
4 Number Theory and Cryptography

Introduction
Mathematica  includes  numerous  functions  for  exploring  number  theory.  In  this  chapter  we  will  see
how  to  use  Mathematica's  computational  abilities  to  compute  and  solve  congruences,  represent  inte-
gers in bases other than ten, explore arithmetic algorithms in those bases, check whether or not a num-
ber  is  prime,  and  compute  discrete  logarithms.  We  will  also  see  how  Mathematica  can  help  explore
several  of  the  applications  described  in  the  textbook,  in  particular,  hashing  functions,  pseudorandom
numbers, check digits, and, of course, cryptography. 

4.1 Divisibility and Modular Arithmetic
In this section we will use Mathematica to explore divisibility of integers and modular arithmetic. We
will  see  how  to  compute  quotients  and  remainders  in  integer  division,  how  to  test  integers  for  the
divisibility  relationship,  and  how  to  perform  computations  in  modular  arithmetic.  This  section  will
conclude with an illustration of  how to create infix addition and multiplication operators  for  modular
arithmetic and a demonstration of how Mathematica  can be used to compute addition and multiplica-
tion tables. 

Quotient, Remainder, and Divisibility
Mathematica’s  functions  Quotient  and  Mod  compute  the  quotient  and  remainder,  respectively,
obtained when you divide two integers. For example, consider 99 divided by 13.

In[1]:= Quotient@99, 13D

Out[1]= 7

In[2]:= Mod@99, 13D

Out[2]= 8

These  results  indicate  that  99  divided  by  13  results  in  a  quotient  of  7  and  a  remainder  of  8.  That  is,
99 = 13 ÿ 7+ 8.
Note that  the textbook uses the notation a mod m  to  represent  the remainder when a  is  divided by m,
using  mod  like  an  operator.  To  enter  this  in  Mathematica,  you  must  use  the  functional  notation
Mod@a, mD.
Another function, QuotientRemainder, produces a list with first element the quotient and second
element the remainder.



In[3]:= QuotientRemainder@99, 13D

Out[3]= 87, 8<

Checking Divisibility
To test  whether one integer divides another,  you can,  of course,  check to see if  the remainder is  0 or
not. For example, the following shows that 3 132.

In[4]:= Mod@132, 3D

Out[4]= 0

Mathematica also provides the function Divisible for testing divisibility.  The Divisible func-
tion returns true if its first argument is divisible by the second.

In[5]:= Divisible@132, 3D

Out[5]= True

In[6]:= Divisible@99, 13D

Out[6]= False

Offset
Recall  from  the  division  algorithm  that  the  remainder  must  always  be  nonnegative,  even  when  the
dividend  is  negative.  Mathematica’s  Mod  function  respects  that  convention  by  default,  with
Mod@a, mD returning a value between 0 and m- 1.

In[7]:= Mod@-27, 5D

Out[7]= 3

However,  there  are  times  when it  is  more  useful  to  allow negative  values.  For  example,  consider  the
following question: “It is now 11:00 AM. What time will it  be 142 hours from now?” If we compute
142 mod 24, 

In[8]:= Mod@142, 24D

Out[8]= 22

We see that the time will be the same 142 hours from now as 22 hours from now. But it's also the case
that 142 ª -2 Hmod 24L, which means that the time 142 hours from now is the same as the time 2 hours
earlier, i.e., 9:00 AM. You can see that this congruence is somewhat more convenient. 
To  support  this,  the  Mod  function  accepts  an  optional  third  argument,  called  the  offset.  The  offset
specifies  a  lower  bound  on  the  Mod  function’s  output.  Specifically,  for  an  integral  offset  d,
Mod@a, m, dD  will  return  the  value  congruent  to  a mod m  that  lies  between  d  and  d +m- 1.  For
example, by specifying an offset of 1, the result will be betwen 1 and m, so a computation that would
ordinarily return 0 will return the value of the modulus instead.

In[9]:= Mod@132, 3, 1D

Out[9]= 3

The value 1 is a common offset, as it ensures a positive result that can then be used as an index into a
list.  Another  common  offset  is  the  fraction  -m ê 2.  This  offset  ensures  that  the  output  is  the  integer
closest  to  0  that  is  congruent  to  the  first  argument  modulo  the  second.  For  example,  returning  to  the
time example above, to obtain the result -2 we use the offset -24 ê 2.

2   Chapter04.nb



The value 1 is a common offset, as it ensures a positive result that can then be used as an index into a
list.  Another  common  offset  is  the  fraction  -m ê 2.  This  offset  ensures  that  the  output  is  the  integer
closest  to  0  that  is  congruent  to  the  first  argument  modulo  the  second.  For  example,  returning  to  the
time example above, to obtain the result -2 we use the offset -24 ê 2.

In[10]:= Mod@142, 24, -24ê2D

Out[10]= -2

Congruences
The  first  argument  to  Mod  can  be  any  algebraic  expression.  For  example,  you  can  compute
3+ 4 ÿ 92 mod 5 as follows.

In[11]:= Mod@3 + 4*9^2, 5D

Out[11]= 2

To test a congruence, for example to confirm that 428 ª 530 Hmod 17L,  you must apply the Mod  func-
tion to both values and test them using the Equal (==) relation.

In[12]:= Mod@428, 17D ã Mod@530, 17D

Out[12]= True

You may not include the Equal (==) relation within the argument to Mod.
Solving Congruences
Mathematica  can solve congruences by using the Solve  function in conjunction with the Modulus
option.  To  do  so,  give  the  congruence  or  list  of  simultaneous  congruences  as  the  first  argument  to
Solve  and  identify  the  modulus  using  the  Modulus  option.  As  an  example,  consider  Exercise  13a
from  Section  4.1  of  the  textbook.  Under  the  assumption  that  a ª 4 Hmod 13L,  we  are  to  solve
c ª 9 a Hmod 13L. We solve this using Mathematica as follows.

In[13]:= Solve@8a ã 4, c ã 9*a<, Modulus Ø 13D

Out[13]= 88a Ø 4, c Ø 10<<

Note  that  the  congruences  are  entered  as  a  list.  This  tells  Mathematica  that  they  must  be  simultane-
ously satisfied. Also observe that we must use the Equal (==) relation, not Set (=), when specifying
the congruences.
If there are no solutions to the congruence, then Solve will return the empty list.

In[14]:= Solve@n^2 ã 3, Modulus Ø 4D

Out[14]= 8<

Arithmetic Modulo m
In this  subsection we’ll  define operators  based on the definitions of  +m  and ÿm  given in the text.  Our
goal will be to get as close as possible to being able to enter 7+11 9 and have Mathematica return 5.
The usual style of writing arithmetic operators in between the operands is referred to as infix notation.
There  are  operators  that  Mathematica  recognizes  as  infix  operators,  but  which  do  not  have  built-in
definitions.  We can  take  advantage  of  this  to  create  our  own infix  operators  by  providing  definitions
for these undefined operators.
You can see all  of Mathematica’s operators in the table of operator precedence in the Operator Input
Forms tutorial. Those operators with a triangular mark in the far right of the table have built-in defini-
tions. Those without such a mark are available for your own use. Here, we will make use of the Cir-
clePlus (Å⊕) and CircleTimes (Ä⊗) operators.
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You can see all  of Mathematica’s operators in the table of operator precedence in the Operator Input
Forms tutorial. Those operators with a triangular mark in the far right of the table have built-in defini-
tions. Those without such a mark are available for your own use. Here, we will make use of the Cir-
clePlus (Å⊕) and CircleTimes (Ä⊗) operators.
To enter these as infix operators, you need to use their aliases. To enter Å⊕, type Âc+Â, and to enter Ä⊗
, type Âc*Â.
Observe that if you enter an expression using one of the operators, and apply the FullForm function,
you can see that Mathematica interprets the infix operator as an application of the named function.

In[15]:= 2Å⊕3 êê FullForm
Out[15]//FullForm=

CirclePlus@2, 3D

Also note  that  while  these  functions  are  currently  undefined,  they  do  have  a  defined  precedence.  So,
for example, 2Å⊕ 3Ä⊗ 4 is interpreted as 2Å⊕ H3Ä⊗ 4L, which can be verified by inspecting the functional
expression obtained with FullForm.

