

and the standard deviation is $\sqrt{.005444} = .0735$.

- 6. The random variable $i_t^{(2)}/2$ will be normal with $\mu = 3\%$ and $\sigma = .25\%$.
 - (a) Applying formula (12.1), we have

$$E[100a(4)] = 100(1.03)^4 = 112.55$$

Applying formula (12.3), we have

$$\operatorname{Var}\left[100a_{\overline{4}|}\right] = 10,000\left[\left(1+2\overline{i}+\overline{i}^{2}+s^{2}\right)^{4}-\left(1+\overline{i}\right)^{8}\right]$$
$$= 10,000\left[\left\{1+(2)(.03)+(.03)^{2}+.0025\right\}^{4}-(1.03)^{8}\right]$$
$$= 119.828$$

and the standard deviation is $\sqrt{119.828} = 10.95$.

(b) Applying formula (12.5), we have

$$E\left[100\ddot{s}_{\overline{4}}\right] = 100\ddot{s}_{\overline{4}.03} = 430.91$$

Applying formula (12.8), we have

$$m_1^s = 1.03$$

 $m_2^s = 1 + 2(.03) + (.03)^2 + .0025 = 1.0634$

and

$$\operatorname{Var}[100\ddot{s}_{4}] = 10,000 \left[\frac{1.0634 + 1.03}{1.0634 - 1.03} (4.67549) - \frac{(2)(1.0634)}{1.0634 - 1.03} (4.3091) - (4.3091)^{2} \right]$$

= 944.929

and the standard deviation is $\sqrt{944.929} = 30.74$.

7. (a)
$$\mathbf{E}\left[s_{\overline{n}}\right] = \mathbf{E}\left[\ddot{s}_{\overline{n+1}} - 1\right] = \ddot{s}_{\overline{n+1}|\overline{i}} - 1.$$

(b) $\operatorname{Var}\left[s_{\overline{n}}\right] = \operatorname{Var}\left[\ddot{s}_{\overline{n+1}} - 1\right] = \operatorname{Var}\left[\ddot{s}_{\overline{n+1}}\right].$
(c) $\mathbf{E}\left[\ddot{a}_{\overline{n}}\right] = \mathbf{E}\left[1 + a_{\overline{n-1}|}\right] = 1 + a_{\overline{n-1}|\overline{i}}.$
(d) $\operatorname{Var}\left[\ddot{a}_{\overline{n}|}\right] = \operatorname{Var}\left[1 + a_{\overline{n-1}|}\right] = \operatorname{Var}\left[a_{\overline{n-1}|}\right].$

8. We know that 1+i is lognormal with $\mu = .06$ and $\sigma^2 = .01$. From the solution to Example 12.3(1), we have $\overline{i} = .067159$ and then

$$s^{2} = e^{2\mu + \sigma^{2}} \left(e^{\sigma^{2}} - 1 \right) = e^{2(.06) + .01} \left(e^{.01} - 1 \right)$$
$$= e^{.13} \left(e^{.01} - 1 \right) = .011445.$$

We then apply formula (12.4a) to obtain

$$\operatorname{Var}[a(n)] = (1 + 2\overline{i} + \overline{i}^{2} + s^{2})^{n} - (1 + \overline{i})^{2n}$$
$$= [1 + 2(.067159) + (.067159)^{2} + .011445]^{5} - (1.067159)^{10}$$
$$= .09821$$

and the standard deviation $=\sqrt{.09821} = .3134$ agreeing with the other approach.

- 9. (*a*) Formula (12.5) with $\bar{i} = e^{\mu + \sigma_{2}^{2}} 1$.
 - (*b*) Formulas (12.6), (12.7) and (12.8) with $\overline{j} = e^{2\mu+2\sigma}$.
 - (c) Formula (12.11) with $\bar{i} = e^{\mu \sigma_{2}^{2}} 1$.
 - (*d*) Formulas (12.12), (12.13) and (12.14) with $\overline{k} = e^{-2\mu + 2\sigma^2}$.

