Chapter 13

1. Stock Option
(a) $\frac{84-80}{80}=+5 \% \quad \frac{0-2}{2}=-100 \%$
(b) $\frac{80-80}{80}=0 \% \quad \frac{0-2}{2}=-100 \%$
(c) $\frac{78-80}{80}=-2.5 \% \quad \frac{2-2}{2}=0 \%$
(d) $\frac{76-80}{80}=-5 \% \quad \frac{4-2}{2}=+100 \%$
(e) $\$ 78$, from part (c) above
(f) $T V P=P-I V P=2-0=\$ 2$
2. (a) $I V C=S-E=100-98=\$ 2$
(b) $T V C=C-I V C=6-2=\$ 4$
(c) $I V P=\$ 0$ since $S \geq E$
(d) $T V P=P-I V P=2-0=\$ 2$
3. Profit position $=-$ Cost of $\$ 40$ call + Cost of $\$ 45$ call

+ Value of $\$ 40$ call - Value of $\$ 45$ call
(a) $-3+1+0-0=-\$ 2$
(b) $-3+1+0-0=-\$ 2$
(c) $-3+1+2.50-0=\$.50$
(d) $-3+1+5-0=\$ 3$
(e) $-3+1+10-5=\$ 3$

4. See answers to the Exercises on p. 623.
5. (a) Break-even stock prices $=E+C+P$ and $E-C-P$.
(b) Largest amount of loss $=C+P$
6. (a) The shorter-term option should sell for a lower price than the longer-term option. Thus, sell one $\$ 5$ option and buy one $\$ 4$ option. Adjust position in 6 months.
(b) If $S \leq 50$ in 6 months, profit is:
$\$ 1$ if $S=48$ in one year.
$\$ 1$ if $S=50$ in one year.
$\$ 3$ if $S=52$ in one year.
If $S>50$ is 6 months, profit is:
$\$ 3$ if $S=48$ in one year.
$\$ 1$ if $S=50$ in one year.
$\$ 1$ if $S=52$ in one year.
7. See answers to the Exercises on p. 623.
8. P increases as S decreases, the opposite of calls.
P increases as E increases, the opposite of calls.
P increases at t increases, since longer-term options are more valuable than shorterterm options.
P increases as σ increases, since all option values increase as volatility increases.
P increases as i decreases, the opposite of calls. The replicating transaction for calls involves lending money, while the replicating transaction for puts involves borrowing money.
9. Figure 13.5 provides the explanation.
10. (a) 0 from Figure 13.5.
(b) $S-E e^{-\delta n}$ from Figure 13.5.
(c) S, since the call is equivalent to the stock.
(d) 0 , since the option is far "out of the money."
(e) $S-E$, if $S \geq E$

0 , if $S<E$, the $I V C$.
(f) S from Figure 13.5.
11. Using put-call parity, we have

$$
S+P=v^{t} E+C \quad \text { or } \quad C=S+P-v^{t} E .
$$

In the limit as $S \rightarrow \infty, P \rightarrow 0$, so that

$$
C=S+0-v^{t} E=S-v^{t} E .
$$

12. Using put-call parity, we have

$$
\begin{aligned}
S+P & =v^{t} E+C \\
49+P & =\left(1+\frac{.09}{12}\right)^{-3}(50)+1 \text { and } P=\$.89 .
\end{aligned}
$$

13. Buy the call. Lend $\$ 48.89$. Sell the stock short. Sell the put. Guaranteed profit of $-1+48.89+49+2=\$ 1.11$ at inception.
14. See Answers to the Exercises on p. 624.
15. (a) At $S=45$, profit is

$$
(2)(4)-3-6+0+0+0=-\$ 1
$$

At $S=50$, profit is

$$
(2)(4)-3-6+5+0+0=+\$ 4
$$

At $S=55$, profit is

$$
(2)(4)-3-6+10-(5)(2)+0=-\$ 1
$$

(b) See Answers to the Exercises on p. 624.
16. (a) The percentage change in the stock value is $+10 \%$ in an up move, and -10% in a down move. The risk-free rate of interest is $i=.06$. Let p be the probability of an up move. We have

$$
p(.10)+(1-p)(-.10)=.06
$$

or $.20 p=.16$ and $p=.8$.
(b) Using formula (13.12)

$$
C=\frac{p \cdot V_{U}+(1-p) V_{D}}{1+i}=\frac{(.8)(10)+(.2)(0)}{1.06}=\$ 7.55 .
$$

17. (a) Using formula (13.8)

$$
\Delta=\frac{V_{U}-V_{D}}{S_{U}-S_{D}}=\frac{10-0}{110-90}=1 / 2 .
$$

(b) Bank loan $=$ Value of stock - Value of 2 calls $=100-2(7.55)=84.906$ for 2 calls. For one call the loan would be $\frac{84.906}{2}=\$ 42.45$.
18.