In[16]:= 2Å⊕3Ä⊗4 êê FullForm
Out[16]//FullForm=

CirclePlus@2, CircleTimes@3, 4DD

To define the operator, you can issue the definition using either the functional or infix form. Below, we
define addition in functional form and multiplication in infix form. Regardless of the form you provide
the definition, Mathematica will properly evaluate both forms.

In[17]:= CirclePlus@a_, b_D := Mod@a + b, 11D

In[18]:= a_Ä⊗b_ := Mod@a*b, 11D

Now we can compute 7+11 9 and 3 ÿ11 5 using the Å⊕ and Ä⊗ operators.
In[19]:= 7Å⊕9

Out[19]= 5

In[20]:= 3Ä⊗5

Out[20]= 4

Addition and Multiplication Tables
We conclude this section by producing addition and multiplication tables.
We  will  create  the  tables,  unsurprisingly,  using  the  Table  function.  The  first  argument  will  be  the
sum or product of two variables within the Mod function. The Table repetition arguments will specify
that  the  variables  range  from  0  to  one  less  than  the  modulus.  A  call  to  TableForm  will  make  the
result readable.
Here is the addition table modulo 5.
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In[21]:= Table@Mod@a + b, 5D, 8a, 0, 4<, 8b, 0, 4<D êê TableForm
Out[21]//TableForm=

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

We  can  improve  the  table  a  bit  more  by  adding  column  and  row  headings.  This  is  done  using  the
TableHeadings option to TableForm. By setting the TableHeadings option to a list consist-
ing of two sublists corresponding to the desired labels for the rows and then the columns, Mathematica
will display those labels as headings. The keywork None can be used in place of one of the sublists so
as to omit the corresponding set of labels.

In[22]:= TableForm@Table@Mod@a + b, 5D, 8a, 0, 4<, 8b, 0, 4<D,
TableHeadings Ø 880, 1, 2, 3, 4<, 80, 1, 2, 3, 4<<D

Out[22]//TableForm=
0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Using  that  example  as  a  model,  it  is  easy  to  create  general  functions  that  will  accept  a  modulus  and
display the addition or multiplication table.

In[23]:= AdditionTable@m_D := Module@8a, b<,
TableForm@Table@Mod@a + b, mD, 8a, 0, m - 1<, 8b, 0, m - 1<D,
TableHeadings Ø 8Range@0, m - 1D, Range@0, m - 1D<DD

In[24]:= MultiplicationTable@m_D := Module@8a, b<,
TableForm@Table@Mod@a*b, mD, 8a, 0, m - 1<, 8b, 0, m - 1<D,
TableHeadings Ø 8Range@0, m - 1D, Range@0, m - 1D<DD

Here is the multiplication table modulo 5.
In[25]:= MultiplicationTable@5D

Out[25]//TableForm=
0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

4.2 Integer Representations and Algorithms
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4.2 Integer Representations and Algorithms
In  this  section  we  will  see  how  Mathematica  can  be  used  to  explore  representations  of  integers  in
various  bases  and  to  explore  algorithms  for  computing  with  integers.  We  will  begin  by  looking  at
Mathematica's  built-in  functions  for  converting  between  bases.  Then  we'll  focus  our  attention  on
binary representations of integers and how to implement algorithms for addition and multiplication on
binary representations. We restrict our attention to positive integers throught this section. 

Base Conversion
Mathematica provides support for converting from one base representation to another via the functions
IntegerDigits, IntegerString, and FromDigits.
The IntegerDigits function is used to convert a positive integer, expressed in base ten, into a list
of  the digits  of  the integer  expressed in a  specified base.  The first  argument  to  IntegerDigits  is
the base ten integer. If no other arguments are provided, the function returns the list of the digits of the
integer. 

In[26]:= IntegerDigits@1234D

Out[26]= 81, 2, 3, 4<

Note that the most significant digit is first in the list and the least significant is last. That is, the “one’s
digit” is the last element in the list.
By providing a base as a second argument, the IntegerDigits  function will output the list of the
digits  in  the  representation  of  the  integer  in  that  base.  The  following  indicates  that
H1234L10 = H103 102L4.

In[27]:= IntegerDigits@1234, 4D

Out[27]= 81, 0, 3, 1, 0, 2<

For bases larger than ten, IntegerDigits does not make use of letters for digits with values larger
than 9. Rather, it uses the base ten representation of the value of such digits. For example, in Example
5 of the textbook, it is shown that H177 130L10 = H2 B3EAL16. The output of IntegerDigits reports
10, 11, and 14 rather than A, B, and E.

In[28]:= IntegerDigits@177 130, 16D

Out[28]= 82, 11, 3, 14, 10<

The  IntegerDigits  function  also  accepts  a  third  argument  to  specify  a  minimum  length  of  the
output. If the representation of the integer in the given base has fewer digits than specified by the third
argument,  zeros  will  be  added  on  the  left.  The  following  shows  the  representation  of  123  in  binary
(base 2), with ten digits. 

In[29]:= IntegerDigits@123, 2, 10D

Out[29]= 80, 0, 0, 1, 1, 1, 1, 0, 1, 1<

The IntegerString  function is very similar to IntegerDigits,  accepting the same arguments
and  having  a  very  similar  effect.  The  difference  is  that  the  output  of  IntegerString  is  a  string
rather than a list. This means that the output has a more typical appearance. Contrast the output below
to the corresponding example above.
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The IntegerString  function is very similar to IntegerDigits,  accepting the same arguments
and  having  a  very  similar  effect.  The  difference  is  that  the  output  of  IntegerString  is  a  string
rather than a list. This means that the output has a more typical appearance. Contrast the output below
to the corresponding example above.

In[30]:= IntegerString@1234, 4D

Out[30]= 103102

Note that, despite appearances, the output is in fact a string object, and not a numerical object.
In[31]:= Head@%D

Out[31]= String

As  a  result,  you  cannot  manipulate  the  output  of  IntegerString  using  numerical  operators.  The
IntegerDigits function is much more useful if you wish to work with the output. However, Inte-
gerString  produces  much  more  readable  output.  It  also  follows  the  usual  convention  of  using
letters for digits larger than 9.

In[32]:= IntegerString@177 130, 16D

Out[32]= 2b3ea

The IntegerDigits and IntegerString functions are both used to take a base ten representa-
tion  of  a  positive  integer  and  return  a  representation  in  another  base.  For  the  reverse,  we  use  the
FromDigits function.
The  first  argument  of  FromDigits  can  be  either  a  list,  like  the  output  of  IntegerDigits,  or  a
string, like the output of IntegerString. With no second argument, Mathematica will assume that
the input is intended to be base ten and will convert the list or string into the corresponding integer.

In[33]:= FromDigits@81, 2, 3, 4<D

Out[33]= 1234

In[34]:= FromDigits@"1234"D

Out[34]= 1234

The second argument specifies the base in which the first argument is given. For example, to convert
H103 012L4 back to base ten, you enter either of the following.

In[35]:= FromDigits@81, 0, 3, 1, 0, 2<, 4D

Out[35]= 1234

In[36]:= FromDigits@"103102", 4D

Out[36]= 1234

For bases larger than ten, you can use letters to represent digits larger than nine when using a string as
the first argument to FromDigits. Note that either lower or upper case are acceptable.

In[37]:= FromDigits@"2B3EA", 16D

Out[37]= 177 130

Finally,  note  that  both  IntegerString  and  FromDigits  can,  in  place  of  the  base,  accept  the
string “Roman”, in which case the function will convert to or from a Roman numeral representation.
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In[38]:= IntegerString@2013, "Roman"D

Out[38]= MMXIII

In[39]:= FromDigits@"MMXIII", "Roman"D

Out[39]= 2013

The  BaseForm  function  should  also  be  mentioned.  Unlike  the  functions  above,  BaseForm  only
affects how a number is displayed by Mathematica, not its type. That is, BaseForm does not change
an integer  into  a  list  or  string,  it  only displays  it  as  if  it  were  in  a  different  base.  Its  arguments  are  a
base ten integer and a base.

In[40]:= BaseForm@177 130, 16D
Out[40]//BaseForm=

2b3ea16

In the other direction, you can use the double-caret (^^) notation to enter a number in a specified base.
Enter the base, followed by the representation of the number in that base. For example, to enter HA3L16
you type the following.