10. (a)
$$E[1+i_t] = e^{.06+.0001/2} = 1.06189$$

mean $= E[a(10)] = (1.06189)^{10} = 1.823$.
 $Var[a(10)] = e^{(2)(10)(.06)+(10)(.0001)} (e^{(10)(.0001)} - 1)$
 $= e^{1.201} (e^{.001} - 1) = .003325$
and s.d. $= \sqrt{.003325} = .058$.
(b) Mean $= E[\ddot{s}_{10}] = \ddot{s}_{101.06189} = 14.121$

s.d. using formula (12.8) = .297.

(c)
$$E[(1+i_t)^{-1}] = e^{-.06+.0001/2} = .941812$$

mean $= E[a^{-1}(10)] = (.941812)^{10} = .549$
 $Var[a^{-1}(10)] = e^{-1.2+.001}(e^{.001}-1) = .000302$
and s.d. $= \sqrt{.000302} = .017$.

(d) We have $(1+\overline{i})^{-1} = .941812$ or $\overline{i} = .06178$ and $(1+\overline{k})^{-1} = e^{-.12+.0001}e^{.0001} = e^{-.1198}$ = .887098 or $\overline{k} = .12727$. Mean $= E[a_{\overline{10}}] = a_{\overline{10}|.06178} = 7.298$. s.d. using formula (12.14) = .134. 11. $E[1+i_t] = e^{\mu+\sigma^2/2} = 1.067.$ $Var[1+i_t] = e^{2\mu+\sigma^2} (e^{\sigma^2} - 1) = .011445.$

Solving two equations in two unknowns gives

$$\mu = .06 \quad \sigma^2 = .01$$

Therefore $\delta_{[t]}$ follows a normal distribution with mean = .06 and var = .01.

12.
$$E[1+i_t] = 1.08 = e^{\mu + \sigma^2/2} = e^{\mu + .0001/2}$$
 so that $\mu = .07691$.
 $Var[1+i_t] = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1) = (1.08)^2 (e^{.0001} - 1) = .00011665$.
 $E[a(3)] = (1.08)^3 = 1.25971$.
 $Var[a(3)] = [1 + 2(.08) + (.08)^2 + .00011665]^3 - (1.08)^6$
 $= .0004762$ and s.d. $= \sqrt{.0004762} = .02182$.
The 95% confidence interval is

1.25971±1.96(.02182) or (1.21693,1.30247).

13.
$$\mathbb{E}\left[s_{\overline{3}}\right] = \mathbb{E}\left[\ddot{s}_{\overline{4}} - 1\right] = \ddot{s}_{\overline{4}|.08} - 1 = s_{\overline{3}|.08} = 3.246 = \text{mean.}$$
$$\text{Var}\left[s_{\overline{3}}\right] = \text{Var}\left[\ddot{s}_{\overline{4}} - 1\right] = \text{Var}\left[\ddot{s}_{\overline{4}}\right].$$

Var = 65.62 using formula (12.8).

14.
$$E\left[\ln\left(1+i_{t}\right)\right] = \frac{.07+.09}{2} = .08 = \mu.$$

 $Var\left[\ln\left(1+i_{t}\right)\right] = \frac{(.09-.07)^{2}}{2} = \frac{.0001}{3} = \sigma^{2}.$
 $E\left[\ln a^{-1}(30)\right] = -30\mu = -30(.08) = -2.4.$
 $Var\left[\ln a^{-1}(30)\right] = 30\sigma^{2} = 30\left(\frac{.0001}{3}\right) = .001.$

The 95th percentile of $\ln a^{-1}(30)$ is

$$-2.4 + 1.645\sqrt{.001} = -2.34798.$$

Thus, $100,000e^{-2.34798} = \$9556.20$.

