
4 Number Theory and Cryptography

Introduction
Mathematica includes numerous functions for exploring number theory. In this chapter we will see
how to use Mathematica's computational abilities to compute and solve congruences, represent inte-
gers in bases other than ten, explore arithmetic algorithms in those bases, check whether or not a num-
ber is prime, and compute discrete logarithms. We will also see how Mathematica can help explore
several of the applications described in the textbook, in particular, hashing functions, pseudorandom
numbers, check digits, and, of course, cryptography.

4.1 Divisibility and Modular Arithmetic
In this section we will use Mathematica to explore divisibility of integers and modular arithmetic. We
will see how to compute quotients and remainders in integer division, how to test integers for the
divisibility relationship, and how to perform computations in modular arithmetic. This section will
conclude with an illustration of how to create infix addition and multiplication operators for modular
arithmetic and a demonstration of how Mathematica can be used to compute addition and multiplica-
tion tables.

Quotient, Remainder, and Divisibility
Mathematica’s functions Quotient and Mod compute the quotient and remainder, respectively,
obtained when you divide two integers. For example, consider 99 divided by 13.

In[1]:= Quotient@99, 13D

Out[1]= 7

In[2]:= Mod@99, 13D

Out[2]= 8

These results indicate that 99 divided by 13 results in a quotient of 7 and a remainder of 8. That is,
99 = 13 ÿ 7+ 8.
Note that the textbook uses the notation a mod m to represent the remainder when a is divided by m,
using mod like an operator. To enter this in Mathematica, you must use the functional notation
Mod@a, mD.
Another function, QuotientRemainder, produces a list with first element the quotient and second
element the remainder.

In[3]:= QuotientRemainder@99, 13D

Out[3]= 87, 8<

Checking Divisibility
To test whether one integer divides another, you can, of course, check to see if the remainder is 0 or
not. For example, the following shows that 3 132.

In[4]:= Mod@132, 3D

Out[4]= 0

Mathematica also provides the function Divisible for testing divisibility. The Divisible func-
tion returns true if its first argument is divisible by the second.

In[5]:= Divisible@132, 3D

Out[5]= True

In[6]:= Divisible@99, 13D

Out[6]= False

Offset
Recall from the division algorithm that the remainder must always be nonnegative, even when the
dividend is negative. Mathematica’s Mod function respects that convention by default, with
Mod@a, mD returning a value between 0 and m- 1.

In[7]:= Mod@-27, 5D

Out[7]= 3

However, there are times when it is more useful to allow negative values. For example, consider the
following question: “It is now 11:00 AM. What time will it be 142 hours from now?” If we compute
142 mod 24,

In[8]:= Mod@142, 24D

Out[8]= 22

We see that the time will be the same 142 hours from now as 22 hours from now. But it's also the case
that 142 ª -2 Hmod 24L, which means that the time 142 hours from now is the same as the time 2 hours
earlier, i.e., 9:00 AM. You can see that this congruence is somewhat more convenient.
To support this, the Mod function accepts an optional third argument, called the offset. The offset
specifies a lower bound on the Mod function’s output. Specifically, for an integral offset d,
Mod@a, m, dD will return the value congruent to a mod m that lies between d and d +m- 1. For
example, by specifying an offset of 1, the result will be betwen 1 and m, so a computation that would
ordinarily return 0 will return the value of the modulus instead.

In[9]:= Mod@132, 3, 1D

Out[9]= 3

The value 1 is a common offset, as it ensures a positive result that can then be used as an index into a
list. Another common offset is the fraction -m ê 2. This offset ensures that the output is the integer
closest to 0 that is congruent to the first argument modulo the second. For example, returning to the
time example above, to obtain the result -2 we use the offset -24 ê 2.

2 Chapter04.nb

The value 1 is a common offset, as it ensures a positive result that can then be used as an index into a
list. Another common offset is the fraction -m ê 2. This offset ensures that the output is the integer
closest to 0 that is congruent to the first argument modulo the second. For example, returning to the
time example above, to obtain the result -2 we use the offset -24 ê 2.

In[10]:= Mod@142, 24, -24ê2D

Out[10]= -2

Congruences
The first argument to Mod can be any algebraic expression. For example, you can compute
3+ 4 ÿ 92 mod 5 as follows.

In[11]:= Mod@3 + 4*9^2, 5D

Out[11]= 2

To test a congruence, for example to confirm that 428 ª 530 Hmod 17L, you must apply the Mod func-
tion to both values and test them using the Equal (==) relation.

In[12]:= Mod@428, 17D ã Mod@530, 17D

Out[12]= True

You may not include the Equal (==) relation within the argument to Mod.
Solving Congruences
Mathematica can solve congruences by using the Solve function in conjunction with the Modulus
option. To do so, give the congruence or list of simultaneous congruences as the first argument to
Solve and identify the modulus using the Modulus option. As an example, consider Exercise 13a
from Section 4.1 of the textbook. Under the assumption that a ª 4 Hmod 13L, we are to solve
c ª 9 a Hmod 13L. We solve this using Mathematica as follows.

In[13]:= Solve@8a ã 4, c ã 9*a<, Modulus Ø 13D

Out[13]= 88a Ø 4, c Ø 10<<

Note that the congruences are entered as a list. This tells Mathematica that they must be simultane-
ously satisfied. Also observe that we must use the Equal (==) relation, not Set (=), when specifying
the congruences.
If there are no solutions to the congruence, then Solve will return the empty list.

In[14]:= Solve@n^2 ã 3, Modulus Ø 4D

Out[14]= 8<

Arithmetic Modulo m
In this subsection we’ll define operators based on the definitions of +m and ÿm given in the text. Our
goal will be to get as close as possible to being able to enter 7+11 9 and have Mathematica return 5.
The usual style of writing arithmetic operators in between the operands is referred to as infix notation.
There are operators that Mathematica recognizes as infix operators, but which do not have built-in
definitions. We can take advantage of this to create our own infix operators by providing definitions
for these undefined operators.
You can see all of Mathematica’s operators in the table of operator precedence in the Operator Input
Forms tutorial. Those operators with a triangular mark in the far right of the table have built-in defini-
tions. Those without such a mark are available for your own use. Here, we will make use of the Cir-
clePlus (Å⊕) and CircleTimes (Ä⊗) operators.

Chapter04.nb 3

You can see all of Mathematica’s operators in the table of operator precedence in the Operator Input
Forms tutorial. Those operators with a triangular mark in the far right of the table have built-in defini-
tions. Those without such a mark are available for your own use. Here, we will make use of the Cir-
clePlus (Å⊕) and CircleTimes (Ä⊗) operators.
To enter these as infix operators, you need to use their aliases. To enter Å⊕, type Âc+Â, and to enter Ä⊗
, type Âc*Â.
Observe that if you enter an expression using one of the operators, and apply the FullForm function,
you can see that Mathematica interprets the infix operator as an application of the named function.

In[15]:= 2Å⊕3 êê FullForm
Out[15]//FullForm=

CirclePlus@2, 3D

Also note that while these functions are currently undefined, they do have a defined precedence. So,
for example, 2Å⊕ 3Ä⊗ 4 is interpreted as 2Å⊕ H3Ä⊗ 4L, which can be verified by inspecting the functional
expression obtained with FullForm.

In[16]:= 2Å⊕3Ä⊗4 êê FullForm
Out[16]//FullForm=

CirclePlus@2, CircleTimes@3, 4DD

To define the operator, you can issue the definition using either the functional or infix form. Below, we
define addition in functional form and multiplication in infix form. Regardless of the form you provide
the definition, Mathematica will properly evaluate both forms.

In[17]:= CirclePlus@a_, b_D := Mod@a + b, 11D

In[18]:= a_Ä⊗b_ := Mod@a*b, 11D

Now we can compute 7+11 9 and 3 ÿ11 5 using the Å⊕ and Ä⊗ operators.
In[19]:= 7Å⊕9

Out[19]= 5

In[20]:= 3Ä⊗5

Out[20]= 4

Addition and Multiplication Tables
We conclude this section by producing addition and multiplication tables.
We will create the tables, unsurprisingly, using the Table function. The first argument will be the
sum or product of two variables within the Mod function. The Table repetition arguments will specify
that the variables range from 0 to one less than the modulus. A call to TableForm will make the
result readable.
Here is the addition table modulo 5.

4 Chapter04.nb

In[21]:= Table@Mod@a + b, 5D, 8a, 0, 4<, 8b, 0, 4<D êê TableForm
Out[21]//TableForm=

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

We can improve the table a bit more by adding column and row headings. This is done using the
TableHeadings option to TableForm. By setting the TableHeadings option to a list consist-
ing of two sublists corresponding to the desired labels for the rows and then the columns, Mathematica
will display those labels as headings. The keywork None can be used in place of one of the sublists so
as to omit the corresponding set of labels.

In[22]:= TableForm@Table@Mod@a + b, 5D, 8a, 0, 4<, 8b, 0, 4<D,
TableHeadings Ø 880, 1, 2, 3, 4<, 80, 1, 2, 3, 4<<D

Out[22]//TableForm=
0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Using that example as a model, it is easy to create general functions that will accept a modulus and
display the addition or multiplication table.

In[23]:= AdditionTable@m_D := Module@8a, b<,
TableForm@Table@Mod@a + b, mD, 8a, 0, m - 1<, 8b, 0, m - 1<D,
TableHeadings Ø 8Range@0, m - 1D, Range@0, m - 1D<DD

In[24]:= MultiplicationTable@m_D := Module@8a, b<,
TableForm@Table@Mod@a*b, mD, 8a, 0, m - 1<, 8b, 0, m - 1<D,
TableHeadings Ø 8Range@0, m - 1D, Range@0, m - 1D<DD

Here is the multiplication table modulo 5.
In[25]:= MultiplicationTable@5D

Out[25]//TableForm=
0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

4.2 Integer Representations and Algorithms

Chapter04.nb 5

4.2 Integer Representations and Algorithms
In this section we will see how Mathematica can be used to explore representations of integers in
various bases and to explore algorithms for computing with integers. We will begin by looking at
Mathematica's built-in functions for converting between bases. Then we'll focus our attention on
binary representations of integers and how to implement algorithms for addition and multiplication on
binary representations. We restrict our attention to positive integers throught this section.

Base Conversion
Mathematica provides support for converting from one base representation to another via the functions
IntegerDigits, IntegerString, and FromDigits.
The IntegerDigits function is used to convert a positive integer, expressed in base ten, into a list
of the digits of the integer expressed in a specified base. The first argument to IntegerDigits is
the base ten integer. If no other arguments are provided, the function returns the list of the digits of the
integer.

In[26]:= IntegerDigits@1234D

Out[26]= 81, 2, 3, 4<

Note that the most significant digit is first in the list and the least significant is last. That is, the “one’s
digit” is the last element in the list.
By providing a base as a second argument, the IntegerDigits function will output the list of the
digits in the representation of the integer in that base. The following indicates that
H1234L10 = H103 102L4.

In[27]:= IntegerDigits@1234, 4D

Out[27]= 81, 0, 3, 1, 0, 2<

For bases larger than ten, IntegerDigits does not make use of letters for digits with values larger
than 9. Rather, it uses the base ten representation of the value of such digits. For example, in Example
5 of the textbook, it is shown that H177 130L10 = H2 B3EAL16. The output of IntegerDigits reports
10, 11, and 14 rather than A, B, and E.