In[41]:= 16^^a3

Out[41]= 163

Converting Between Two Non-ten Bases
Given a positive integer in a base other than ten, you can convert it to another by using base ten as an
intermediary.  For example,  to convert  H123L5  to base 3,  you proceed as follows.  First  convert  to base
ten using FromDigits.

In[42]:= FromDigits@"123", 5D

Out[42]= 38

Then use IntegerString to convert to base 3.
In[43]:= IntegerString@38, 3D

Out[43]= 1102

The result indicates that H123L5 = H1102L3.
We can combine these two steps into a single function that takes as its arguments a string representing
the integer,  the starting base,  and the final base.  The body of the function is simply a composition of
FromDigits and IntegerString.

In[44]:= convertString@n_, b1_, b2_D :=
IntegerString@FromDigits@n, b1D, b2D

In[45]:= convertString@"123", 5, 3D

Out[45]= 1102

It is left to the reader to define a similar function that outputs a list of digits rather than a string.

Binary Addition
In this subsection, we will implement Algorithm 2 from Section 4.2, addition of integers. Our function
will  accept  two binary representations given as lists  of  0s and 1s with the most  significant  digit  first.
The  first  task  for  our  function  will  be  to  make  sure  that  the  binary  representations  are  of  the  same
length. To do this, we compute the maximum of the lengths of the two lists, which will be stored as n,
and then add as many 0s to the list as are necessary to make both lists that length. We also initialize a
sum list S to the list of all 0s of that same length.
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In this subsection, we will implement Algorithm 2 from Section 4.2, addition of integers. Our function
will  accept  two binary representations given as lists  of  0s and 1s with the most  significant  digit  first.
The  first  task  for  our  function  will  be  to  make  sure  that  the  binary  representations  are  of  the  same
length. To do this, we compute the maximum of the lengths of the two lists, which will be stored as n,
and then add as many 0s to the list as are necessary to make both lists that length. We also initialize a
sum list S to the list of all 0s of that same length.
To add 0s to the input list, we use the PadLeft function, which takes a list and a length and returns
the list  of  the desired length obtained by adding 0s on the left  side of  the list.  As you might  suspect,
there is also a PadRight function. To initialize S, we use ConstantArray, which, given an expres-
sion and a length creates the list of the desired length all of whose elements are the given expression.
We illustrate these functions below.

In[46]:= PadLeft@81, 2, 3<, 7D

Out[46]= 80, 0, 0, 0, 1, 2, 3<

In[47]:= ConstantArray@"x", 5D

Out[47]= 8x, x, x, x, x<

Once  these  initial  tasks  are  completed,  we  follow  Algorithm  2.  Note  that  the  indices  used  must  be
modified to match that used by Mathematica. The loop variable j, as presented in the textbook ranges
from 0 to n- 1, where 0 is the index of the least significant (the “one’s”) digit and n- 1 is the index of
the most significant digit. In this implementation, the least significant digit in the input values, A and B,
will be in the last position, which has index equal to their length, n. And the most significant digit will
be in position 1. Consequently, our For loop will have variable j ranging from n to 1.
The last difference between our implementation and Algorithm 2 is the use of the PrependTo func-
tion to add a 1 at the beginning of the sum, in case a carry requires the result have an additional digit.

In[48]:= addition@a_List, b_ListD := Module@8n, A, B, S, c, j, d<,
n = Max@Length@aD, Length@bDD;
A = PadLeft@a, nD;
B = PadLeft@b, nD;
S = ConstantArray@0, nD;
c = 0;
For@j = n, j ¥ 1, j--,
d = Floor@HA@@jDD + B@@jDD + cLê2D;
S@@jDD = A@@jDD + B@@jDD + c - 2*d;
c = d

D;
If@c ã 1, PrependTo@S, 1DD;
S

D

In[49]:= addition@81, 0, 1, 0<, 81, 1, 1, 0, 1, 0<D

Out[49]= 81, 0, 0, 0, 1, 0, 0<

Binary Multiplication
Finally, we will implement a multiplication algorithm, presented as Algorithm 3 in Section 4.2. Once
again, our function will accept the binary representations of positive integers as the inputs. This time,
however, it is not necessary for them to have the same length. 
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Finally, we will implement a multiplication algorithm, presented as Algorithm 3 in Section 4.2. Once
again, our function will accept the binary representations of positive integers as the inputs. This time,
however, it is not necessary for them to have the same length. 
The shift  that  occurs  when b j = 1 will  be accomplished as  the following example illustrates.  To shift
the list 81, 1, 1, 1<  by 5 places, we must add five 0s on the end of the list. We do this by using Con-
stantArray  to  create  the  list  of  5  0s  and  then  Join  to  combine  the  original  list  with  this  list  of
zeros.

In[50]:= shiftExample = 81, 1, 1, 1<

Out[50]= 81, 1, 1, 1<

In[51]:= Join@shiftExample, ConstantArray@0, 5DD

Out[51]= 81, 1, 1, 1, 0, 0, 0, 0, 0<

We will  store  the  partial  products  using  an  indexed  variable.  Recall  from Section  2.3  of  this  manual
that we can store an object in an indexed variable, c, by making an assignment to the symbol c[i] for
index i.
The  product  p  will  be  initialized  to  {0},  a  binary  representation  of  0.  The  addition  in  the  final  loop
will be performed by the addition function we created above.
As noted above, there is a discrepancy between the way indices are used in the pseudocode in the text
and  the  indices  used  in  Mathematica.  For  this  function,  we  will  mirror  the  textbook  with  the  loop
variable j ranging from 0 to n-1, where n is the number of digits in the second number. We interpret
j  as  being  the  number  of  digits  beyond  the  least  significant  digit,  which  has  position  n.  Within  the
body of the loop, we inspect location n-j.
Here is our implementation of Algorithm 3.

In[52]:= multiplication@a_List, b_ListD := Module@8n, j, c, p<,
n = Length@bD;
For@j = 0, j § n - 1, j++,
If@b@@n - jDD ã 1,
c@jD = Join@a, ConstantArray@0, jDD,
c@jD = 80<

D
D;
p = 80<;
For@j = 0, j § n - 1, j++,
p = addition@p, c@jDD

D;
p

D

We test our function using Example 10 from Section 4.2.
In[53]:= multiplication@81, 1, 0<, 81, 0, 1<D

Out[53]= 81, 1, 1, 1, 0<

4.3 Primes and Greatest Common Divisors
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4.3 Primes and Greatest Common Divisors
In this section we will see how to use Mathematica to find primes, find prime factorizations, and com-
pute greatest common divisors and least common multiples. We will also use Mathematica's capabili-
ties to explore the distribution of primes. 

Primes
We will first introduce some of Mathematica's functions for testing whether a number is prime and for
finding primes. 
Testing for Primality
The PrimeQ function accepts a single argument, an integer to be tested, and returns true or false. 

In[54]:= PrimeQ@5D

Out[54]= True

In[55]:= PrimeQ@10D

Out[55]= False

In[56]:= PrimeQ@2^13 - 1D

Out[56]= True

Unlike the trial division algorithm discussed in the book, which checks all possible divisors to see if a
number is prime or composite, PrimeQ uses a probabilistic primality test. This probabilistic test gains
much  faster  performance  at  the  cost  of  a  small  possibility  that  the  command  will  return  an  incorrect
result. There is no known example of an integer for which PrimeQ is incorrect and any such example
must be exceptionally large. So, despite there being a chance of error, PrimeQ is in fact very reliable.
Listing Primes
The function Prime accepts as input a positive integer i and outputs the ith prime number.

In[57]:= Prime@1D

Out[57]= 2

In[58]:= Prime@2D

Out[58]= 3

In[59]:= Table@Prime@iD, 8i, 20<D

Out[59]= 82, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71<

In[60]:= Prime@100 000D

Out[60]= 1 299 709

Mathematica also provides the NextPrime function, which returns the smallest prime larger than the
input value. For example, to find the first prime number larger than 1000, enter the following. 
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In[61]:= NextPrime@1000D

Out[61]= 1009

The NextPrime  function can also be given an optional second argument, which must be an integer.
NextPrime@n, kD  returns  the  kth  prime  larger  then  n.  If  the  second  argument  is  negative,  the
function instead returns the prime smaller than n. For example, the following expressions find the third
prime after 1000 and the prime before it.