Chapter 12

15. Continuing Example 12.7:

$$\begin{split} \delta_{[6]} &= .08 + .6(.091 - .08) + .2(.095 - .08) = .0896\\ \delta_{[7]} &= .08 + .6(.0896 - .08) + .2(.091 - .08) = .0880\\ \delta_{[8]} &= .08 + .6(.0880 - .08) + .2(.0896 - .08) = .0867 \end{split}$$

16. (*a*) Formula (12.33)

$$\operatorname{Var}\left[\delta_{[t]}\right] = \frac{1 - k_2}{1 + k_2} \cdot \frac{\sigma^2}{\left(1 - k_2\right)^2 k_1^2}$$
$$= \frac{\sigma^2}{1 - k_1} \quad \text{if} \ k_2 = 0$$

which is formula (12.30) with $k_1 = k$.

(*b*) Formula (12.34)

$$\operatorname{Cov}\left[\delta_{[s]},\delta_{[t]}\right] = \operatorname{Var}\left[\delta_{[t]}\right]\left[\tau g_1^{t-s} + (1-\tau)g_2^{t-s}\right].$$

We set $k_2 = 0$, so that

$$\tau = 1 \qquad g_1 = k_1 \qquad g_2 = 0$$

from formula (12.35). We also substitute the result from part (a).

Thus,
$$\operatorname{Cov}\left[\delta_{[s]}, \delta_{[t]}\right] = \frac{\sigma^2}{1 - k_1^2} k_1^{t-s}$$

which is formula (12.31) with $k_1 = k$.

- 17. Use formula (12.33) with $k_1 = .6$ and $k_2 = .2$. Find the empirical estimate for $\operatorname{Var}[\delta_{[t]}]$ based upon the sample data for $\delta_{[t]}$ given in Example 12.6. This will result in one equation in one unknown that can be solved for σ^2 .
- 18. (*a*) Applying formula (12.33)

$$\operatorname{Var}\left[\delta_{[t]}\right] = \frac{1-k_2}{1+k_2} \cdot \frac{\sigma^2}{\left(1-k_2\right)^2 - k_1^2} \\ = \frac{1-.2}{1+.2} \cdot \frac{.0002}{\left(1-.2\right)^2 - \left(.6\right)^2} = .0004762.$$

(b) Applying formulas (12.34), (12.35) and (12.36) with $k_1 = .6$ and $k_2 = .2$ and with t - s = 2 gives the answer .0001300.

19. (a) Applying formula (12.29) twice, we have

$$.096 = \delta + k(.100 - \delta)$$

.100 = $\delta + k(.105 - \delta)$.

Solving these two equations in two unknowns, we have

$$k = .08$$
 and $\delta = .08$.

Therefore

$$\delta_{[4]}^E = .08 + .8(.095 - .08) = .092.$$

(b) Applying formula (12.31), we have

$$\operatorname{Cov}\left[\delta_{[s]}, \delta_{[t]}\right] = \frac{\sigma^2}{1 - k_2} k^{t - s} = (.0001)(.8)^{6 - 3} = .0000512.$$

20. There are 9 paths each with probability 1/9:

(a)
$$E[a(2)] = \frac{1}{9}[(1.02)(1.02 - .04k) + (1.02)(1.06 - .04k) + 7 \text{ more terms}]$$

= $\frac{1}{3}[(1.02)(1.06 - .04k) + (1.06)^2 + (1.10)(1.06 - .04k)]$
= $(1.06)^2 + \frac{1}{3}(.0032)k.$

(b)
$$E[a(2)^{2}] = \frac{1}{9}[(1.02)^{2}(1.02 - .04k)^{2} + (1.02)^{2}(1.06 - .04k)^{2} + 7 \text{ more terms}]$$