In[28]:= IntegerDigits@177 130, 16D

Out[28]= 82, 11, 3, 14, 10<

The IntegerDigits function also accepts a third argument to specify a minimum length of the
output. If the representation of the integer in the given base has fewer digits than specified by the third
argument, zeros will be added on the left. The following shows the representation of 123 in binary
(base 2), with ten digits.

In[29]:= IntegerDigits@123, 2, 10D

Out[29]= 80, 0, 0, 1, 1, 1, 1, 0, 1, 1<

The IntegerString function is very similar to IntegerDigits, accepting the same arguments
and having a very similar effect. The difference is that the output of IntegerString is a string
rather than a list. This means that the output has a more typical appearance. Contrast the output below
to the corresponding example above.

6 Chapter04.nb

The IntegerString function is very similar to IntegerDigits, accepting the same arguments
and having a very similar effect. The difference is that the output of IntegerString is a string
rather than a list. This means that the output has a more typical appearance. Contrast the output below
to the corresponding example above.

In[30]:= IntegerString@1234, 4D

Out[30]= 103102

Note that, despite appearances, the output is in fact a string object, and not a numerical object.
In[31]:= Head@%D

Out[31]= String

As a result, you cannot manipulate the output of IntegerString using numerical operators. The
IntegerDigits function is much more useful if you wish to work with the output. However, Inte-
gerString produces much more readable output. It also follows the usual convention of using
letters for digits larger than 9.

In[32]:= IntegerString@177 130, 16D

Out[32]= 2b3ea

The IntegerDigits and IntegerString functions are both used to take a base ten representa-
tion of a positive integer and return a representation in another base. For the reverse, we use the
FromDigits function.
The first argument of FromDigits can be either a list, like the output of IntegerDigits, or a
string, like the output of IntegerString. With no second argument, Mathematica will assume that
the input is intended to be base ten and will convert the list or string into the corresponding integer.

In[33]:= FromDigits@81, 2, 3, 4<D

Out[33]= 1234

In[34]:= FromDigits@"1234"D

Out[34]= 1234

The second argument specifies the base in which the first argument is given. For example, to convert
H103 012L4 back to base ten, you enter either of the following.

In[35]:= FromDigits@81, 0, 3, 1, 0, 2<, 4D

Out[35]= 1234

In[36]:= FromDigits@"103102", 4D

Out[36]= 1234

For bases larger than ten, you can use letters to represent digits larger than nine when using a string as
the first argument to FromDigits. Note that either lower or upper case are acceptable.

In[37]:= FromDigits@"2B3EA", 16D

Out[37]= 177 130

Finally, note that both IntegerString and FromDigits can, in place of the base, accept the
string “Roman”, in which case the function will convert to or from a Roman numeral representation.

Chapter04.nb 7

In[38]:= IntegerString@2013, "Roman"D

Out[38]= MMXIII

In[39]:= FromDigits@"MMXIII", "Roman"D

Out[39]= 2013

The BaseForm function should also be mentioned. Unlike the functions above, BaseForm only
affects how a number is displayed by Mathematica, not its type. That is, BaseForm does not change
an integer into a list or string, it only displays it as if it were in a different base. Its arguments are a
base ten integer and a base.

In[40]:= BaseForm@177 130, 16D
Out[40]//BaseForm=

2b3ea16

In the other direction, you can use the double-caret (^^) notation to enter a number in a specified base.
Enter the base, followed by the representation of the number in that base. For example, to enter HA3L16
you type the following.

In[41]:= 16^^a3

Out[41]= 163

Converting Between Two Non-ten Bases
Given a positive integer in a base other than ten, you can convert it to another by using base ten as an
intermediary. For example, to convert H123L5 to base 3, you proceed as follows. First convert to base
ten using FromDigits.

In[42]:= FromDigits@"123", 5D

Out[42]= 38

Then use IntegerString to convert to base 3.
In[43]:= IntegerString@38, 3D

Out[43]= 1102

The result indicates that H123L5 = H1102L3.
We can combine these two steps into a single function that takes as its arguments a string representing
the integer, the starting base, and the final base. The body of the function is simply a composition of
FromDigits and IntegerString.

In[44]:= convertString@n_, b1_, b2_D :=
IntegerString@FromDigits@n, b1D, b2D

In[45]:= convertString@"123", 5, 3D

Out[45]= 1102

It is left to the reader to define a similar function that outputs a list of digits rather than a string.

Binary Addition
In this subsection, we will implement Algorithm 2 from Section 4.2, addition of integers. Our function
will accept two binary representations given as lists of 0s and 1s with the most significant digit first.
The first task for our function will be to make sure that the binary representations are of the same
length. To do this, we compute the maximum of the lengths of the two lists, which will be stored as n,
and then add as many 0s to the list as are necessary to make both lists that length. We also initialize a
sum list S to the list of all 0s of that same length.

8 Chapter04.nb

In this subsection, we will implement Algorithm 2 from Section 4.2, addition of integers. Our function
will accept two binary representations given as lists of 0s and 1s with the most significant digit first.
The first task for our function will be to make sure that the binary representations are of the same
length. To do this, we compute the maximum of the lengths of the two lists, which will be stored as n,
and then add as many 0s to the list as are necessary to make both lists that length. We also initialize a
sum list S to the list of all 0s of that same length.
To add 0s to the input list, we use the PadLeft function, which takes a list and a length and returns
the list of the desired length obtained by adding 0s on the left side of the list. As you might suspect,
there is also a PadRight function. To initialize S, we use ConstantArray, which, given an expres-
sion and a length creates the list of the desired length all of whose elements are the given expression.
We illustrate these functions below.

In[46]:= PadLeft@81, 2, 3<, 7D

Out[46]= 80, 0, 0, 0, 1, 2, 3<

In[47]:= ConstantArray@"x", 5D

Out[47]= 8x, x, x, x, x<

Once these initial tasks are completed, we follow Algorithm 2. Note that the indices used must be
modified to match that used by Mathematica. The loop variable j, as presented in the textbook ranges
from 0 to n- 1, where 0 is the index of the least significant (the “one’s”) digit and n- 1 is the index of
the most significant digit. In this implementation, the least significant digit in the input values, A and B,
will be in the last position, which has index equal to their length, n. And the most significant digit will
be in position 1. Consequently, our For loop will have variable j ranging from n to 1.
The last difference between our implementation and Algorithm 2 is the use of the PrependTo func-
tion to add a 1 at the beginning of the sum, in case a carry requires the result have an additional digit.

In[48]:= addition@a_List, b_ListD := Module@8n, A, B, S, c, j, d<,
n = Max@Length@aD, Length@bDD;
A = PadLeft@a, nD;
B = PadLeft@b, nD;
S = ConstantArray@0, nD;
c = 0;
For@j = n, j ¥ 1, j--,
d = Floor@HA@@jDD + B@@jDD + cLê2D;
S@@jDD = A@@jDD + B@@jDD + c - 2*d;
c = d

D;
If@c ã 1, PrependTo@S, 1DD;
S

D

In[49]:= addition@81, 0, 1, 0<, 81, 1, 1, 0, 1, 0<D

Out[49]= 81, 0, 0, 0, 1, 0, 0<

Binary Multiplication
Finally, we will implement a multiplication algorithm, presented as Algorithm 3 in Section 4.2. Once
again, our function will accept the binary representations of positive integers as the inputs. This time,
however, it is not necessary for them to have the same length.

Chapter04.nb 9

Finally, we will implement a multiplication algorithm, presented as Algorithm 3 in Section 4.2. Once
again, our function will accept the binary representations of positive integers as the inputs. This time,
however, it is not necessary for them to have the same length.
The shift that occurs when b j = 1 will be accomplished as the following example illustrates. To shift
the list 81, 1, 1, 1< by 5 places, we must add five 0s on the end of the list. We do this by using Con-
stantArray to create the list of 5 0s and then Join to combine the original list with this list of
zeros.

In[50]:= shiftExample = 81, 1, 1, 1<

Out[50]= 81, 1, 1, 1<

In[51]:= Join@shiftExample, ConstantArray@0, 5DD

Out[51]= 81, 1, 1, 1, 0, 0, 0, 0, 0<

We will store the partial products using an indexed variable. Recall from Section 2.3 of this manual
that we can store an object in an indexed variable, c, by making an assignment to the symbol c[i] for
index i.
The product p will be initialized to {0}, a binary representation of 0. The addition in the final loop
will be performed by the addition function we created above.
As noted above, there is a discrepancy between the way indices are used in the pseudocode in the text
and the indices used in Mathematica. For this function, we will mirror the textbook with the loop
variable j ranging from 0 to n-1, where n is the number of digits in the second number. We interpret
j as being the number of digits beyond the least significant digit, which has position n. Within the
body of the loop, we inspect location n-j.
Here is our implementation of Algorithm 3.

In[52]:= multiplication@a_List, b_ListD := Module@8n, j, c, p<,
n = Length@bD;
For@j = 0, j § n - 1, j++,
If@b@@n - jDD ã 1,
c@jD = Join@a, ConstantArray@0, jDD,
c@jD = 80<

D
D;
p = 80<;
For@j = 0, j § n - 1, j++,
p = addition@p, c@jDD

D;
p

D

We test our function using Example 10 from Section 4.2.
In[53]:= multiplication@81, 1, 0<, 81, 0, 1<D

Out[53]= 81, 1, 1, 1, 0<

4.3 Primes and Greatest Common Divisors

10 Chapter04.nb

4.3 Primes and Greatest Common Divisors
In this section we will see how to use Mathematica to find primes, find prime factorizations, and com-
pute greatest common divisors and least common multiples. We will also use Mathematica's capabili-
ties to explore the distribution of primes.

Primes
We will first introduce some of Mathematica's functions for testing whether a number is prime and for
finding primes.
Testing for Primality
The PrimeQ function accepts a single argument, an integer to be tested, and returns true or false.

In[54]:= PrimeQ@5D

Out[54]= True

In[55]:= PrimeQ@10D

Out[55]= False

In[56]:= PrimeQ@2^13 - 1D

Out[56]= True

Unlike the trial division algorithm discussed in the book, which checks all possible divisors to see if a
number is prime or composite, PrimeQ uses a probabilistic primality test. This probabilistic test gains
much faster performance at the cost of a small possibility that the command will return an incorrect
result. There is no known example of an integer for which PrimeQ is incorrect and any such example
must be exceptionally large. So, despite there being a chance of error, PrimeQ is in fact very reliable.
Listing Primes
The function Prime accepts as input a positive integer i and outputs the ith prime number.

In[57]:= Prime@1D

Out[57]= 2

In[58]:= Prime@2D

Out[58]= 3

In[59]:= Table@Prime@iD, 8i, 20<D

Out[59]= 82, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71<

In[60]:= Prime@100 000D

Out[60]= 1 299 709

Mathematica also provides the NextPrime function, which returns the smallest prime larger than the
input value. For example, to find the first prime number larger than 1000, enter the following.

Chapter04.nb 11

In[61]:= NextPrime@1000D

Out[61]= 1009

The NextPrime function can also be given an optional second argument, which must be an integer.
NextPrime@n, kD returns the kth prime larger then n. If the second argument is negative, the
function instead returns the prime smaller than n. For example, the following expressions find the third
prime after 1000 and the prime before it.