In[62]:= NextPrime@1000, 3D

Out[62]= 1019

In[63]:= NextPrime@1000, -1D

Out[63]= 997

Prime Factorization
To compute the prime factorization of an integer, we can use the Mathematica function FactorInte-
ger. Several examples of using FactorInteger follow. 

In[64]:= FactorInteger@100D

Out[64]= 882, 2<, 85, 2<<

In[65]:= FactorInteger@123 456 789D

Out[65]= 883, 2<, 83607, 1<, 83803, 1<<

In[66]:= FactorInteger@-987 654 321D

Out[66]= 88-1, 1<, 83, 2<, 817, 2<, 8379 721, 1<<

The output of FactorInteger is a list of pairs. Each pair consists of a prime number and the multi-
plicity, or exponent, of that prime in the prime factorization. Note that in the last example, with nega-
tive input, one of the members of the list is the pair {-1,1}, indicating that H-1L1  is in the factoriza-
tion.  The  output  above  indicates  that  100 = 22 ÿ 52,  123 456 789 = 32 ÿ 36071 ÿ 38031,  and
-987 654 321 = H-1L1 ÿ 32 ÿ 172 ÿ 379 7211.
Note that FactorInteger can also accept an optional argument to limit the effort Mathematica will
exert  in  trying  to  factor.  Entering  Automatic  as  the  second argument  limits  the  function  to  factors
that it  can find easily. You can also give a positive integer as the second argument, and Mathematica
will then find at most that many distinct factors. 

In[67]:= FactorInteger@236 914 830 635 411 777 378 758 175 934 586 404 476 822D

Out[67]= 882, 1<, 8197, 1<, 8509, 1<, 810 459 723, 3<, 832 129 861, 2<<

In[68]:= FactorInteger@
236 914 830 635 411 777 378 758 175 934 586 404 476 822, 3D

Out[68]= 88394, 1<, 8509, 1<,
81 181 349 070 215 370 924 270 532 326 421 800 507, 1<<

The first expression above factors the given integer into its complete prime factorization. The second is
limited  to  finding  only  3  distinct  factors.  After  finding  the  first  two  prime  factors,  394  and  509,  it
reports  the  remainder  as  the  last  factor  with  exponent  1.  This  gives  you  a  way  to  have  Mathematica
only  perform  the  easy  parts  of  factorizations,  which  can  help  ensure  that  your  functions  run  quickly
during development.  Then,  when you are ready to let  the function take all  the time it  needs,  you can
remove the limitation. 
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The first expression above factors the given integer into its complete prime factorization. The second is
limited  to  finding  only  3  distinct  factors.  After  finding  the  first  two  prime  factors,  394  and  509,  it
reports  the  remainder  as  the  last  factor  with  exponent  1.  This  gives  you  a  way  to  have  Mathematica
only  perform  the  easy  parts  of  factorizations,  which  can  help  ensure  that  your  functions  run  quickly
during development.  Then,  when you are ready to let  the function take all  the time it  needs,  you can
remove the limitation. 

The Distribution of Primes
The Prime Number Theorem (Theorem 4 in Section 4.3 of the text) tells us that the number of primes
not  exceeding  x  is  approximated  by  the  function  x

lnHxL
.  In  this  subsection,  we  will  use  Mathematica's

graphing capabilities to graph the number of primes not exceeding x. 
Recall  from  Section  3.3  of  this  manual  that  we  can  graph  a  list  of  points  by  using  the  ListPlot
function applied to a list of x-y pairs. Our x values will be the integers from 2 to 1000 (we omit 1 since
there are no primes less than or equal to 1).
To find the number of primes not exceeding x, we use the function PrimePi. The function pHxL is the
standard notation for the number of primes less than or equal to x. The symbol PrimePi distinguishes
this function in Mathematica from the mathematical constant which is given the symbol Pi. To calcu-
late the number of primes less than or equal to 1000, for example, we enter the following.

In[69]:= PrimePi@1000D

Out[69]= 168

We use the Table function to produce the list of pairs 8x, pHxL<, which we will graph.
In[70]:= piList = Table@8x, PrimePi@xD<, 8x, 1000<D;

As we did in the solution to Computer Project 9 of Chapter 3, we will graphically compare the values
of  pHxL  to  the  function  x

lnHxL
.  We  will  define  two  graphics  objects  and  then  combine  them  with  the

Show  function.  Refer to Chapter 3 of this  manual,  particularly Section 3.3 and the solution to Com-
puter Project 9, for detailed information about the commands ListPlot and Plot that we use here.
We also use the legending functions Legended and LineLegend. For a single application of Plot,
you  can  use  the  PlotLegends  option  to  very  easily  add  a  legend  to  the  plot.  That  option  is  not
available to Show,  however. Instead, you must use the more general function Legended  and manu-
ally construct the legend with LineLegend (or one of the related functions such as PointLegend
or SwatchLegend). In this context, Legended can be thought of as a wrapper containing a graph-
ics object, or more precisely an expression that produces a graphics object, as the first argument, and a
call to a function that creates a legend as the second argument. The LineLegend function generally
takes two arguments: the first a list of colors and the second a list of labels for the color in the corre-
sponding position.

In[71]:= piPlot = ListPlot@piList, PlotStyle Ø BlueD;

In[72]:= xlnxPlot = Plot@xêLog@xD, 8x, 2, 1000<, PlotStyle Ø RedD;
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In[73]:= LegendedBShow@piPlot, xlnxPlotD,

LineLegendB8Blue, Red<, :"pHxL", "
x

ln HxL
">FF
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Notice that while the blue line representing pHxL seems to remain above the red line representing x
lnHxL

,

it is fairly clear from the graph that they grow at the same rate.

Greatest Common Divisor and Least Common Multiple
Mathematica provides the functions GCD and LCM for computing the greatest common divisor and the
least common multiple of integers. To compute the greatest common divisor of two integers, you apply
the GCD function to them.

In[74]:= GCD@6, 9D

Out[74]= 3

You can also compute the greatest  common divisor  of  more than two integers.  For more than 2 inte-
gers, the greatest common divisor is defined to be the largest integer that is a divisor of all of them. For
example, 3 divides 6, 9, and 12, so:

In[75]:= GCD@6, 9, 12D

Out[75]= 3

The LCM command finds the least common multiple of two or more integers. For example, 
In[76]:= LCM@6, 9D

Out[76]= 18

In[77]:= LCM@12, 18, 33D

Out[77]= 396

Relatively Prime
Recall from the text that two numbers are said to be relatively prime if their greatest common divisor is
1. For example, consider 10 and 21. 
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In[78]:= GCD@10, 21D

Out[78]= 1

Since GCD returned 1, we conclude that 10 and 21 are relatively prime. 
The Mathematica function CoprimeQ, applied to two integers, returns true if they are relatively prime
and false if not.

In[79]:= CoprimeQ@3, 6D

Out[79]= False

In[80]:= CoprimeQ@22, 15D

Out[80]= True

Also recall that a list of integers a1, a2, …, an are said to be pairwise relatively prime if gcdIai, a jM = 1
whenever 1 § i < j § n. That is, when every pair is relatively prime. The CoprimeQ function, applied
to more than two integers, tests this property.
Observe that 14, 39, and 55 are pairwise relatively prime.

In[81]:= CoprimeQ@14, 39, 55D

Out[81]= True

However,  42,  165,  and  182  are  not  pairwise  relatively  prime,  since  42  and  182  are  both  even,  even
though the common GCD of all three integers is 1.

In[82]:= GCD@42, 165, 182D

Out[82]= 1

In[83]:= CoprimeQ@42, 165, 182D

Out[83]= False

The Extended Euclidean Algorithm
While GCD is useful for calculating the greatest common divisor of integers, it is sometimes desirable
to be able to express the greatest  common divisor as an integral combination of the integers.  Specifi-
cally, given integers a and b, we may wish to express gcdHa, bL as s ÿ a+ t ÿ b where s and t are integers.
The fact that such integers always exist is known as Bézout's Theorem, given in the text as Theorem 6
of  Section  4.3.  In  the  preamble  to  Exercise  41  in  the  text,  the  extended  Euclidean  algorithm  is
described, which produces not only the greatest common divisor but also the integers s and t. 
In  Mathematica,  the  function  ExtendedGCD  is  an  implementation  of  the  extended  Euclidean  algo-
rithm. This function accepts two or more integers as arguments. It returns a list whose first element is
the greatest common divisor of the arguments and whose second element is a sublist whose members
are the coefficients required to obtain the GCD. As an example, consider 252 and 198, the values used
in Example 17 of the textbook.