 $= \frac{1}{9}[(1.02)^{2} + (1.06)^{2} + (1.10)^{2}] + \frac{(1.10)^{2} - (1.02)^{2}}{3}(.08)(1.06)k$
 $+ \frac{(1.10)^{2} + (1.02)^{2}}{3}(.0016)k^{2}]$
 $= \frac{1}{9}(11.383876 + .04314624k + .01080192k^{2})$

and

Var
$$[a(2)] = E[a(2)^2] - E[a(2)]^2$$

= $\frac{1}{9}(.02158336 + .02157312k + .01079168k^2).$

21. At time t = 2:

$$i = .144 \qquad V = \frac{(.5)(1000) + (.5)(1000)}{1.144} = 874.126$$
$$i = .10 \qquad V = \frac{(.5)(1000) + (.5)(1000)}{1.1} = 909.091$$
$$i = .06944 \qquad V = \frac{(.5)(1000) + (.5)(1000)}{1.06944} = 935.069$$

At time t = 1:

$$i = .12 \qquad V = \frac{(.5)(874.126) + (.5)(909.091)}{1.12} = 796.079$$
$$i = .08333 \qquad V = \frac{(.5)(909.091) + (.5)(935.069)}{1.08333} = 851.153$$

At time t = 0:

$$i = .10$$
 $V = \frac{(.5)(796.079) + (.5)(851.153)}{1.1} = 748.74$

obtaining the same answer as obtained with the other method.

22. (*a*)

Path [<u>Probability</u>	<u>PV</u>	$\underline{\mathbf{PV}}^2$
10/11/12	.25	.73125	.53473
10/11/10	.25	.74455	.55435
10/9/10	.25	.75821	.57488
10/9/8	.25	.77225	.59637

Value of the bond is

$$1000(.25)[.73125 + .74455 + .75821 + .77225] = 751.57.$$

(b) $Var = (1000)^2 (.25) [.53473 + .55435 + .57488 + .59637]$ = 232.5664

and the s.d. = $\sqrt{232.5664} = 15.25$.

(c) The mean interest rate is i = .10 so the value is $1000(1.1)^{-3} = 751.31$.

23. (a) At time
$$t = \frac{1}{2}$$
:
 $i^{(2)} = .10$ $V = \frac{(.3)(1045) + (.7)(1045)}{1.05} = 995.238$
 $i^{(2)} = .08$ $V = \frac{(.3)(1045) + (.7)(1045)}{1.04} = 1004.808.$

At time t = 0:

$$i^{(2)} = .09$$
 $V = \frac{(.3)(995.238 + 45) + (.7)(1004.808 + 45)}{1.045}$
= \$1001.85.

(b) The equation of value is

$$1001.854 = 45v + 1045v^2$$

and solving the quadratic v = .95789. Then we have $v = .95789 = e^{-.5\delta}$ and $\delta = .0861$, or 8.61%.

24. If the interest rate moves down, then call the bond, which gives

$$V = \frac{(.3)(995.238 + 45) + (.7)(1000 + 45)}{1.045} = \$998.63.$$

25. At time $t = \frac{1}{2}$:

$$j = .0288 \qquad V = \frac{(.4)(1038/1.03458) + (.6)(1038/1.024)}{1.0288} = 981.273$$
$$j = .02 \qquad V = \frac{(.4)(1038/1.024) + (.6)(1038/1.01667)}{1.02} = 998.095$$
$$j = .01389 \qquad V = \frac{(.4)(1038/1.01667) + (.6)(1038/1.011575)}{1.01389} = 1010.036$$

At time $t = \frac{1}{4}$:

$$j = .024 \qquad V = \frac{(.4)(981.273 + 38) + (.6)(998.095 + 38)}{1.024} = 1005.24$$
$$j = .01667 \qquad V = \frac{(.4)(998.095 + 38) + (.6)(1010.036 + 38)}{1.01667} = 1026.1536.$$

At time t = 0:

$$j = .02$$
 $V = \frac{(.4)(1005.24) + (.6)(1026.1536)}{1.02} = $997.83.$

26.