In[62]:= NextPrime@1000, 3D

Out[62]= 1019

In[63]:= NextPrime@1000, -1D

Out[63]= 997

Prime Factorization
To compute the prime factorization of an integer, we can use the Mathematica function FactorInte-
ger. Several examples of using FactorInteger follow.

In[64]:= FactorInteger@100D

Out[64]= 882, 2<, 85, 2<<

In[65]:= FactorInteger@123 456 789D

Out[65]= 883, 2<, 83607, 1<, 83803, 1<<

In[66]:= FactorInteger@-987 654 321D

Out[66]= 88-1, 1<, 83, 2<, 817, 2<, 8379 721, 1<<

The output of FactorInteger is a list of pairs. Each pair consists of a prime number and the multi-
plicity, or exponent, of that prime in the prime factorization. Note that in the last example, with nega-
tive input, one of the members of the list is the pair {-1,1}, indicating that H-1L1 is in the factoriza-
tion. The output above indicates that 100 = 22 ÿ 52, 123 456 789 = 32 ÿ 36071 ÿ 38031, and
-987 654 321 = H-1L1 ÿ 32 ÿ 172 ÿ 379 7211.
Note that FactorInteger can also accept an optional argument to limit the effort Mathematica will
exert in trying to factor. Entering Automatic as the second argument limits the function to factors
that it can find easily. You can also give a positive integer as the second argument, and Mathematica
will then find at most that many distinct factors.

In[67]:= FactorInteger@236 914 830 635 411 777 378 758 175 934 586 404 476 822D

Out[67]= 882, 1<, 8197, 1<, 8509, 1<, 810 459 723, 3<, 832 129 861, 2<<

In[68]:= FactorInteger@
236 914 830 635 411 777 378 758 175 934 586 404 476 822, 3D

Out[68]= 88394, 1<, 8509, 1<,
81 181 349 070 215 370 924 270 532 326 421 800 507, 1<<

The first expression above factors the given integer into its complete prime factorization. The second is
limited to finding only 3 distinct factors. After finding the first two prime factors, 394 and 509, it
reports the remainder as the last factor with exponent 1. This gives you a way to have Mathematica
only perform the easy parts of factorizations, which can help ensure that your functions run quickly
during development. Then, when you are ready to let the function take all the time it needs, you can
remove the limitation.

12 Chapter04.nb

The first expression above factors the given integer into its complete prime factorization. The second is
limited to finding only 3 distinct factors. After finding the first two prime factors, 394 and 509, it
reports the remainder as the last factor with exponent 1. This gives you a way to have Mathematica
only perform the easy parts of factorizations, which can help ensure that your functions run quickly
during development. Then, when you are ready to let the function take all the time it needs, you can
remove the limitation.

The Distribution of Primes
The Prime Number Theorem (Theorem 4 in Section 4.3 of the text) tells us that the number of primes
not exceeding x is approximated by the function x

lnHxL
. In this subsection, we will use Mathematica's

graphing capabilities to graph the number of primes not exceeding x.
Recall from Section 3.3 of this manual that we can graph a list of points by using the ListPlot
function applied to a list of x-y pairs. Our x values will be the integers from 2 to 1000 (we omit 1 since
there are no primes less than or equal to 1).
To find the number of primes not exceeding x, we use the function PrimePi. The function pHxL is the
standard notation for the number of primes less than or equal to x. The symbol PrimePi distinguishes
this function in Mathematica from the mathematical constant which is given the symbol Pi. To calcu-
late the number of primes less than or equal to 1000, for example, we enter the following.

In[69]:= PrimePi@1000D

Out[69]= 168

We use the Table function to produce the list of pairs 8x, pHxL<, which we will graph.
In[70]:= piList = Table@8x, PrimePi@xD<, 8x, 1000<D;

As we did in the solution to Computer Project 9 of Chapter 3, we will graphically compare the values
of pHxL to the function x

lnHxL
. We will define two graphics objects and then combine them with the

Show function. Refer to Chapter 3 of this manual, particularly Section 3.3 and the solution to Com-
puter Project 9, for detailed information about the commands ListPlot and Plot that we use here.
We also use the legending functions Legended and LineLegend. For a single application of Plot,
you can use the PlotLegends option to very easily add a legend to the plot. That option is not
available to Show, however. Instead, you must use the more general function Legended and manu-
ally construct the legend with LineLegend (or one of the related functions such as PointLegend
or SwatchLegend). In this context, Legended can be thought of as a wrapper containing a graph-
ics object, or more precisely an expression that produces a graphics object, as the first argument, and a
call to a function that creates a legend as the second argument. The LineLegend function generally
takes two arguments: the first a list of colors and the second a list of labels for the color in the corre-
sponding position.

In[71]:= piPlot = ListPlot@piList, PlotStyle Ø BlueD;

In[72]:= xlnxPlot = Plot@xêLog@xD, 8x, 2, 1000<, PlotStyle Ø RedD;

Chapter04.nb 13

In[73]:= LegendedBShow@piPlot, xlnxPlotD,

LineLegendB8Blue, Red<, :"pHxL", "
x

ln HxL
">FF

200 400 600 800 1000

50

100

150

pHxL
x

ln HxL

Notice that while the blue line representing pHxL seems to remain above the red line representing x
lnHxL

,

it is fairly clear from the graph that they grow at the same rate.

Greatest Common Divisor and Least Common Multiple
Mathematica provides the functions GCD and LCM for computing the greatest common divisor and the
least common multiple of integers. To compute the greatest common divisor of two integers, you apply
the GCD function to them.

In[74]:= GCD@6, 9D

Out[74]= 3

You can also compute the greatest common divisor of more than two integers. For more than 2 inte-
gers, the greatest common divisor is defined to be the largest integer that is a divisor of all of them. For
example, 3 divides 6, 9, and 12, so:

In[75]:= GCD@6, 9, 12D

Out[75]= 3

The LCM command finds the least common multiple of two or more integers. For example,
In[76]:= LCM@6, 9D

Out[76]= 18

In[77]:= LCM@12, 18, 33D

Out[77]= 396

Relatively Prime
Recall from the text that two numbers are said to be relatively prime if their greatest common divisor is
1. For example, consider 10 and 21.

14 Chapter04.nb

In[78]:= GCD@10, 21D

Out[78]= 1

Since GCD returned 1, we conclude that 10 and 21 are relatively prime.
The Mathematica function CoprimeQ, applied to two integers, returns true if they are relatively prime
and false if not.

In[79]:= CoprimeQ@3, 6D

Out[79]= False

In[80]:= CoprimeQ@22, 15D

Out[80]= True

Also recall that a list of integers a1, a2, …, an are said to be pairwise relatively prime if gcdIai, a jM = 1
whenever 1 § i < j § n. That is, when every pair is relatively prime. The CoprimeQ function, applied
to more than two integers, tests this property.
Observe that 14, 39, and 55 are pairwise relatively prime.

In[81]:= CoprimeQ@14, 39, 55D

Out[81]= True

However, 42, 165, and 182 are not pairwise relatively prime, since 42 and 182 are both even, even
though the common GCD of all three integers is 1.

In[82]:= GCD@42, 165, 182D

Out[82]= 1

In[83]:= CoprimeQ@42, 165, 182D

Out[83]= False

The Extended Euclidean Algorithm
While GCD is useful for calculating the greatest common divisor of integers, it is sometimes desirable
to be able to express the greatest common divisor as an integral combination of the integers. Specifi-
cally, given integers a and b, we may wish to express gcdHa, bL as s ÿ a+ t ÿ b where s and t are integers.
The fact that such integers always exist is known as Bézout's Theorem, given in the text as Theorem 6
of Section 4.3. In the preamble to Exercise 41 in the text, the extended Euclidean algorithm is
described, which produces not only the greatest common divisor but also the integers s and t.
In Mathematica, the function ExtendedGCD is an implementation of the extended Euclidean algo-
rithm. This function accepts two or more integers as arguments. It returns a list whose first element is
the greatest common divisor of the arguments and whose second element is a sublist whose members
are the coefficients required to obtain the GCD. As an example, consider 252 and 198, the values used
in Example 17 of the textbook.

In[84]:= ExtendedGCD@252, 198D

Out[84]= 818, 84, -5<<

The results above indicate that gcdH252, 198L = 18 = 4 ÿ 252- 5 ÿ 198. Note that the order of the coeffi-
cients is the same as the order of the arguments to the function.

4.4 Solving Congruences

Chapter04.nb 15

4.4 Solving Congruences
In this section, we will see how Mathematica can be used to solve congruences. We will begin the
section by looking at how to find inverses and solve linear congruences. We will then consider the
Chinese Remainder Theorem. Next, we will use Mathematica to find pseudoprimes, and we conclude
with an exploration of primitive roots and discrete logarithms.

Modular Inverses
Example 1 of Section 4.4 of the text demonstrates how Bézout coefficients can be used to find the
inverse of an integer modulo a number. In the previous section of this manual, we saw that the Extend-
edGCD function can be used to obtain the Bézout coefficients.
Finding Inverses with ExtendedGCD
For example, to find the inverse of 264 modulo 3185, we need to find s so that s ÿ 264+ t ÿ 3185 = 1,
provided that 264 and 3185 are relatively prime.
Recall that ExtendedGCD applied to two integers returns a structure of the form 8gcd, 8s, t <<
where gcd is the greatest common divisor of the two integers, and s and t are the Bézout coefficients.
Knowing that this is always the form of the output, Mathematica allows us to assign the result of
ExtendedGCD to a structure of that form. This has the effect of assigning the symbols to the corre-
sponding numbers in the output.

In[85]:= 8gBezout, 8sBezout, tBezout<< = ExtendedGCD@264, 3185D

Out[85]= 81, 8374, -31<<

Since the first element is 1, we know that 264 and 3185 are relatively prime. Also, the assignment has
caused the Bézout coefficients to be stored in the symbols.

In[86]:= sBezout

Out[86]= 374

In[87]:= tBezout

Out[87]= -31

This indicates that 1 = 374 ÿ 264+ H-31L ÿ 3185. And thus 374 is the inverse of 264 modulo 3185. We
can confirm this by computing the product modulo 3185.

In[88]:= Mod@374*264, 3185D

Out[88]= 1

Finding Inverses with PowerMod
Mathematica provides a simpler way to compute the modular inverse. The textbook uses the notation a
to indicate the modular inverse of an integer. An alternate notation is a-1, which calls to mind the
notation used in algebra for reciprocals, as in 3-1 = 1

3
.

The PowerMod function computes powers of integers in modular arithmetic. It takes three arguments:
the base integer, the exponent, and the modulus. For example, the following computes 34 Hmod 5L.

16 Chapter04.nb

In[89]:= PowerMod@3, 4, 5D

Out[89]= 1

For positive exponents, PowerMod is more efficient than applying Mod with the exponent computed
in the argument. Moreover, PowerMod accepts negative (and even rational) exponents. In particular,
applying PowerMod with second argument -1 computes the modular inverse.

In[90]:= PowerMod@264, -1, 3185D

Out[90]= 374

Note that if the integer and the modulus are not relatively prime, no inverse exists and an error is
generated.

In[91]:= PowerMod@4, -1, 10D

PowerMod::ninv : 4 is not invertible modulo 10. à

Out[91]= PowerMod@4, -1, 10D

Solving Congruences
We saw in Section 4.1 of this manual that the Solve function with Modulus option can be used for
solving congruences. We can use this command to solve linear congruences such as 4 x ª 3 Hmod 11L.