In[84]:= ExtendedGCD@252, 198D

Out[84]= 818, 84, -5<<

The results above indicate that gcdH252, 198L = 18 = 4 ÿ 252- 5 ÿ 198. Note that the order of the coeffi-
cients is the same as the order of the arguments to the function. 

4.4 Solving Congruences
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4.4 Solving Congruences
In  this  section,  we  will  see  how  Mathematica  can  be  used  to  solve  congruences.  We  will  begin  the
section  by  looking  at  how  to  find  inverses  and  solve  linear  congruences.  We  will  then  consider  the
Chinese Remainder Theorem. Next, we will use Mathematica  to find pseudoprimes, and we conclude
with an exploration of primitive roots and discrete logarithms. 

Modular Inverses
Example  1  of  Section  4.4  of  the  text  demonstrates  how  Bézout  coefficients  can  be  used  to  find  the
inverse of an integer modulo a number. In the previous section of this manual, we saw that the Extend-
edGCD function can be used to obtain the Bézout coefficients. 
Finding Inverses with ExtendedGCD
For  example,  to  find  the  inverse  of  264 modulo  3185,  we need to  find  s  so  that  s ÿ 264+ t ÿ 3185 = 1,
provided that 264 and 3185 are relatively prime. 
Recall that ExtendedGCD  applied to two integers returns a structure of the form 8gcd, 8s, t <<
where gcd is the greatest common divisor of the two integers, and s and t are the Bézout coefficients.
Knowing  that  this  is  always  the  form  of  the  output,  Mathematica  allows  us  to  assign  the  result  of
ExtendedGCD to a structure of that form. This has the effect of assigning the symbols to the corre-
sponding numbers in the output.

In[85]:= 8gBezout, 8sBezout, tBezout<< = ExtendedGCD@264, 3185D

Out[85]= 81, 8374, -31<<

Since the first element is 1, we know that 264 and 3185 are relatively prime. Also, the assignment has
caused the Bézout coefficients to be stored in the symbols.

In[86]:= sBezout

Out[86]= 374

In[87]:= tBezout

Out[87]= -31

This indicates that 1 = 374 ÿ 264+ H-31L ÿ 3185. And thus 374 is the inverse of 264 modulo 3185. We
can confirm this by computing the product modulo 3185.

In[88]:= Mod@374*264, 3185D

Out[88]= 1

Finding Inverses with PowerMod
Mathematica provides a simpler way to compute the modular inverse. The textbook uses the notation a
to  indicate  the  modular  inverse  of  an  integer.  An  alternate  notation  is  a-1,  which  calls  to  mind  the
notation used in algebra for reciprocals, as in 3-1 = 1

3
. 

The PowerMod function computes powers of integers in modular arithmetic. It takes three arguments:
the base integer, the exponent, and the modulus. For example, the following computes 34 Hmod 5L.
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In[89]:= PowerMod@3, 4, 5D

Out[89]= 1

For positive exponents, PowerMod  is more efficient than applying Mod  with the exponent computed
in the argument.  Moreover,  PowerMod  accepts negative (and even rational) exponents.  In particular,
applying PowerMod with second argument -1 computes the modular inverse.

In[90]:= PowerMod@264, -1, 3185D

Out[90]= 374

Note  that  if  the  integer  and  the  modulus  are  not  relatively  prime,  no  inverse  exists  and  an  error  is
generated.

In[91]:= PowerMod@4, -1, 10D

PowerMod::ninv : 4 is not invertible modulo 10. à

Out[91]= PowerMod@4, -1, 10D

Solving Congruences
We saw in Section 4.1 of this manual that the Solve function with Modulus option can be used for
solving congruences. We can use this command to solve linear congruences such as 4 x ª 3 Hmod 11L.

In[92]:= Solve@4*x ã 3, Modulus Ø 11D

Out[92]= 88x Ø 9<<

The first argument to Solve is the congruence expressed with an Equal (==) symbol. Following the
equation is  a rule setting the Modulus  option to the modulus.  Mathematica  returns a list  whose ele-
ments  express  the  solutions  to  the  congruence.  If  there  is  no solution,  Mathematica  returns  an empty
list.
The following attempts to solve 4 x ª 1 Hmod 10L, which is the same as finding an inverse for 4 modulo
10 and has no solution. 

In[93]:= Solve@4*x ã 1, Modulus -> 10D

Out[93]= 8<

It is also possible to have multiple solutions. For example, 3 x ª 9 Hmod 12L. 
In[94]:= Solve@3*x ã 9, Modulus Ø 12D

Out[94]= 88x Ø 3 + 4 C@1D<<

The symbol C[1] is used by Mathematica to stand for an arbitrary integer. This output indicates that
any value  of  x  of  the  form 3+ 4 ÿC  will  solve  the  congruence.  You can obtain  a  specific  solution by
substituting a particular integer for the symbol C[1], using ReplaceAll (/.).

In[95]:= Solve@3*x ã 9, Modulus Ø 12D ê. C@1D Ø 1

Out[95]= 88x Ø 7<<

The Chinese Remainder Theorem
The text describes two approaches to solving systems of congruences of the form
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x ª a1 Hmod m1L
x ª a2 Hmod m2L

ª

x ª an Hmod mnL

Mathematica  provides  an  implementation  of  the  Chinese  remainder  theorem  as  the  function  Chi-
neseRemainder.  The function takes two arguments:  a list  of  the values 8a1, a2, …, an<  first  and a
list of the moduli 8m1, m2, …, mn< second. The result is the smallest positive integer that satisfies all of
the congruences. As an example, we solve the congruences

x ª 2 Hmod 3L
x ª 4 Hmod 5L
x ª 6 Hmod 7L

x ª 10 Hmod 11L

In[96]:= ChineseRemainder@82, 4, 6, 10<, 83, 5, 7, 11<D

Out[96]= 1154

Creating a Function
We will  create  a  function  for  solving  systems of  congruences.  This  implementation  will  be  based  on
the construction given in the proof of the Chinese remainder theorem. While this will be less efficient
than  Mathematica's  built-in  ChineseRemainder  function,  implementing  the  algorithm  can  help
you to better understand the proof of the theorem. 
Our function, which we call crTheorem, will accept the same arguments as ChineseRemainder:
two lists,  a  and m,  representing the values and the moduli  of  the congruences.  It  will  begin with two
tests to check that the lists are the same length and that the moduli are in fact pairwise relatively prime,
as is required by the assumptions of the theorem. We use CoprimeQ from Section 4.3 of this manual
to  check  that  the  moduli  are  pairwise  relatively  prime.  If  these  tests  fail,  the  following  messages  are
generated.

In[97]:= crTheorem::argsize =
"Arguments must be lists of the same size.";

In[98]:= crTheorem::argcp = "Moduli must be pairwise relatively prime.";

We will  embed the tests  inside a small  function in order to make the crTheorem  function easier  to
read.

In[99]:= crTestArgs@a_, m_D := Check@
If@Length@aD ¹≠ Length@mD, Message@crTheorem::argsizeDD;
If@Not@Apply@CoprimeQ, mDD, Message@crTheorem::argcpDD;
True,
FalseD

Most of the work of crTestArgs is done in the two If statements. The first compares the lengths of
a  and  m  and  the  second  checks  whether  the  moduli  are  relatively  prime.  If  the  lists  are  of  different
lengths or the moduli are not relatively prime, the appropriate message is issued. Note that the Apply
function is used in the second If statement in order to apply the function CoprimeQ, which expects
integer arguments, to the list m.
The Check function is used to “listen” for messages. It evaluates its first argument, which in this case
is the three lines ending with the expression True. If no messages are generated, then the result of the
Check is the outcome of that evaluation. In this case, if the two If statements do not raise messages,
then  the  outcome  of  the  Check  is  True.  However,  if  any  messages  are  raised  while  evaluating  the
first argument to Check, then Check returns its second argument instead. In this case, this means that
if any messages are raised, then the result of the function will be False.
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The Check function is used to “listen” for messages. It evaluates its first argument, which in this case
is the three lines ending with the expression True. If no messages are generated, then the result of the
Check is the outcome of that evaluation. In this case, if the two If statements do not raise messages,
then  the  outcome  of  the  Check  is  True.  However,  if  any  messages  are  raised  while  evaluating  the
first argument to Check, then Check returns its second argument instead. In this case, this means that
if any messages are raised, then the result of the function will be False.
As you can see below, with valid input, crTestArgs results in True, but it also is able to produce
both error messages and return False for arguments that violate the rules.
In[100]:= crTestArgs@81, 2, 3<, 85, 7, 11<D

Out[100]= True

In[101]:= crTestArgs@81, 2<, 84, 5, 6<D

crTheorem::argsize : Arguments must be lists of the same size.

crTheorem::argcp : Moduli must be pairwise relatively prime.