Path	Probability	ΡV	CV	CV from time 1
$\frac{1 \text{ atr}}{10/12/14}$	<u>16</u>	$\frac{1}{7095}$	$\frac{CV}{1004}$	<u>1 28128</u>
10/12/14.4 10/12/10	.10	7370	1.4074	1.20120
10/12/10	.24	7620	1.3352	1.23200
10/0.333/10	.24	.7029	1.3108	1.19170
10/8.333/6.944	.30	./84/	1.2/44	1.15800

(a)
$$E[a(3)] = (.16)(1.4094) + (.24)(1.3552) + (.24)(1.3108) + (.36)(1.2744) = 1.326.$$

(b) $E[a^{-1}(3)] = .749.$
(c) $E[a(3)] = E[a^{-1}(3)] + E[a^{-1}(2)] + E[a^{-1}(1)]$
 $= .749 + [(.4)(1.12)^{-1}(1.1)^{-1} + (.6)(1.08333)^{-1}(1.1)^{-1}] + (1.1)^{-1}$
 $= 2.486.$
(d) $E[\ddot{s}_{3]}] = 1.326 + 1.2038 + 1.096 = 3.626.$

27. Rendleman – Bartter:

mean

$$\mathbf{E}[\delta_t] = \mathbf{E}[\delta_t - \delta_0 + \delta_0] = \mathbf{E}[\Delta\delta_0] + \mathbf{E}[\delta_0]$$
$$= a\delta_0 t + \delta_0 = \delta_0 (1 + at)$$

variance

$$\operatorname{Var}[\delta_t] = a^2 \delta^2 t$$

Vasicek:

mean

$$\mathbf{E}[\delta_t] = \mathbf{E}[\Delta\delta_0] + \mathbf{E}[\delta_0]$$
$$= c(b - \delta_0) + \delta_0 = cb + (1 - c)\delta_0$$

variance

$$\operatorname{Var}[\delta_t] = \sigma^2 t$$

Cox – Ingersoll – Ross:

mean

$$\mathbf{E}\left[\delta_{t}\right] = cb + (1-c)\delta_{0}$$

variance

 $\operatorname{Var}[\delta_t] = \sigma^2 \delta_0 t$, since the process error is proportional to $\sqrt{\delta}$ which squares in computing variances.

28. (*a*) We have

$$d\delta = c(b - \delta)dt + \sigma dz$$

= 0 + \delta dz if c = 0
= adt + \sigma dz where a = 0

which is the process for a random walk.

(*b*) We have

$$d\delta = c(b - \delta)dt + \sigma dz$$

= $(b - \delta)dt + \sigma dz$ if $c = 1$

which is the process for a normal distribution with $\mu = b$.

29. For the random walk model

$$\Delta \delta = a \Delta t + \sigma \Delta z$$

and for the Rendleman-Bartter model

$$\Delta \delta = a \delta \Delta t + \sigma \delta \Delta z$$

Random walk		Rendleman - Bartter	
$\delta_0 = .06$			$\delta_0 = .06$
$\delta_{.5} = .0675$	$\Delta \delta_{.5} = .0075$	$\Delta \delta_{.5} = (.0075)(.06)$	$\delta_{.5} = .06045$
$\delta_1 = .065$	$\Delta \delta_1 =0025$	$\Delta \delta_1 = (0025)(.06045)$	$\delta_1 = .06030$
$\delta_{1.5} = .063$	$\Delta \delta_{1.5} =0020$	$\Delta \delta_{1.5} = (002)(.06030)$	$\delta_{1.5} = .06018$
$\delta_2 = .0685$	$\Delta \delta_2 = .0055$	$\Delta \delta_2 = (.0055)(.06018)$	$\delta_2 = .06051$

30. (a) We have $\delta_0 = .08$

$$E[\delta_{.5}] = \delta_0 + at = .08 + (.006)(.5) = .083$$

and

$$P = 39e^{-(.08)(.5)} + 1039e^{-(.08)(.5)-(.083)(.5)} = \$995.15.$$

(b) We have

$$995.151 = 39v + 1039v^2$$

and solving the quadratic

$$i^{(2)}/2 = .0606$$
 so that $i^{(2)} = .1212$.