Year 1	Year 2		Probability	
Up	Up		$(.8)(.8)=.64$	$100(1.1)^{2}=121$
Up	Down		$(.8)(.2)=.16$	$100(1.1)(.9)=99$
Down	Up		$(.2)(.8)=.16$	$100(.9)(1.1)=99$
Down	Down		$(.2)(.2)=.04$	$100(.9)^{2}=81$

We then have

$$
C=\frac{(.64)(121-100)}{(1.06)^{2}}=\$ 11.96
$$

19. (a) Using the formula (13.7)

$$
k=e^{\sigma \sqrt{h}}-1=e^{.3 \sqrt{125}}-1=.11190
$$

(b) Up move: $\quad 90(1+k)=100.071$

Down move: $90(1+k)^{-1}=80.943$
Now

$$
100.071 p+80.943(1-p)=90 e^{.125(.1)}=91.132
$$

and solving, we obtain $p=.5327$.
(c) Applying formula (13.13) with the values of k and p obtained in parts (a) and (b) above together with $n=8$, we obtain $C=\$ 10.78$. This, compare with the answer of $\$ 10.93$ in Example 13.7.
20. Using formula (13.12) together with the stock values obtained in Exercise 18, $p=.8$ and $i=.06$ we obtain

$$
P=\frac{(.16)(100-99)+(.16)(100-99)+(.04)(100-81)}{(1.06)^{2}}=\$.96
$$

21. The value of a put $=0$ if $S(1+k)^{n-2 t} \geq E=E-S(1+k)^{n-t}$ if $S(1+k)^{n-2 t}<E$ or $\max \left[0, E-S(1+k)^{n-2 t}\right]$. Thus, the value of an European put becomes

$$
P=\frac{1}{(1+i)^{n}} \sum_{t=0}^{n}\binom{n}{t} p^{n-t}(1-p)^{t} \max \left[0, E-S(1+k)^{n-2 t}\right] .
$$

22. We are asked to verify that formulas (13.14) and (13.16) together satisfy formula (13.5). We have

$$
\begin{aligned}
S+P & =S+E e^{-\delta n}\left[1-N\left(d_{2}\right)\right]-S\left[1-N\left(d_{1}\right)\right] \\
S+P & =v^{n} E-E e^{-\delta n} N\left(d_{2}\right)+S N\left(d_{1}\right) \\
& =v^{n} E+C \text { validating the result. }
\end{aligned}
$$

23. Applying formula (13.16) directly, we have

$$
P=100 e^{-.1}(1-.4333)-90(1-.5525)=\$ 11.00
$$

The result could also be obtained using put-call parity with formula (13.5).
24. Applying formulas (13.14) and (13.15) repeatedly with the appropriate inputs gives the following:
(a) 5.76
(b) 16.73
(c) 8.66
(d) 12.58
(e) 5.16
(f) 15.82
(g) 5.51
(h) 14.88
25. We modify the final equation in the solution for Example 13.8 to obtain

$$
C=\left(90-360 e^{-.1}\right)(.5525)-\left(100 e^{-.1}\right)(.4333)=\$ 8.72 .
$$

26. The price of the noncallable bond is $B^{n c}=100$ since the bond sells at par. The price of the callable bond can be obtained from formula (13.17) as

$$
B^{c}=B^{n c}-C
$$

Thus, the problem becomes one of estimating the value of the embedded option using the Black Scholes formula. This formula places a value of 2.01 on the embedded call. The answer is then $100.00-2.01=\$ 97.99$.
27. We modify the put-call parity formula to obtain

$$
\begin{gathered}
S-P V \text { dividends }+P=v^{t} E+C \\
49-.50 a_{3.0075}+P=(1.0075)^{-3}(50)+1
\end{gathered}
$$

and solving for P we obtain

$$
P=2.37
$$

28. The average stock price is

$$
\frac{10.10+10.51+11.93+12.74}{4}=11.32
$$

and the option payoff is $11.32-9=\$ 2.32$.