Out[101]= False

When  we  define  the  crTheorem  function,  we  will  use  patterns  in  the  arguments  to  ensure  that  the
arguments  are  lists  of  integers,  and  we  will  give  crTestArgs  as  a  Condition  (/;),  as  shown
below.

crTheorem@a : 8__Integer<, m : 8__Integer<D ê;
crTestArgs@a, mD := ...

The syntax a:{__Integer}, and likewise for m, names the argument and imposes the pattern that it
be  a  sequence  of  integers  enclosed  in  braces,  that  is,  a  list  of  integers.  On  the  right  hand  side  of  the
Condition (/;) operator, we apply crTestArgs to the arguments before the SetDelayed (:=)
operator. With a function definition of this form, when you enter a call to crTheorem, Mathematica
will  first  check to see that  the arguments match the specified patterns.  If  not,  for instance if  you pro-
vide a different number of arguments or attempt to use anything other than two lists of integers, Mathe-
matica  will  simply  return  the  expression  unevaluated.  Assuming  that  you  enter  two  lists  of  integers,
then  Mathematica  will  apply  crTestArgs.  If  this  function  returns  False,  then  Mathematica  will
return  the  crTheorem  call  unevaluated.  Moreover,  in  this  case,  Mathematica  will  not  attempt  to
evaluate  the  body  of  the  function.  Only  after  the  arguments  have  matched  the  pattern  and
crTestArgs has returned True, will Mathematica evaluate the body of the function definition.
While the above is a bit  more complicated seeming than placing the tests in the body of the function
and causing them to terminate execution with a Return or an Abort, it is a much more elegant way
to ensure that the function is robust.
Turning  now  to  the  main  work  of  crTheorem,  it  begins  by  setting  p  equal  to  the  product  of  the
moduli.  (Note  that  p  corresponds  to  m  in  the  statement  of  the  theorem  in  the  text.  This  is  the  only
notational  difference  between  our  function  and  the  text.)  Note  that  we  use  the  Apply  (@@)  operator
with the Times (*) function in order to compute this product. Times (*) is the functional version of
the multiplication operator,  and combining it  with Apply  (@@) results in the product of the elements
of the list m.
The function then needs to compute Mk  and yk.  We use the indexed variables  M  and y  for  this.  Note
that this creates a subtle syntactic point to pay attention to. Specifically, the third element of the list m
is  accessed  via  m[[3]],  while  M3  is  referred  to  by  M[3].  The  values  are  computed  within  a  For
loop. The values for M are calculated by the formula Mk =

P
mk

. For y, we use the fact that the yk  are the

inverses  of  Mk  modulo  mk.  That  is,  yk ª Mk
-1 Hmod mkL.  Finally,  we  compute  the  result

x = a1 M1 y1 + a2 M2 y2 +º⋯+ an Mn yn  using  the  Sum  function  and  return  x Hmod pL.  Here  is  the
function.
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The function then needs to compute Mk  and yk.  We use the indexed variables  M  and y  for  this.  Note
that this creates a subtle syntactic point to pay attention to. Specifically, the third element of the list m
is  accessed  via  m[[3]],  while  M3  is  referred  to  by  M[3].  The  values  are  computed  within  a  For
loop. The values for M are calculated by the formula Mk =

P
mk

. For y, we use the fact that the yk  are the

inverses  of  Mk  modulo  mk.  That  is,  yk ª Mk
-1 Hmod mkL.  Finally,  we  compute  the  result

x = a1 M1 y1 + a2 M2 y2 +º⋯+ an Mn yn  using  the  Sum  function  and  return  x Hmod pL.  Here  is  the
function.
In[102]:= crTheorem@a : 8__Integer<, m : 8__Integer<D ê;

crTestArgs@a, mD :=
Module@8p, M, y, i, x<,
p = Times üü m;
For@i = 1, i § Length@aD, i++,
M@iD = pêm@@iDD;
y@iD = PowerMod@M@iD, -1, m@@iDDD

D;
x = Sum@a@@iDD* M@iD*y@iD, 8i, Length@aD<D;
Mod@x, pD

D

Note that our function produces the same result as ChineseRemainder did above.
In[103]:= crTheorem@82, 4, 6, 10<, 83, 5, 7, 11<D

Out[103]= 1154

Pseudoprimes
Recall  from  the  text  that  a  pseudoprime  to  the  base  b  is  a  composite  number  n  such  that
bn-1 ª 1 Hmod nL.  We  will  write  a  function  to  find  pseudoprimes.  Our  function  will  accept  two  argu-
ments, the base b and a maximum value for n, and will return a list of the pseudoprimes that it identi-
fies. 
The algorithm is fairly straightforward. We will use a For loop beginning at 3, ending with the speci-
fied  maximum and  increasing  by  2  each  time  (so  as  to  skip  even  integers).  Within  the  loop,  we  test
whether  the congruence holds and whether  the number is  composite,  using PrimeQ.  Note that  if  the
congruence  fails,  Mathematica  will  not  bother  testing  primality.  If  it  is  composite,  then  Sow  is
invoked. The Reap surrounding the loop collects the pseudoprimes into a list. As we have done in the
past, we use [[2,1]] to access the list of pseudoprimes without the additional information produced
by Reap.
In[104]:= findPseudoprimes@b_Integer, max_IntegerD := Module@8n<,

Reap@
For@n = 3, n § max, n = n + 2,
If@PowerMod@b, n - 1, nD ã 1 && Not@PrimeQ@nDD, Sow@nDD

D
D@@2, 1DD

D

Note  that  we  used  the  PowerMod  function  rather  than  the  Power  (^)  operator.  The  PowerMod
function  performs  modular  exponentiation  intelligently,  using  techniques  such  as  those  discussed  in
Section 4.2 of the text for performing efficient modular exponentiation.
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Note  that  we  used  the  PowerMod  function  rather  than  the  Power  (^)  operator.  The  PowerMod
function  performs  modular  exponentiation  intelligently,  using  techniques  such  as  those  discussed  in
Section 4.2 of the text for performing efficient modular exponentiation.
Here are the pseudoprimes to the base 2 up to 100 000.
In[105]:= findPseudoprimes@2, 100 000D

Out[105]= 8341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821,
3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481,
8911, 10 261, 10 585, 11 305, 12 801, 13 741, 13 747, 13 981, 14 491,
15 709, 15 841, 16 705, 18 705, 18 721, 19 951, 23 001, 23 377,
25 761, 29 341, 30 121, 30 889, 31 417, 31 609, 31 621, 33 153,
34 945, 35 333, 39 865, 41 041, 41 665, 42 799, 46 657, 49 141,
49 981, 52 633, 55 245, 57 421, 60 701, 60 787, 62 745, 63 973,
65 077, 65 281, 68 101, 72 885, 74 665, 75 361, 80 581, 83 333,
83 665, 85 489, 87 249, 88 357, 88 561, 90 751, 91 001, 93 961<

Primitive Roots and Discrete Logarithms
Mathematica includes several functions for computing primitive roots and discrete logarithms.
Primitive Roots
Mathematica  provides a function,  PrimitiveRoot,  that  computes primitive roots.  It  takes a single
argument, the modulus, and returns the smallest positive primitive root for that modulus. For example,
the smallest positive primitive root of 13 is 2.
In[106]:= PrimitiveRoot@13D