(c) We have

$$\delta_{.5} = .08 + .006(.5) + (.01)(.5)\sqrt{.5} = .08654$$

and

$$P = 39e^{-(.08)(.5)} + 1039e^{-(.08)(.5)-(.08654)(.5)} = \$993.46.$$

31. Rework Examples 12.11-12.14 using ± 2 standard deviations. The following results are obtained:

Random walk	$\frac{\text{Max}}{\delta_{25}} = .0790$	$\frac{\text{Min}}{\delta_{25}} = .0590$
	$\delta_{50} = .0880$	$\delta_{.50} = .0480$
	$\delta_{.75} = .0970$	$\delta_{.75} = .0370$
	$\delta_1 = .106$	$\delta_1 = .026$
<u>Rendleman – Bartter</u>	Max	Min
	$\delta_{.25} = .0790$	$\delta_{.25} = .0590$
	$\delta_{.50} = .0892$	$\delta_{.50} = .0497$
	$\delta_{.75} = .1007$	$\delta_{.75} = .0419$
	$\delta_1 = .114$	$\delta_1 = .035$
Vasicek	Max	Min
	$\delta_{.25} = .0790$	$\delta_{.25} = .0590$
	$\delta_{.50} = .0876$	$\delta_{.50} = .0486$
	$\delta_{.75} = .0957$	$\delta_{.75} = .0386$
	$\delta_1 = .103$	$\delta_1 = .029$

Cox-Ingersoll-Ross	Max	Min
	$\delta_{.25} = .0790$	$\delta_{.25} = .0590$
	$\delta_{.50} = .0923$	$\delta_{.50} = .0494$
	$\delta_{.75} = .1017$	$\delta_{.75} = .0410$
	$\delta_1 = .111$	$\delta_1 = .034$

- 32. (a) $(.08)(1.1)^{10} = .2075$, or 20.75%.
 - (b) $(.08)(.9)^{10} = .0279$, or 2.79%.
 - (c) $(.08)(1.1)^5(.9)^5 = .0761$, or 7.61%.
 - (d) A 10% increase followed by a 10% decrease results in a result that is (1.1)(.9) = 99% of the starting value.
 - (e) $\binom{10}{5}$ (.5)¹⁰ = .2461 using the binomial distribution.

(f) 10 increases $(.08)(1.1)^{10} = .2075$ 9 increases $(.08)(1.1)^{9}(.9) = .1698$

Probability =
$$\begin{bmatrix} 10\\10 \end{bmatrix} + \begin{pmatrix} 10\\9 \end{bmatrix} \end{bmatrix} (.5)^{10} = 11(.5)^{10} = .0107.$$

33. One year spot rates s_1 :

$$\begin{split} &i_0 = .070000\\ &i_1 = .070000e^{1.65(.1)} = .082558\\ &i_2 = .082558e^{-.26(.1)} = .080439\\ &i_3 = .080439e^{.73(.1)} = .086530\\ &i_4 = .086530e^{1.17(.1)} = .097270\\ &i_5 = .097270e^{.98(.1)} = .1073, \text{ or } 10.73\%. \end{split}$$

Five year spot rates s_5 :

$$\begin{split} &i_0 = .080000\\ &i_1 = .080000e^{1.65(.05)} = .086880\\ &i_2 = .086880e^{-.26(.05)} = .085758\\ &i_3 = .085758e^{.73(.05)} = .088946\\ &i_4 = .088946e^{1.17(.05)} = .094304\\ &i_5 = .094304e^{.98(.05)} = .0990, \text{ or } 9.90\% \end{split}$$

The yield curve became invested, since 10.73% > 9.90%.