In[92]:= Solve@4*x ã 3, Modulus Ø 11D

Out[92]= 88x Ø 9<<

The first argument to Solve is the congruence expressed with an Equal (==) symbol. Following the
equation is a rule setting the Modulus option to the modulus. Mathematica returns a list whose ele-
ments express the solutions to the congruence. If there is no solution, Mathematica returns an empty
list.
The following attempts to solve 4 x ª 1 Hmod 10L, which is the same as finding an inverse for 4 modulo
10 and has no solution.

In[93]:= Solve@4*x ã 1, Modulus -> 10D

Out[93]= 8<

It is also possible to have multiple solutions. For example, 3 x ª 9 Hmod 12L.
In[94]:= Solve@3*x ã 9, Modulus Ø 12D

Out[94]= 88x Ø 3 + 4 C@1D<<

The symbol C[1] is used by Mathematica to stand for an arbitrary integer. This output indicates that
any value of x of the form 3+ 4 ÿC will solve the congruence. You can obtain a specific solution by
substituting a particular integer for the symbol C[1], using ReplaceAll (/.).

In[95]:= Solve@3*x ã 9, Modulus Ø 12D ê. C@1D Ø 1

Out[95]= 88x Ø 7<<

The Chinese Remainder Theorem
The text describes two approaches to solving systems of congruences of the form

Chapter04.nb 17

x ª a1 Hmod m1L
x ª a2 Hmod m2L

ª

x ª an Hmod mnL

Mathematica provides an implementation of the Chinese remainder theorem as the function Chi-
neseRemainder. The function takes two arguments: a list of the values 8a1, a2, …, an< first and a
list of the moduli 8m1, m2, …, mn< second. The result is the smallest positive integer that satisfies all of
the congruences. As an example, we solve the congruences

x ª 2 Hmod 3L
x ª 4 Hmod 5L
x ª 6 Hmod 7L

x ª 10 Hmod 11L

In[96]:= ChineseRemainder@82, 4, 6, 10<, 83, 5, 7, 11<D

Out[96]= 1154

Creating a Function
We will create a function for solving systems of congruences. This implementation will be based on
the construction given in the proof of the Chinese remainder theorem. While this will be less efficient
than Mathematica's built-in ChineseRemainder function, implementing the algorithm can help
you to better understand the proof of the theorem.
Our function, which we call crTheorem, will accept the same arguments as ChineseRemainder:
two lists, a and m, representing the values and the moduli of the congruences. It will begin with two
tests to check that the lists are the same length and that the moduli are in fact pairwise relatively prime,
as is required by the assumptions of the theorem. We use CoprimeQ from Section 4.3 of this manual
to check that the moduli are pairwise relatively prime. If these tests fail, the following messages are
generated.

In[97]:= crTheorem::argsize =
"Arguments must be lists of the same size.";

In[98]:= crTheorem::argcp = "Moduli must be pairwise relatively prime.";

We will embed the tests inside a small function in order to make the crTheorem function easier to
read.

In[99]:= crTestArgs@a_, m_D := Check@
If@Length@aD ¹≠ Length@mD, Message@crTheorem::argsizeDD;
If@Not@Apply@CoprimeQ, mDD, Message@crTheorem::argcpDD;
True,
FalseD

Most of the work of crTestArgs is done in the two If statements. The first compares the lengths of
a and m and the second checks whether the moduli are relatively prime. If the lists are of different
lengths or the moduli are not relatively prime, the appropriate message is issued. Note that the Apply
function is used in the second If statement in order to apply the function CoprimeQ, which expects
integer arguments, to the list m.
The Check function is used to “listen” for messages. It evaluates its first argument, which in this case
is the three lines ending with the expression True. If no messages are generated, then the result of the
Check is the outcome of that evaluation. In this case, if the two If statements do not raise messages,
then the outcome of the Check is True. However, if any messages are raised while evaluating the
first argument to Check, then Check returns its second argument instead. In this case, this means that
if any messages are raised, then the result of the function will be False.

18 Chapter04.nb

The Check function is used to “listen” for messages. It evaluates its first argument, which in this case
is the three lines ending with the expression True. If no messages are generated, then the result of the
Check is the outcome of that evaluation. In this case, if the two If statements do not raise messages,
then the outcome of the Check is True. However, if any messages are raised while evaluating the
first argument to Check, then Check returns its second argument instead. In this case, this means that
if any messages are raised, then the result of the function will be False.
As you can see below, with valid input, crTestArgs results in True, but it also is able to produce
both error messages and return False for arguments that violate the rules.
In[100]:= crTestArgs@81, 2, 3<, 85, 7, 11<D

Out[100]= True

In[101]:= crTestArgs@81, 2<, 84, 5, 6<D

crTheorem::argsize : Arguments must be lists of the same size.

crTheorem::argcp : Moduli must be pairwise relatively prime.

Out[101]= False

When we define the crTheorem function, we will use patterns in the arguments to ensure that the
arguments are lists of integers, and we will give crTestArgs as a Condition (/;), as shown
below.

crTheorem@a : 8__Integer<, m : 8__Integer<D ê;
crTestArgs@a, mD := ...

The syntax a:{__Integer}, and likewise for m, names the argument and imposes the pattern that it
be a sequence of integers enclosed in braces, that is, a list of integers. On the right hand side of the
Condition (/;) operator, we apply crTestArgs to the arguments before the SetDelayed (:=)
operator. With a function definition of this form, when you enter a call to crTheorem, Mathematica
will first check to see that the arguments match the specified patterns. If not, for instance if you pro-
vide a different number of arguments or attempt to use anything other than two lists of integers, Mathe-
matica will simply return the expression unevaluated. Assuming that you enter two lists of integers,
then Mathematica will apply crTestArgs. If this function returns False, then Mathematica will
return the crTheorem call unevaluated. Moreover, in this case, Mathematica will not attempt to
evaluate the body of the function. Only after the arguments have matched the pattern and
crTestArgs has returned True, will Mathematica evaluate the body of the function definition.
While the above is a bit more complicated seeming than placing the tests in the body of the function
and causing them to terminate execution with a Return or an Abort, it is a much more elegant way
to ensure that the function is robust.
Turning now to the main work of crTheorem, it begins by setting p equal to the product of the
moduli. (Note that p corresponds to m in the statement of the theorem in the text. This is the only
notational difference between our function and the text.) Note that we use the Apply (@@) operator
with the Times (*) function in order to compute this product. Times (*) is the functional version of
the multiplication operator, and combining it with Apply (@@) results in the product of the elements
of the list m.
The function then needs to compute Mk and yk. We use the indexed variables M and y for this. Note
that this creates a subtle syntactic point to pay attention to. Specifically, the third element of the list m
is accessed via m[[3]], while M3 is referred to by M[3]. The values are computed within a For
loop. The values for M are calculated by the formula Mk =

P
mk

. For y, we use the fact that the yk are the

inverses of Mk modulo mk. That is, yk ª Mk
-1 Hmod mkL. Finally, we compute the result

x = a1 M1 y1 + a2 M2 y2 +º⋯+ an Mn yn using the Sum function and return x Hmod pL. Here is the
function.

Chapter04.nb 19

The function then needs to compute Mk and yk. We use the indexed variables M and y for this. Note
that this creates a subtle syntactic point to pay attention to. Specifically, the third element of the list m
is accessed via m[[3]], while M3 is referred to by M[3]. The values are computed within a For
loop. The values for M are calculated by the formula Mk =

P
mk

. For y, we use the fact that the yk are the

inverses of Mk modulo mk. That is, yk ª Mk
-1 Hmod mkL. Finally, we compute the result

x = a1 M1 y1 + a2 M2 y2 +º⋯+ an Mn yn using the Sum function and return x Hmod pL. Here is the
function.
In[102]:= crTheorem@a : 8__Integer<, m : 8__Integer<D ê;

crTestArgs@a, mD :=
Module@8p, M, y, i, x<,
p = Times üü m;
For@i = 1, i § Length@aD, i++,
M@iD = pêm@@iDD;
y@iD = PowerMod@M@iD, -1, m@@iDDD

D;
x = Sum@a@@iDD* M@iD*y@iD, 8i, Length@aD<D;
Mod@x, pD

D

Note that our function produces the same result as ChineseRemainder did above.
In[103]:= crTheorem@82, 4, 6, 10<, 83, 5, 7, 11<D

Out[103]= 1154

Pseudoprimes
Recall from the text that a pseudoprime to the base b is a composite number n such that
bn-1 ª 1 Hmod nL. We will write a function to find pseudoprimes. Our function will accept two argu-
ments, the base b and a maximum value for n, and will return a list of the pseudoprimes that it identi-
fies.
The algorithm is fairly straightforward. We will use a For loop beginning at 3, ending with the speci-
fied maximum and increasing by 2 each time (so as to skip even integers). Within the loop, we test
whether the congruence holds and whether the number is composite, using PrimeQ. Note that if the
congruence fails, Mathematica will not bother testing primality. If it is composite, then Sow is
invoked. The Reap surrounding the loop collects the pseudoprimes into a list. As we have done in the
past, we use [[2,1]] to access the list of pseudoprimes without the additional information produced
by Reap.
In[104]:= findPseudoprimes@b_Integer, max_IntegerD := Module@8n<,

Reap@
For@n = 3, n § max, n = n + 2,
If@PowerMod@b, n - 1, nD ã 1 && Not@PrimeQ@nDD, Sow@nDD

D
D@@2, 1DD

D

Note that we used the PowerMod function rather than the Power (^) operator. The PowerMod
function performs modular exponentiation intelligently, using techniques such as those discussed in
Section 4.2 of the text for performing efficient modular exponentiation.

20 Chapter04.nb

Note that we used the PowerMod function rather than the Power (^) operator. The PowerMod
function performs modular exponentiation intelligently, using techniques such as those discussed in
Section 4.2 of the text for performing efficient modular exponentiation.
Here are the pseudoprimes to the base 2 up to 100 000.
In[105]:= findPseudoprimes@2, 100 000D

Out[105]= 8341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821,
3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481,
8911, 10 261, 10 585, 11 305, 12 801, 13 741, 13 747, 13 981, 14 491,
15 709, 15 841, 16 705, 18 705, 18 721, 19 951, 23 001, 23 377,
25 761, 29 341, 30 121, 30 889, 31 417, 31 609, 31 621, 33 153,
34 945, 35 333, 39 865, 41 041, 41 665, 42 799, 46 657, 49 141,
49 981, 52 633, 55 245, 57 421, 60 701, 60 787, 62 745, 63 973,
65 077, 65 281, 68 101, 72 885, 74 665, 75 361, 80 581, 83 333,
83 665, 85 489, 87 249, 88 357, 88 561, 90 751, 91 001, 93 961<

Primitive Roots and Discrete Logarithms
Mathematica includes several functions for computing primitive roots and discrete logarithms.
Primitive Roots
Mathematica provides a function, PrimitiveRoot, that computes primitive roots. It takes a single
argument, the modulus, and returns the smallest positive primitive root for that modulus. For example,
the smallest positive primitive root of 13 is 2.
In[106]:= PrimitiveRoot@13D

Out[106]= 2

Note that Mathematica's PrimitiveRoot function applies to some non-prime moduli as well.
Mathematica uses a definition of primitive root that is more general than the definition in the text.
Specifically, an integer r is a primitive root modulo an integer n if every positive integer that is both
less than n and relatively prime to n can be obtained as a power of r.
To obtain a list of all of the primitive roots of a prime, not just the first, we will make use of the Multi-
plicativeOrder function. The multiplicative order of r modulo p is defined to be the smallest
positive integer m such that rm ª 1 Hmod pL. Equivalently, one can say that the multiplicative order of r
modulo p is the number of distinct powers of r, that is, the number of different values of rk mod p. We
leave it to the reader to prove the equivalence.
The MultiplicativeOrder function accepts the element and modulus as arguments and returns
the multiplicative order. For example, to compute the multiplicative order of 8 modulo 13, you enter
the following.
In[107]:= MultiplicativeOrder@8, 13D

Out[107]= 4

We conclude from this that 81 Hmod 13L, 82 Hmod 13L, 83 Hmod 13L, and 84 Hmod 13L are all distinct, with
84 ª 1 Hmod 13L, but that 85 ª 81 Hmod 13L. We can verify this by computing the values.