Out[106]= 2

Note  that  Mathematica's  PrimitiveRoot  function  applies  to  some  non-prime  moduli  as  well.
Mathematica  uses  a  definition  of  primitive  root  that  is  more  general  than  the  definition  in  the  text.
Specifically,  an integer r  is  a primitive root modulo an integer n  if  every positive integer that  is  both
less than n and relatively prime to n can be obtained as a power of r. 
To obtain a list of all of the primitive roots of a prime, not just the first, we will make use of the Multi-
plicativeOrder  function.  The  multiplicative  order  of  r  modulo  p  is  defined  to  be  the  smallest
positive integer m such that rm ª 1 Hmod pL. Equivalently, one can say that the multiplicative order of r
modulo p is the number of distinct powers of r, that is, the number of different values of rk mod p. We
leave it to the reader to prove the equivalence.
The  MultiplicativeOrder  function  accepts  the  element  and  modulus  as  arguments  and  returns
the multiplicative order.  For  example,  to  compute the multiplicative order  of  8  modulo 13,  you enter
the following.
In[107]:= MultiplicativeOrder@8, 13D

Out[107]= 4

We conclude from this that 81 Hmod 13L, 82 Hmod 13L, 83 Hmod 13L, and 84 Hmod 13L are all distinct, with
84 ª 1 Hmod 13L, but that 85 ª 81 Hmod 13L. We can verify this by computing the values.
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In[108]:= Table@PowerMod@8, k, 13D, 8k, 4<D

Out[108]= 88, 12, 5, 1<

In[109]:= PowerMod@8, 5, 13D

Out[109]= 8

Recall from Definition 3 of the textbook that a primitive root modulo a prime p is an integer r such that
every nonzero element of Zp  is a power of r. Since there are p elements of Zp, there are p- 1 nonzero
elements. Consequently, being a primitive root modulo a prime p  is identical to having multiplicative
order  p- 1.  The  fact  that,  as  we  calculated  above,  the  multiplicative  order  of  8  modulo  13  is  4,  not
13- 1 = 12 implies  that  8  is  not  a  primitive  root  modulo  13.  However,  6  has  multiplicative  order  12
modulo 13.
In[110]:= MultiplicativeOrder@6, 13D

Out[110]= 12

Consequently, 6 is a primitive root modulo 13.
To  summarize,  for  r  to  be  a  primitive  root  modulo  a  prime  p,  it  is  necessary  and  sufficient  that  the
multiplicative order  of  r  modulo p  be equal  to  p- 1.  This  observation provides us  with a  convenient
way to list all of the primitive roots for a given prime. We just consider each possible r from 2 to p- 1
and calculate  their  multiplicative  order  with  MultiplicativeOrder.  Those  whose  order  is  p- 1
are included in the list. Here is the function.
In[111]:= allPrimitiveRoots@p_?PrimeQD :=

Select@Range@2, p - 1D, MultiplicativeOrder@Ò, pD ã p - 1 &D

We make two comments about this function. First, we ensure that the argument is prime by using the
PatternTest syntax: the pattern, in this case Blank (_) is followed by a question mark and the name of
a function, PrimeQ, that performs a test.
Second,  the Select  function is  used to obtain,  given a list  and a condition,  the sublist  of  those ele-
ments meeting the condition. Select requires two arguments. First, the initial list. Second, a function
in one argument that returns True  for the desired elements. For the second argument, you can either
provide the name of a function that accepts a single argument, or, as in the above, the function can be
given as a pure Function  (&).  Recall  that a pure function is terminated with an ampersand (&)  and
uses a Slot (#) for its argument.
Applying  the  allPrimitiveRoots  function  to  13  produces  the  list  of  all  primitive  roots  modulo
13.
In[112]:= allPrimitiveRoots@13D

Out[112]= 82, 6, 7, 11<

Discrete Logarithms
The MultiplicativeOrder  function can also be used to find discrete logarithms. Recall that the
discrete  logarithm  of  a  modulo  a  prime  p  to  the  base  r  is  a  number  e  such  that  re ª a Hmod pL.  The
multiplicative  order  of  r  modulo  p,  as  we  defined  it  above,  is  the  smallest  positive  m  such  that
rm ª 1 Hmod pL.  Notice  that  the  congruences  defining  these  two concepts  are  similar.  Indeed,  the  dis-
crete  logarithm  problem  is  simply  more  general  than  the  multiplicative  order  problem,  replacing  the
specific 1 with an arbitrary a. 
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The MultiplicativeOrder  function can also be used to find discrete logarithms. Recall that the
discrete  logarithm  of  a  modulo  a  prime  p  to  the  base  r  is  a  number  e  such  that  re ª a Hmod pL.  The
multiplicative  order  of  r  modulo  p,  as  we  defined  it  above,  is  the  smallest  positive  m  such  that
rm ª 1 Hmod pL.  Notice  that  the  congruences  defining  these  two concepts  are  similar.  Indeed,  the  dis-
crete  logarithm  problem  is  simply  more  general  than  the  multiplicative  order  problem,  replacing  the
specific 1 with an arbitrary a. 
The MultiplicativeOrder function accepts a third argument which generalizes it to include the
computation of discrete logarithms. Recall that the first argument of MultiplicativeOrder is the
value r, the second is the prime p. By providing a third argument, a, MultiplicativeOrder will
compute  the  discrete  logarithm  of  a  modulo  p  to  the  base  r.  That  is,  logr a  is  computed  by
MultiplicativeOrder@r, p, aD.
To compute the discrete logarithm of 3 modulo 11 to the base 2, you enter the following.
In[113]:= MultiplicativeOrder@2, 11, 3D

Out[113]= 8

4.5 Applications of Congruences
In this section we will see how Mathematica can be used to further explore the applications of congru-
ences  discussed  in  the  text.  In  particular,  we  will  see  how to  use  a  hashing  function  to  store  student
information in a list. We will create a pseudorandom number generator. And we will write a function
that will check the validity of an ISBN. 

Hashing Functions
The first application we will explore is the hashing function. Suppose that a small school wants to store
information about its students. In particular, each student has a unique four digit identification number
and a GPA, which is a real number between 0 and 4. 
Initial Examples
Each student record will be stored as a list with first element the student ID and the second element the
student’s GPA. Here are three example students.
In[114]:= student1 = 87319, 3.21<;

student2 = 82908, 2.89<;
student3 = 86578, 3.42<;

Our student records are going to be stored in a list. Because the school is small, it will suffice to allo-
cate space for 57 records in the school's database and so we create a list with 57 entries all initialized to
0. 
In[117]:= studentRecords = Table@0, 857<D

Out[117]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

In order to store a student record in the list (which represents the school's database), we need to apply a
hashing function to the unique student ID. The hashing function we'll use is hHkL = k mod 57+ 1. Note
that  the  addition  of  1  is  to  occur  after  the  computation  of  k mod 57.  It  is  included  in  our  function
because  the  indices  in  our  studentRecords  list  run  from  1  to  57  while  the  values  of  k mod 57
range from 0 to 56. 
The  following  function  accepts  a  student  ID  as  input  and  returns  the  result  of  applying  the  hashing
function to the ID number. 
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The  following  function  accepts  a  student  ID  as  input  and  returns  the  result  of  applying  the  hashing
function to the ID number. 
In[118]:= calculateHash@id_IntegerD := Mod@id, 57D + 1

For example,
In[119]:= calculateHash@student1@@1DDD

Out[119]= 24

This indicates that student1's record should be stored in location 24. We store a record in a particu-
lar location in the usual way.
In[120]:= studentRecords@@24DD = student1

Out[120]= 87319, 3.21<

Note that accessing location 24 returns the list containing the student’s data.
In[121]:= studentRecords@@24DD

Out[121]= 87319, 3.21<

To  access  the  ID  and  GPA of  the  student  stored  in  location  24,  we  can  use  a  second  pair  of  double
brackets with 1 or 2 to access the ID or GPA.
In[122]:= studentRecords@@24DD@@1DD

Out[122]= 7319

Or we  can  include  the  record  number  and  the  index  of  the  particular  piece  of  data  in  a  single  Part
([[…]]) operation.
In[123]:= studentRecords@@24, 1DD

Out[123]= 7319

We can store student2’s information in the same way.
In[124]:= calculateHash@student2@@1DDD