Chapter04.nb 21

In[108]:= Table@PowerMod@8, k, 13D, 8k, 4<D

Out[108]= 88, 12, 5, 1<

In[109]:= PowerMod@8, 5, 13D

Out[109]= 8

Recall from Definition 3 of the textbook that a primitive root modulo a prime p is an integer r such that
every nonzero element of Zp is a power of r. Since there are p elements of Zp, there are p- 1 nonzero
elements. Consequently, being a primitive root modulo a prime p is identical to having multiplicative
order p- 1. The fact that, as we calculated above, the multiplicative order of 8 modulo 13 is 4, not
13- 1 = 12 implies that 8 is not a primitive root modulo 13. However, 6 has multiplicative order 12
modulo 13.
In[110]:= MultiplicativeOrder@6, 13D

Out[110]= 12

Consequently, 6 is a primitive root modulo 13.
To summarize, for r to be a primitive root modulo a prime p, it is necessary and sufficient that the
multiplicative order of r modulo p be equal to p- 1. This observation provides us with a convenient
way to list all of the primitive roots for a given prime. We just consider each possible r from 2 to p- 1
and calculate their multiplicative order with MultiplicativeOrder. Those whose order is p- 1
are included in the list. Here is the function.
In[111]:= allPrimitiveRoots@p_?PrimeQD :=

Select@Range@2, p - 1D, MultiplicativeOrder@Ò, pD ã p - 1 &D

We make two comments about this function. First, we ensure that the argument is prime by using the
PatternTest syntax: the pattern, in this case Blank (_) is followed by a question mark and the name of
a function, PrimeQ, that performs a test.
Second, the Select function is used to obtain, given a list and a condition, the sublist of those ele-
ments meeting the condition. Select requires two arguments. First, the initial list. Second, a function
in one argument that returns True for the desired elements. For the second argument, you can either
provide the name of a function that accepts a single argument, or, as in the above, the function can be
given as a pure Function (&). Recall that a pure function is terminated with an ampersand (&) and
uses a Slot (#) for its argument.
Applying the allPrimitiveRoots function to 13 produces the list of all primitive roots modulo
13.
In[112]:= allPrimitiveRoots@13D

Out[112]= 82, 6, 7, 11<

Discrete Logarithms
The MultiplicativeOrder function can also be used to find discrete logarithms. Recall that the
discrete logarithm of a modulo a prime p to the base r is a number e such that re ª a Hmod pL. The
multiplicative order of r modulo p, as we defined it above, is the smallest positive m such that
rm ª 1 Hmod pL. Notice that the congruences defining these two concepts are similar. Indeed, the dis-
crete logarithm problem is simply more general than the multiplicative order problem, replacing the
specific 1 with an arbitrary a.

22 Chapter04.nb

The MultiplicativeOrder function can also be used to find discrete logarithms. Recall that the
discrete logarithm of a modulo a prime p to the base r is a number e such that re ª a Hmod pL. The
multiplicative order of r modulo p, as we defined it above, is the smallest positive m such that
rm ª 1 Hmod pL. Notice that the congruences defining these two concepts are similar. Indeed, the dis-
crete logarithm problem is simply more general than the multiplicative order problem, replacing the
specific 1 with an arbitrary a.
The MultiplicativeOrder function accepts a third argument which generalizes it to include the
computation of discrete logarithms. Recall that the first argument of MultiplicativeOrder is the
value r, the second is the prime p. By providing a third argument, a, MultiplicativeOrder will
compute the discrete logarithm of a modulo p to the base r. That is, logr a is computed by
MultiplicativeOrder@r, p, aD.
To compute the discrete logarithm of 3 modulo 11 to the base 2, you enter the following.
In[113]:= MultiplicativeOrder@2, 11, 3D

Out[113]= 8

4.5 Applications of Congruences
In this section we will see how Mathematica can be used to further explore the applications of congru-
ences discussed in the text. In particular, we will see how to use a hashing function to store student
information in a list. We will create a pseudorandom number generator. And we will write a function
that will check the validity of an ISBN.

Hashing Functions
The first application we will explore is the hashing function. Suppose that a small school wants to store
information about its students. In particular, each student has a unique four digit identification number
and a GPA, which is a real number between 0 and 4.
Initial Examples
Each student record will be stored as a list with first element the student ID and the second element the
student’s GPA. Here are three example students.
In[114]:= student1 = 87319, 3.21<;

student2 = 82908, 2.89<;
student3 = 86578, 3.42<;

Our student records are going to be stored in a list. Because the school is small, it will suffice to allo-
cate space for 57 records in the school's database and so we create a list with 57 entries all initialized to
0.
In[117]:= studentRecords = Table@0, 857<D

Out[117]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

In order to store a student record in the list (which represents the school's database), we need to apply a
hashing function to the unique student ID. The hashing function we'll use is hHkL = k mod 57+ 1. Note
that the addition of 1 is to occur after the computation of k mod 57. It is included in our function
because the indices in our studentRecords list run from 1 to 57 while the values of k mod 57
range from 0 to 56.
The following function accepts a student ID as input and returns the result of applying the hashing
function to the ID number.

Chapter04.nb 23

The following function accepts a student ID as input and returns the result of applying the hashing
function to the ID number.
In[118]:= calculateHash@id_IntegerD := Mod@id, 57D + 1

For example,
In[119]:= calculateHash@student1@@1DDD

Out[119]= 24

This indicates that student1's record should be stored in location 24. We store a record in a particu-
lar location in the usual way.
In[120]:= studentRecords@@24DD = student1

Out[120]= 87319, 3.21<

Note that accessing location 24 returns the list containing the student’s data.
In[121]:= studentRecords@@24DD

Out[121]= 87319, 3.21<

To access the ID and GPA of the student stored in location 24, we can use a second pair of double
brackets with 1 or 2 to access the ID or GPA.
In[122]:= studentRecords@@24DD@@1DD

Out[122]= 7319

Or we can include the record number and the index of the particular piece of data in a single Part
([[…]]) operation.
In[123]:= studentRecords@@24, 1DD

Out[123]= 7319

We can store student2’s information in the same way.
In[124]:= calculateHash@student2@@1DDD

Out[124]= 2

In[125]:= studentRecords@@2DD = student2

Out[125]= 82908, 2.89<

If we try to store student3’s data, we find that a collision occurs.
In[126]:= calculateHash@student3@@1DDD

Out[126]= 24

Since student3 has the same hash value as student1 did, we look for the next free location.
Check location 25.
In[127]:= studentRecords@@25DD ã 0

Out[127]= True

Since location 25 is still equal to 0, we know that it has not been used and we store student3’s
record in location 25.

24 Chapter04.nb

In[128]:= studentRecords@@25DD = student3

Out[128]= 86578, 3.42<

Printing Records
Before going any further, take a look at the current state of studentRecords.
In[129]:= studentRecords

Out[129]= 80, 82908, 2.89<, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 87319, 3.21<, 86578, 3.42<, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0<

This is not very easy to read. We need to write a function to print out the data in a more useful format.
To do this, we loop through the elements of the list and, for those that are non-zero, print the index and
the data stored in that position. Note that because we are potentially comparing numbers to lists, we
must use UnsameQ (=!=) rather than Unequal (!=).
In[130]:= printRecords@database_ListD := Module@8<,

For@i = 1, i § Length@databaseD, i++,
If@database@@iDD =!= 0, Print@i, " ", database@@iDDDD

D
D

In[131]:= printRecords@studentRecordsD

2 82908, 2.89<

24 87319, 3.21<

25 86578, 3.42<

A Function for Storing New Records
Now we'll write a function storeRecord to automate the process of adding records to the database.
storeRecord will accept two arguments, the ID and GPA of a student, and will add that student's
record to the studentRecords list (the database).
The first step in implementing storeRecord will be to assign to a local variable, which we'll call
record, the list representing the student record. Then storeRecord needs to determine the loca-
tion in the studentRecords list in which the record will be stored. In particular, it will need to
avoid collision. To do this, we'll use something similar to the linear probing function defined in the
text. Beginning with i = 0, we'll calculate hHk+ iL = Hk+ iL mod 57+ 1. We will store that value in the
local name hash and check to see if studentRecords[[hash]] is 0. If so, then we know the list
does not already have a record stored in that location and we can stop our search for an open position.
The Break function causes the loop in which it is contained to terminate. If the location is not empty,
we increment i and continue looking. Once we have found an open position, we only need to assign
our record to that position. We give Null as the final expression so that the function does not display
anything when the record is successfully stored.
Note that for this function we chose not to include the database as a parameter, but instead we've
described the function in relation to the studentRecords list that we began above. This can result
in a significant improvement in performance, especially when the list of records is long, because the
database does not have to be passed as an argument to the function and then returned from it each time
a new record is to be stored. The disadvantage, of course, is that in order to use a different name for the
database, we have to revise the storeRecord function.

Chapter04.nb 25

Note that for this function we chose not to include the database as a parameter, but instead we've
described the function in relation to the studentRecords list that we began above. This can result
in a significant improvement in performance, especially when the list of records is long, because the
database does not have to be passed as an argument to the function and then returned from it each time
a new record is to be stored. The disadvantage, of course, is that in order to use a different name for the
database, we have to revise the storeRecord function.
Here is the completed storeRecord function.
In[132]:= storeRecord@id_Integer, gpa_RealD := Module@8record, hash, i<,

record = 8id, gpa<;
For@i = 0, i § 56, i++,
hash = calculateHash@id + iD;
If@studentRecords@@hashDD === 0, Break@DD

D;
studentRecords@@hashDD = record;
Null

D

Now we add a few records.
In[133]:= storeRecord@2216, 1.98D

In[134]:= storeRecord@1325, 3.14D

In[135]:= storeRecord@7061, 3.51D

Look again at studentRecords.
In[136]:= printRecords@studentRecordsD

2 82908, 2.89<

15 81325, 3.14<

24 87319, 3.21<

25 86578, 3.42<

51 82216, 1.98<

52 87061, 3.51<

Retrieving Records
We now have functions for storing a student record in our database and for printing all of the records.
But we also need a way to retrieve the record for a particular student. Indeed, one of the benefits of
hash functions is that they provide an efficient way to look up records — given the unique key, we
need only apply the hash function to determine the memory location in which the record is stored
(subject to collision, of course).
Our retrieveRecord function will accept a student ID number as its input and return the list
storing the student’s record. Most of the work will take place within the same For loop as was in the
storeRecord function. This time, we enclose the loop in a Catch, as the means of short-circuiting
the loop and passing the result, either Null or the record, out of the function. We test to make sure the
location we're looking in is non-zero. If the location is 0, that tells us that the entry does not exist and
the procedure will display the following message and return Null.
In[137]:= retrieveRecord::missing = "Desired record does not exist.";

Assuming the location is not 0, we check to see if the ID of the record in that position is the ID we're
looking for. If so, we return the student data. If the ID is not the one we're searching for, it must have
been the case that our record was pushed down the line because of a collision and we continue the
loop.

26 Chapter04.nb

Assuming the location is not 0, we check to see if the ID of the record in that position is the ID we're
looking for. If so, we return the student data. If the ID is not the one we're searching for, it must have
been the case that our record was pushed down the line because of a collision and we continue the
loop.
In[138]:= retrieveRecord@id_IntegerD := Module@8hash, i<,

Catch@
For@i = 0, i § 56, i++,
hash = calculateHash@id + iD;
If@studentRecords@@hashDD === 0,
Message@retrieveRecord::missingD;
Throw@NullD

D;
If@studentRecords@@hashDD@@1DD ã id,
Throw@studentRecords@@hashDDD

D

D
D

D

In[139]:= retrieveRecord@1325D

Out[139]= 81325, 3.14<

In[140]:= retrieveRecord@7061D

Out[140]= 87061, 3.51<

Pseudorandom Numbers
Many applications require sequences of random numbers, which are important in cryptography and in
generating data for computer simulations. It is impossible to produce a truly random stream of numbers
using software only, since software employs algorithms. Anything that can be generated by an algo-
rithm is, by definition, not random. Fortunately, for most applications, it is sufficient to generate a
stream of pseudorandom numbers. This is a stream of numbers that, while not truly random, exhibits
some of the same properties of a random number stream. Effective algorithms for generating pseudoran-
dom numbers can be based on modular arithmetic. We will implement a linear congruential method, as
described in the text.
We must choose four integers: the modulus m, the multiplier a with 2 § a < m, the increment c with
0 § c < m, and the seed x0 with 0 § x0 < m. Then we can create a sequence of pseudorandom numbers
using the recursive formula xn+1 = Ha ÿ xn + cL mod m. It is common to have the seed chosen based on
some physical property accessible by the computer, for instance the time. Alternately, the seed can be
based on some truly random physical process, such as radioactive decay. For this example, we will
generate a seed by multiplying by 1000 the result of the SessionTime function, which gives the
total number of seconds since the beginning of the Mathematica session. We apply Floor to be cer-
tain that we obtain an integer.
In[141]:= Floor@1000*SessionTime@DD

Out[141]= 7603

We will write two functions that generate random student IDs and GPAs that we can use to add some
random records to our studentRecords from above. We first write the function randomIDs,
which will accept a positive integer as input to control the number of IDs to generate. It will return a
sequence of that number of random student IDs.

Chapter04.nb 27

We will write two functions that generate random student IDs and GPAs that we can use to add some
random records to our studentRecords from above. We first write the function randomIDs,
which will accept a positive integer as input to control the number of IDs to generate. It will return a
sequence of that number of random student IDs.
Recall that a student ID, in the context described above, is a four-digit number. So our random num-
bers must be between 1000 and 9999. We can obtain such numbers by generating random integers
between 0 and 8999 and adding 1000. So our modulus will be 8999. We will choose a multiplier of 57
and an increment of 328. (These values were chosen for no particular reason, but in practice the choice
of c and a can be an important consideration. See the references in the textbook for more information.)
The seed will be determined from SessionTime as described above.
The function is straightforward.
In[142]:= randomIDs@n_IntegerD := Module@8m = 8999, a = 57, c = 328, x, i<,

x = Mod@Floor@1000*SessionTime@DD, mD;
Reap@

For@i = 1, i § n, i++,
Sow@x = Mod@a*x + c, mDD

D
D@@2, 1DD

D

We generate 10 random IDs by applying the procedure to 10.
In[143]:= someIDs = randomIDs@10D

Out[143]= 83578, 6296, 8239, 2003, 6511, 2496, 7615, 2431, 3910, 7222<

To generate GPAs, the approach will be essentially the same. We use the pure multiplicative generator
mentioned in the text with modulus 231 - 1, multiplier 75, and increment 0. This will produce integers
between 0 and 231 - 2. To obtain numbers between 0 and 4, we'll divide the random integer by 231 - 2
and multiply by 4.
In[144]:= randomGPAs@n_IntegerD := Module@8m = 2^31 - 1, a = 7^5, x, i<,

x = Mod@Floor@1000*SessionTime@DD, mD;
Reap@

For@i = 1, i § n, i++,
x = Mod@a*x, mD;
Sow@Round@HxêHm - 1LL*4, 0.01DD

D
D@@2, 1DD

D

In[145]:= someGPAs = randomGPAs@10D

Out[145]= 80.25, 3.13, 3.87, 2.61, 0.1, 2.06, 0.07, 0.06, 1.6, 2.92<

Note that we use Round to round the random number to the nearest hundredth, so that out output has
at most two digits after the decimal place. The second argument to Round being 0.01 means that the
result will be rounded to the nearest multiple of 0.01.
Now we add the random students to studentRecords.

28 Chapter04.nb

In[146]:= For@i = 1, i § 10, i++,
storeRecord@someIDs@@iDD, someGPAs@@iDDD

D

In[147]:= printRecords@studentRecordsD

2 82908, 2.89<

9 82003, 2.61<

14 86511, 0.1<

15 81325, 3.14<

24 87319, 3.21<

25 86578, 3.42<

27 86296, 3.13<

32 88239, 3.87<

35 87615, 0.07<

36 83910, 1.6<

38 82431, 0.06<

41 87222, 2.92<

45 83578, 0.25<

46 82496, 2.06<

51 82216, 1.98<

52 87061, 3.51<

Check Digits
We conclude this section with a function to check the validity of an ISBN. Recall that the ISBN-10
code consists of 10 digits, the last of which is computed by the formula

x10 =⁄
i=1

9
i ÿ xi Hmod 11L

The symbol X is used in case x10 = 10.
Our checkISBN function will accept the ISBN as a string. It is necessary that we use strings in case
the ISBN contains X as the check digit. Consider the ISBN below.
In[148]:= isbnExample = "0073383090"

Out[148]= 0073383090

In Mathematica, in order to access a character within a string, you use the StringTake function. The
first argument to StringTake is the string. In order to obtain a single character, you provide as the
second argument a list with the position of the character as the sole element. For example, the third
character of our example is obtained as follows.

Chapter04.nb 29

In Mathematica, in order to access a character within a string, you use the StringTake function. The
first argument to StringTake is the string. In order to obtain a single character, you provide as the
second argument a list with the position of the character as the sole element. For example, the third
character of our example is obtained as follows.
In[149]:= StringTake@isbnExample, 83<D

Out[149]= 7

Note that the output is still a string, however.
In[150]:= StringTake@isbnExample, 83<D êê FullForm

Out[150]//FullForm=
"7"

In order to perform arithmetic, we need to turn the character into an integer. To do this, we can use the
ToExpression function. When ToExpression is applied to a string, Mathematica interprets the
string as Mathematica input. In this example, the string “7” will be interpreted as if we had entered 7
on an input line.
In[151]:= ToExpression@StringTake@isbnExample, 83<DD êê FullForm

Out[151]//FullForm=
7

Conversely, the function ToString will convert an expression into a string. The following converts
the number 7 into the string “7”.
In[152]:= ToString@7D êê FullForm

Out[152]//FullForm=
"7"

Our function will compute the sum indicated by the formula above using Sum. Recall that the first
argument to Sum is an expression in terms of an index variable and the second argument is the range
for the variable. Once the value of x10 is determined, we compare it to the check digit. This is only
slightly complicated by the fact that a check digit of 10 corresponds to the symbol X. Note that we
must compare the check digit with the value of x10 as strings in both the case that the x10 = 10 and
when x10 < 10. This is because the last digit may be X, whether it should be or not, and applying the
ToExpression function to the string “X” will result in the symbol X, which may in fact be assigned
to an expression.
In[153]:= checkISBN@isbn_StringD := Module@8i, check<,

check = Mod@
Sum@i*ToExpression@StringTake@isbn, 8i<DD, 8i, 9<D, 11D;

Which@
check < 10,
ToString@checkD ã StringTake@isbn, 810<D,
check ã 10,
StringTake@isbn, 810<D ã "X"

D
D

Recall that a Which statement evaluates the first argument and if it is true, returns the value of the
second argument. If the first argument is false, then it moves to the third argument and evaluates that
test, and so on.

30 Chapter04.nb

In[154]:= checkISBN@isbnExampleD

Out[154]= True

In[155]:= checkISBN@"084930149X"D

Out[155]= False

In[156]:= checkISBN@"232150031X"D

Out[156]= True

4.6 Cryptography
In this, the final section of Chapter 4, we will see how Mathematica can be used to encode and decode
strings using two of the approaches described in the textbook. Specifically, we will see how to imple-
ment a classical affine cypher and the RSA system.

Encoding Strings
Before we can implement the encryption algorithms, we need to encode strings as numbers. In this
manual, we will deviate slightly from the convention used in the textbook. Instead of assigning the
letter A to 0, B to 1, and so on with Z assigned to 25, we will assign the space character to 0, A to 1, B
to 2, and so on with Z set to 26. We will then work modulo 27 instead of 26.
Some Functions for Working with Strings
Mathematica contains a variety of functions for working with strings. We have already seen, in the
previous section, the StringTake function. This function is used to obtain a substring of a given
string. Its first argument is the initial string, and the second argument specifies what part of the string
to return.
If the second argument to StringTake is a positive integer, n, the result will be the first n characters.
For example, the following produces the first 5 characters in the string “The quick brown fox”.
In[157]:= StringTake@"The quick brown fox", 5D

Out[157]= The q

If the second argument is a negative integer, say -n, the result is the final n characters.
In[158]:= StringTake@"The quick brown fox", -5D

Out[158]= n fox

To obtain the character in a particular location, as was done in Section 4.5, the second argument is
given as a list containing the desired position. For example, to obtain the character in position 8, enter
the following.
In[159]:= StringTake@"The quick brown fox", 88<D

Out[159]= c

With a pair of integers in a list given as the second argument, StringTake returns the substring
between the given two positions. The following produces the substring consisting of characters 5
through 8.

Chapter04.nb 31

In[160]:= StringTake@"The quick brown fox", 85, 8<D

Out[160]= quic

The ToUpperCase function makes all of the letters in its input string upper case.
In[161]:= ToUpperCase@"The quick brown fox"D

Out[161]= THE QUICK BROWN FOX

The ToUpperCase command is useful in this context because it means we only have to work with
the 26 uppercase letters and the space character instead of the full 53 characters, including both upper
and lower case letters and space.
The next function we will need is the Characters function and its inverse StringJoin (<>). The
Characters function takes a string and returns a list of characters.
In[162]:= Characters@"THE QUICK BROWN FOX"D

Out[162]= 8T, H, E, , Q, U, I, C, K, , B, R, O, W, N, , F, O, X<

The StringJoin function does the opposite. Given two or more strings as arguments, it joins them
into one string.
In[163]:= StringJoin@"The quick", " ", "brown fox"D

Out[163]= The quick brown fox

StringJoin also has an operator form, <>.
In[164]:= "The quick" <> " " <> "brown fox"

Out[164]= The quick brown fox

It can also accept a list of strings as its arguments and will return the string formed by joining the
members of the list.
In[165]:= StringJoin@8"T", "H", "E", " ", "Q", "U", "I", "C",

"K", " ", "B", "R", "O", "W", "N", " ", "F", "O", "X"<D

Out[165]= THE QUICK BROWN FOX

Mapping Characters to Integers
To represent the function that maps characters to integers, and its inverse, we will use two indexed
variables, charToNum and numToChar. In the charToNum variable, the space character and capi-
tal letters will serve as the indices with the corresponding integers the entries. The numToChar vari-
able will be the reverse.
To define these two indexed variables, rather than entering each individual assignment manually, we
will apply the MapThread function. Recall that MapThread is used to apply a function to lists of
arguments. The first argument to MapThread is a function. In this case, we will create a pure function
that sets a value of the indexed variable. The second argument to MapThread is a list of lists, with the
inner lists containing the arguments. The elements of the first sublist are values of the first argument of
the function, the elements of the second sublist values of the second argument and so forth. The result
of MapThread is that the function is evaluated on corresponding pairs of elements from the lists.
Here, MapThread is used to define charToNum. Note that the parentheses are needed in the pure
function, since Function (&) has greater precedence than Set (=).

32 Chapter04.nb

Here, MapThread is used to define charToNum. Note that the parentheses are needed in the pure
function, since Function (&) has greater precedence than Set (=).
In[166]:= MapThread@HcharToNum@Ò1D = Ò2L &,

8Characters@" ABCDEFGHIJKLMNOPQRSTUVWXYZ"D, Range@0, 26D<D;

After executing this MapThread expression, charToNum, issued with a character as an index,
returns the appropriate value.
In[167]:= charToNum@"F"D

Out[167]= 6

The numToChar indexed variable is created in the same way, but reversed.
In[168]:= MapThread@HnumToChar@Ò1D = Ò2L &,

8Range@0, 26D, Characters@" ABCDEFGHIJKLMNOPQRSTUVWXYZ"D<D;

In[169]:= numToChar@6D

Out[169]= F

Converting Between a String and a Numerical Representation
We now have the tools needed to encode a string as a list of numbers and a decode the numerical
representation as a string.
In the stringToNums function, we will first apply ToUpperCase and Characters to produce a
list of uppercase characters. Then we will use the Map (/@) function to apply the charToNum table to
each character. When Map (/@) is applied to a function (in this case a function represented by an
indexed variable) and a list, it returns the list obtained by applying the function to each element of the
list.
In[170]:= stringToNums@s_StringD := Module@8charList<,

charList = Characters@ToUpperCase@sDD;
Map@charToNum, charListD

D

In[171]:= stringToNums@"The quick brown fox"D

Out[171]= 820, 8, 5, 0, 17, 21, 9, 3, 11, 0, 2, 18, 15, 23, 14, 0, 6, 15, 24<

The numsToString function begins with a list of integers and returns the string.
In[172]:= numsToString@numList : 8__Integer<D := Module@8charList<,

charList = Map@numToChar, numListD;
StringJoin@charListD

D

In[173]:= numsToString@88, 5, 12, 12, 15, 0, 23, 15, 18, 12, 4<D

Out[173]= HELLO WORLD

Now that we have the ability to convert strings into a numerical representation and back again, we are
ready to implement our encryption algorithms.

Chapter04.nb 33

Classical Cryptography
We will now implement an affine cipher in Mathematica. Recall from the text that a general affine
cipher has the form

f HpL = Ha ÿ p+ bL Hmod 27L

where p is an integer corresponding to a character that is to be encrypted. We will refer to the pair
Ha, bL as the key to the cipher. For decryption to be feasible, the key must be chosen so that f is a
bijection. This amounts to choosing an a that is relatively prime to 27. (Note that the text uses a modu-
lus of 26 where we use 27 because we are considering space to be an encodable character.)
Encrypting a string requires three simple steps. First, the string is transformed into its numerical repre-
sentation via stringToNums. Second, the function f is applied to each number. And third, the
numsToString function transforms the result back into a string. Our affineCipher function
accepts as input a string and values of a and b.
We ensure that the argument a is relatively prime to 27 by imposing a Condition (/;) and creating
a message if it is not.
In[174]:= affineCipher::arga =

"Second argument must be relatively prime to 27.";

Recall that following the name and arguments of a function definition with the condition operator /;
and an expression that results in true or false allows you to create functions that will not execute on
invalid arguments.
In[175]:= affineCipher@s_String, a_Integer, b_IntegerD ê;

If@CoprimeQ@a, 27D, True,
Message@affineCipher::argaD; FalseD := Module@8S, T<,

S = stringToNums@sD;
T = Map@Mod@a*Ò + b, 27D &, SD;
numsToString@TD

D

Note the use of Map (/@) to apply the function f HpL, defined as a pure function, to each character.
We now use the cipher to encrypt “The quick brown fox” with the key H5, 3L.
In[176]:= affineCipher@"The quick brown fox", 5, 3D

Out[176]= VPACG URDCMLXJSCFXO

To decrypt the message, we use the same function. The discussion following Example 4 in Section 4.5
of the text indicates that decrypting amounts to solving c ª Ha ÿ p+ bL Hmod 27L for p. As the text
shows, we obtain p ª a-1Hc- bL Hmod 27L ª a-1 c- a-1 b Hmod 27L. In other words, to decrypt a mes-
sage encrypted using the key Ha, bL, we use the same procedure but with key Ia-1, -a-1 bM.

First, compute the inverse of a = 5.
In[177]:= PowerMod@5, -1, 27D

Out[177]= 11

And then -a-1 b, being sure to include the negative.

34 Chapter04.nb

In[178]:= Mod@-11*3, 27D

Out[178]= 21

Thus the decryption key is H11, 21L.
In[179]:= affineCipher@"VPACG URDCMLXJSCFXO", 11, 21D

Out[179]= THE QUICK BROWN FOX

RSA Encryption
We will now see how to use Mathematica to implement the RSA cryptosystem. Implementing the RSA
system involves two steps: key generation and the encryption algorithm.
To construct keys in the RSA system, we need to find pairs of large primes, say with 200 digits each.
Since messages can be decrypted by anyone who can factor the product of these primes, the two
primes must be large enough so that their product is extremely difficult to factor. A 400 digit integer
fits the bill since factoring requires an extremely large amount of computer time.
Because the use of very large prime numbers would make our examples impractical as examples, we
shall illustrate the RSA system using smaller primes. We will discuss at the end of this section how
you can use Mathematica to generate large prime numbers.
Key Generation
The first step in key generation is to choose two distinct large prime numbers, p and q. From these, we
produce the public key, which consists of the public modulus n = p ÿ q and the public exponent e which
is relatively prime to fHnL = Hp- 1L Hq- 1L. We also produce the private key, consisting of the public
modulus n and the inverse of e modulo Hp- 1L Hq- 1L. Since e is unrelated to the primes p and q, it can
be generated in a number of ways. For our implementation below, we will take e to be 13.
Here is a Mathematica function to handle key generation. The generateKeys function accepts as
input two prime numbers. It returns a list of two lists where the sublists are the public and private keys.
That is, it returns 98n, e<, 9n, e-1==. Given the primes p and q, the procedure computes n = p ÿ q,
fHnL = Hp- 1L Hq- 1L, and d = e-1 Hmod fHnLL.
In[180]:= generateKeys@p_?PrimeQ, q_?PrimeQD := Module@8n, phin, e, d<,

e = 13;
n = p*q;
phin = Hp - 1L*Hq - 1L;
d = PowerMod@e, -1, phinD;
88n, e<, 8n, d<<

D

In a practical RSA implementation, we would likely use some of the techniques discussed at the end of
this section to incorporate into our generateKeys procedure the generation of the primes p and q,
rather than passing them as arguments.
We generate keys using the prime numbers p = 59 and q = 71
In[181]:= keys = generateKeys@59, 71D

Out[181]= 884189, 13<, 84189, 937<<

Chapter04.nb 35

The public and private keys are:
In[182]:= publickey = keys@@1DD

Out[182]= 84189, 13<

In[183]:= privatekey = keys@@2DD

Out[183]= 84189, 937<

Encoding
Now that we have the keys, we turn to encoding the message. As described in the text, we encode the
message in much the same way as for affine ciphers, except that we block groups of characters into
single integers. The block length must be chosen so that, after conversion, the largest integer produced
is less than the modulus n. Here, we have n = 4198 and the largest block that can be produced is 2626
for “ZZ”.
We need to ensure that this part of the process is reversible. Consider the string “VA”. This comprises
one block. Since “V” has code 22 and “A” has code 1, it is tempting to code “VA” as 221. But when
you go to convert this back to a string, it is impossible to tell if it was 22 and 1 indicating “VA” or if it
was 2 and 21, which represents “BU”. To avoid this, we code “A” as 01. Or, what amounts to the same
thing, when we compose the block, we multiply the value of the first character by 100.
For a specific example, consider the message “SECRET MESSAGE”. We can use our
stringToNums function from above to get the numeric representation of each character.
In[184]:= messageString = stringToNums@"SECRET MESSAGE"D

Out[184]= 819, 5, 3, 18, 5, 20, 0, 13, 5, 19, 19, 1, 7, 5<

You can see that the first pair should be encoded as 1905, the second as 0318, and so on. Note that the
extra 0 is unnecessary in second block, since 0318 and 318 are numerically equal. We can obtain the
desired results by multiplying the first number in each pair by 100 as follows.
In[185]:= messageCode =

Table@messageString@@i - 1DD*100 + messageString@@iDD,
8i, 2, Length@messageStringD, 2<D

Out[185]= 81905, 318, 520, 13, 519, 1901, 705<

Note that the final 2 in the list describing the table variable i indicates that the variable should be
increased by 2 each iteration.
Encryption
The encryption algorithm will take as input this list of integers and the public key. Each message block
mi is transformed into a ciphertext block ci with the function C ª Me Hmod nL.
In[186]:= RSA@8n_Integer, e_Integer<, msg : 8__Integer<D := Module@8c<,

c = Map@PowerMod@Ò, e, nD &, msgD
D

Observe how the arguments for this function were defined. The function RSA accepts a list consisting
of two integers named n and e and a list of integers called msg.
Our “SECRET MESSAGE” is encrypted as

36 Chapter04.nb

In[187]:= cipherText = RSA@publickey, messageCodeD

Out[187]= 8723, 3360, 2306, 1979, 2695, 917, 1863<

Decryption is accomplished by applying the same algorithm with the private decryption key.
In[188]:= RSA@privatekey, cipherTextD

Out[188]= 81905, 318, 520, 13, 519, 1901, 705<

Note that the result is identical to messageCode and it can be decoded into the message “SECRET
MESSAGE”.
Generating Large Primes
If you were to use small primes, as we did in the example, there would be no real security. Anyone
could factor n, the product of the primes, and then could compute the decrypting key d from the encrypt-
ing key e.
Using Mathematica's computational abilities, we can generate fairly large prime numbers for use in an
RSA key. Remember that what is needed is a pair of prime numbers, each of about 200 digits. More-
over, they should be selected in an unpredictable fashion. To do this in Mathematica, we can use the
RandomPrime function.
The first argument to RandomPrime is either an integer, in which case the function returns a prime
up to that value, or a list of two integers, in which case the prime generated will be between them. The
function can also accept a second argument in order to produce more than one at a time. For example,
with second argument 2, the function will return a list of two primes.
Of course, the primes generated by RandomPrime are in fact pseudorandom, not truly random.
To produce two random primes with between 200 and 300 digits, we call RandomPrime as follows.
In[189]:= RandomPrime@810^200, 10^300<, 2D

Out[189]= 8457 470 868 081 910 306 859 462 238 743 895 755 314 347 261 556 410 903 Ö
640 625 321 769 946 844 773 754 142 026 227 432 145 916 096 381 792 Ö
696 409 400 992 053 626 995 507 142 873 626 500 111 933 890 008 195 Ö
751 585 051 179 309 967 799 727 851 917 975 154 148 052 787 289 033 Ö
177 677 770 723 780 447 683 644 745 273 832 584 852 454 770 176 179 Ö
686 565 703 694 327 587 460 149 242 772 179 945 323 701,

842 162 494 477 098 003 796 865 021 670 155 127 125 584 249 463 527 635 Ö
849 111 696 959 608 420 595 155 514 529 336 562 896 667 053 489 876 Ö
715 729 724 227 110 612 112 784 311 745 623 039 975 364 378 292 920 Ö
705 556 809 814 274 749 416 848 059 270 839 233 189 581 662 359 185 Ö
337 025 502 391 921 791 572 073 995 567 674 054 818 872 858 284 792 Ö
885 548 490 389 975 624 702 221 425 127 071 640 653 459<

It is left to the reader to incorporate these ideas in improved versions of the generateKeys and RSA
functions.

Chapter04.nb 37

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 3

Given a positive integer, find the Cantor expansion of this integer (see the preamble to
Exercise 48 of Section 4.2).

Solution: Recall the definition of the Cantor expansion. Given an integer a, the Cantor expansion of a is
a = an n! + an-1Hn- 1L! +º⋯+ a2 2! + a1 1!

Observe that every term except for a1 1! is divisible by 2. That is,
an n! + an-1Hn- 1L! +º⋯+ a2 2! + a1 1! Hmod 2L = a1

So set a1 = a Hmod 2L. And let y1 be the remainder with the 2 divided out. In other words, y1 =
a-a1
2

, or

y1 =
an n! + an-1Hn- 1L! +º⋯+ a2 2!

2
= an

n!

2
+ an-1

Hn- 1L!
2

+º⋯+ a3 3+ a2

Now every term other than the last contains a factor of 3, so set a2 = y1 Hmod 3L and let y2 =
y1-a2
3

.

In general, ak = yk-1 Hmod k+ 1L and yk =
yk-1-ak
k+1

. It is left to the reader to verify that this process
produces the Cantor expansion of a.
The algorithm described above leads to the function below which accepts a positive integer as input
and returns a list of integers 8a1, a2, …, an<.
In[190]:= cantorExpansion@n_IntegerD := Module@8a, k = 1, y = n<,

Reap@
While@y ¹≠ 0,
a = Mod@y, k + 1D;
Sow@aD;
y = Hy - aLêHk + 1L;
k++

D
D@@2, 1DD

D

In[191]:= cantorExpansion@471D

Out[191]= 81, 1, 2, 4, 3<

Computer Projects 21

Generate a shared key using the Diffie-Hellman key exchange protocol.

38 Chapter04.nb

Solution: Recall from Section 4.6 of the text the Diffie-Hellman key exchange protocol.
(1) Alice and Bob agree on a prime number p and a primitive root a of p. For this example, we’ll use a
relatively small prime, one with between 6 and 8 digits.
In[192]:= dhPrime = RandomPrime@810^6, 10^8<D

Out[192]= 24 720 211

For the primitive root, we’ll use PrimitiveRoot to get the smallest primitive root of the prime.
In[193]:= dhRoot = PrimitiveRoot@dhPrimeD

Out[193]= 2

(2) Alice chooses a secret integer k1. Let's choose 421 since this is Computer Project 21 in Chapter 4.
We need to compute ak1Hmod pL and send the resulting value to Bob.
In[194]:= aliceSends = PowerMod@dhRoot, 421, dhPrimeD

Out[194]= 18 566 175

Note that we use PowerMod so that the exponentiation is computed efficiently.
(3) Bob also chooses a secret integer k2. From the perspective of Alice, we won't know what value of
k2 that Bob chooses, only the value of ak2Hmod pL. So we'll have Mathematica choose k2 randomly in
the computation.
In[195]:= bobSends =

PowerMod@dhRoot, RandomInteger@81, dhPrime<D, dhPrimeD

Out[195]= 14 065 885

The RandomInteger function has similar syntax to RandomPrime. Given a list of two integers as
its argument, it returns a pseudorandom integer between the two integers. There are no necessary
restrictions on the values of k1 and k2, however, ak+p ª ak Hmod pL, so it is no loss to assume the inte-
gers lie between 1 and p.

(4) and (5) Alice computes Iak2Mk1 Hmod pL using the result that Bob transmitted and her k1. Bob does
the same using the value he got from Alice and his secret k2.
In[196]:= sharedKey = PowerMod@bobSends, 421, dhPrimeD

Out[196]= 2 470 046

At the conclusion, both Alice and Bob know this shared key, but no one else does.

Computations and Explorations 1

Determine whether 2p - 1 is prime for each of the primes not exceeding 100.

Solution: To solve this problem, we will write a Mathematica program that tests each prime p less than
or equal to a given value to see whether 2p - 1 is a Mersenne prime. The function will output a list of
those primes p for which 2p - 1 is prime.

Chapter04.nb 39

In[197]:= checkMersenne@max_IntegerD := Module@8p = 2<,
Reap@

While@p § max,
If@PrimeQ@2^p - 1D, Sow@pDD;
p = NextPrime@pD

D
D@@2, 1DD

D

The primes p less than 100 such that 2p - 1 is prime are:
In[198]:= checkMersenne@100D

Out[198]= 82, 3, 5, 7, 13, 17, 19, 31, 61, 89<

It is of note that there is a better test, called the Lucas-Lehmer test, that is more efficient than PrimeQ
for checking primality of numbers of the form 2p - 1, and can be implemented in Mathematica. For a
complete description of that algorithm, consult Rosen's text on Number Theory.

Computations and Explorations 5

Find as many primes of the form n2 + 1 where n is a positive integer as you can. It is not
known whether there are infinitely many such primes.

Solution: We write a Mathematica function that, given a maximum n, tests the integers of the given
form.
In[199]:= ce5@max_IntegerD := Module@8n<,

Reap@
For@n = 1, n § max, n++,
If@PrimeQ@n^2 + 1D, Sow@n^2 + 1DD

D
D@@2, 1DD

D

To save space, we’ll only compute up to a maximum of n = 100.
In[200]:= ce5@100D

Out[200]= 82, 5, 17, 37, 101, 197, 257, 401, 577, 677,
1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837<

Exercises
1. Use Mathematica to generate the list of the first 100 prime numbers larger than one million.
2. Use Mathematica to find the one's complement of an arbitrary integer (see the prelude to

Exercise 34 of Section 4.2).

40 Chapter04.nb

3. For which odd prime moduli is -1 a square? That is, for which prime numbers p does there
exist an integer x such that x2 ª -1 Hmod pL?

4. Use Mathematica to determine which numbers are perfect squares modulo n for various
values of the modulus n. For each perfect square s, determine how many square roots s has.
That is, for how many values of x is x2 ª s Hmod nL. What conjectures can you make about the
number of different square roots an integer has modulo n? (The Mathematica functions
PowerMod and Solve may be of use.)

5. Use Mathematica to find the base 2 expansion of the 4th Fermat number F4 = 224 + 1. Do the
following for several large integers n. Compute the time required to calculate the remainder
modulo n of various bases b raised to the power F4 (that is, to calculate bF4Hmod nL) using two
different methods. First, do the calculation by a straightforward exponentiation. Second, do it
using the binary expansion of F4 with repeated squaring and multiplications. Why do you
think F4 is a good choice for the public exponent in the RSA encryption scheme?

6. Modify the function generateKeys that we developed to produce the keys for the RSA
system to incorporate the techniques for generating random large primes. Make your
procedure take as an argument a “security” parameter which measures the number of digits in
the primes.

7. Write Mathematica functions to encode and decode English sentences into lists of integers,
appropriate for encryption with RSA. You may ignore punctuation and insist that all letters
are uppercase. Your functions should accept as input the block size.

8. There are infinitely many primes of the form 4 n+ 1 and infinitely many of the form 4 n+ 3.
Use Mathematica to determine for various values of x whether there are more primes of the
form 4 n+ 1 less than x than there are of the form 4 n+ 3. What conjectures can you make
from this evidence?

9. Develop a function for determining whether Mersenne numbers are prime using the Lucas-
Lehmer test as described in number theory books, such as Elementary Number Theory and its
Applications by K. Rosen. How many Mersenne numbers can you test for primality using
Mathematica?

10. Repunits are integers with decimal expansions consisting entirely of 1s (e.g., 11, 111, 1111,
etc.). Use Mathematica to factor repunits. How many prime repunits can you find? Explore
the same question for repunits in different base expansions.

11. Compute the sequence of pseudorandom numbers generated by the linear congruential
generator xn+1 = Ha ÿ xn + cL Hmod mL for various values of the multiplier a, the increment c,
and the modulus m. For which values do you get a period of length m for the sequence that
you generate? Formulate a conjecture.

12. The Mathematica function DivisorSigma implements the function defined, for all positive
integers n, by: skHnL is the sum of the kth powers of the positive divisors of n, i.e.,
skHnL =⁄

d n
dk. For k = 0, s0HnL is the number of positive divisors of n, which is sometimes

also denoted tHnL. Use Mathematica to study the function s0. What conjectures can you make
about it? For example, when is s0HnL odd? Is there a formula for s0HnL? For which integers m
does s0HnL = m have a solution for some integer n? Is there a formula for s0Hm ÿ nL in terms of
s0HmL and s0HnL? (Note: s0HnL is computed by DivisorSigma[0,n].)

13. A sequence a1, a2, a3, … is called periodic if there are positive integers N and p for which
an = an+p for all n ¥ N. The least integer p for which this is true is called the period of the
sequence. The sequence is said to be periodic modulo m, for a positive integer m, if the
sequence a1 Hmod mL, a2 Hmod mL, a3 Hmod mL … is periodic. Use Mathematica to determine
whether the Fibonacci sequence is periodic modulo m for various integers m and, if so, find
the period. Can you, by examining enough different values of m, make any conjectures
concerning the relationship between m and the period? Do the same thing for other sequences
that you find interesting.

Chapter04.nb 41

13.

A sequence a1, a2, a3, … is called periodic if there are positive integers N and p for which
an = an+p for all n ¥ N. The least integer p for which this is true is called the period of the
sequence. The sequence is said to be periodic modulo m, for a positive integer m, if the
sequence a1 Hmod mL, a2 Hmod mL, a3 Hmod mL … is periodic. Use Mathematica to determine
whether the Fibonacci sequence is periodic modulo m for various integers m and, if so, find
the period. Can you, by examining enough different values of m, make any conjectures
concerning the relationship between m and the period? Do the same thing for other sequences
that you find interesting.

14. (Class project) The Data Encryption Standard (DES) specifies a widely used algorithm for
private key cryptography. Find a description of this algorithm (for example, in Cryptography,
Theory and Practice by Douglas Stinson). Implement the DES in Mathematica.

42 Chapter04.nb