Out[124]= 2

In[125]:= studentRecords@@2DD = student2

Out[125]= 82908, 2.89<

If we try to store student3’s data, we find that a collision occurs.
In[126]:= calculateHash@student3@@1DDD

Out[126]= 24

Since  student3  has  the  same  hash  value  as  student1  did,  we  look  for  the  next  free  location.
Check location 25.
In[127]:= studentRecords@@25DD ã 0

Out[127]= True

Since  location  25  is  still  equal  to  0,  we  know  that  it  has  not  been  used  and  we  store  student3’s
record in location 25.
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In[128]:= studentRecords@@25DD = student3

Out[128]= 86578, 3.42<

Printing Records
Before going any further, take a look at the current state of studentRecords.
In[129]:= studentRecords

Out[129]= 80, 82908, 2.89<, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 87319, 3.21<, 86578, 3.42<, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

This is not very easy to read. We need to write a function to print out the data in a more useful format.
To do this, we loop through the elements of the list and, for those that are non-zero, print the index and
the  data  stored  in  that  position.  Note  that  because  we  are  potentially  comparing  numbers  to  lists,  we
must use UnsameQ (=!=) rather than Unequal (!=).
In[130]:= printRecords@database_ListD := Module@8<,

For@i = 1, i § Length@databaseD, i++,
If@database@@iDD =!= 0, Print@i, " ", database@@iDDDD

D
D

In[131]:= printRecords@studentRecordsD

2 82908, 2.89<

24 87319, 3.21<

25 86578, 3.42<

A Function for Storing New Records
Now we'll write a function storeRecord to automate the process of adding records to the database.
storeRecord  will  accept  two arguments,  the ID and GPA of a student,  and will  add that  student's
record to the studentRecords list (the database). 
The  first  step  in  implementing  storeRecord  will  be  to  assign  to  a  local  variable,  which  we'll  call
record,  the list representing the student record. Then storeRecord  needs to determine the loca-
tion  in  the  studentRecords  list  in  which  the  record  will  be  stored.  In  particular,  it  will  need  to
avoid  collision.  To  do  this,  we'll  use  something  similar  to  the  linear  probing  function  defined  in  the
text.  Beginning with i = 0,  we'll  calculate  hHk+ iL = Hk+ iL mod 57+ 1.  We will  store  that  value in  the
local name hash and check to see if studentRecords[[hash]]  is 0. If so, then we know the list
does not already have a record stored in that location and we can stop our search for an open position.
The Break function causes the loop in which it is contained to terminate. If the location is not empty,
we increment  i  and  continue  looking.  Once  we have  found an  open position,  we only  need to  assign
our record to that position. We give Null as the final expression so that the function does not display
anything when the record is successfully stored. 
Note  that  for  this  function  we  chose  not  to  include  the  database  as  a  parameter,  but  instead  we've
described the function in relation to the studentRecords list that we began above. This can result
in  a  significant  improvement  in  performance,  especially  when the  list  of  records  is  long,  because  the
database does not have to be passed as an argument to the function and then returned from it each time
a new record is to be stored. The disadvantage, of course, is that in order to use a different name for the
database, we have to revise the storeRecord function. 
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Note  that  for  this  function  we  chose  not  to  include  the  database  as  a  parameter,  but  instead  we've
described the function in relation to the studentRecords list that we began above. This can result
in  a  significant  improvement  in  performance,  especially  when the  list  of  records  is  long,  because  the
database does not have to be passed as an argument to the function and then returned from it each time
a new record is to be stored. The disadvantage, of course, is that in order to use a different name for the
database, we have to revise the storeRecord function. 
Here is the completed storeRecord function.
In[132]:= storeRecord@id_Integer, gpa_RealD := Module@8record, hash, i<,

record = 8id, gpa<;
For@i = 0, i § 56, i++,
hash = calculateHash@id + iD;
If@studentRecords@@hashDD === 0, Break@DD

D;
studentRecords@@hashDD = record;
Null

D

Now we add a few records.
In[133]:= storeRecord@2216, 1.98D

In[134]:= storeRecord@1325, 3.14D

In[135]:= storeRecord@7061, 3.51D

Look again at studentRecords.
In[136]:= printRecords@studentRecordsD

2 82908, 2.89<

15 81325, 3.14<

24 87319, 3.21<

25 86578, 3.42<

51 82216, 1.98<

52 87061, 3.51<

Retrieving Records
We now have functions for storing a student record in our database and for printing all of the records.
But  we also  need a  way to  retrieve  the  record  for  a  particular  student.  Indeed,  one  of  the  benefits  of
hash  functions  is  that  they  provide  an  efficient  way  to  look  up  records  — given  the  unique  key,  we
need  only  apply  the  hash  function  to  determine  the  memory  location  in  which  the  record  is  stored
(subject to collision, of course). 
Our  retrieveRecord  function  will  accept  a  student  ID  number  as  its  input  and  return  the  list
storing the student’s record. Most of the work will take place within the same For loop as was in the
storeRecord function. This time, we enclose the loop in a Catch, as the means of short-circuiting
the loop and passing the result, either Null or the record, out of the function. We test to make sure the
location we're looking in is non-zero. If the location is 0, that tells us that the entry does not exist and
the procedure will display the following message and return Null. 
In[137]:= retrieveRecord::missing = "Desired record does not exist.";

Assuming the location is not 0, we check to see if the ID of the record in that position is the ID we're
looking for. If so, we return the student data. If the ID is not the one we're searching for, it must have
been  the  case  that  our  record  was  pushed  down  the  line  because  of  a  collision  and  we  continue  the
loop. 
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Assuming the location is not 0, we check to see if the ID of the record in that position is the ID we're
looking for. If so, we return the student data. If the ID is not the one we're searching for, it must have
been  the  case  that  our  record  was  pushed  down  the  line  because  of  a  collision  and  we  continue  the
loop. 
In[138]:= retrieveRecord@id_IntegerD := Module@8hash, i<,

Catch@
For@i = 0, i § 56, i++,
hash = calculateHash@id + iD;
If@studentRecords@@hashDD === 0,
Message@retrieveRecord::missingD;
Throw@NullD

D;
If@studentRecords@@hashDD@@1DD ã id,
Throw@studentRecords@@hashDDD

D

D
D

D

In[139]:= retrieveRecord@1325D

Out[139]= 81325, 3.14<

In[140]:= retrieveRecord@7061D

Out[140]= 87061, 3.51<

Pseudorandom Numbers
Many applications require sequences of random numbers, which are important in cryptography and in
generating data for computer simulations. It is impossible to produce a truly random stream of numbers
using  software  only,  since  software  employs  algorithms.  Anything  that  can  be  generated  by  an  algo-
rithm  is,  by  definition,  not  random.  Fortunately,  for  most  applications,  it  is  sufficient  to  generate  a
stream of pseudorandom numbers.  This is  a stream of numbers that,  while not  truly random, exhibits
some of the same properties of a random number stream. Effective algorithms for generating pseudoran-
dom numbers can be based on modular arithmetic. We will implement a linear congruential method, as
described in the text. 
We must  choose  four  integers:  the  modulus  m,  the  multiplier  a  with  2 § a < m,  the  increment  c  with
0 § c < m, and the seed x0  with 0 § x0 < m. Then we can create a sequence of pseudorandom numbers
using the recursive formula xn+1 = Ha ÿ xn + cL mod m.  It  is  common to  have the seed chosen based on
some physical property accessible by the computer, for instance the time. Alternately, the seed can be
based  on  some  truly  random  physical  process,  such  as  radioactive  decay.  For  this  example,  we  will
generate  a  seed  by  multiplying  by  1000  the  result  of  the  SessionTime  function,  which  gives  the
total number of seconds since the beginning of the Mathematica  session. We apply Floor  to be cer-
tain that we obtain an integer. 
In[141]:= Floor@1000*SessionTime@DD

Out[141]= 7603

We will write two functions that generate random student IDs and GPAs that we can use to add some
random  records  to  our  studentRecords  from  above.  We  first  write  the  function  randomIDs,
which will accept a positive integer as input to control the number of IDs to generate. It will return a
sequence of that number of random student IDs. 
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We will write two functions that generate random student IDs and GPAs that we can use to add some
random  records  to  our  studentRecords  from  above.  We  first  write  the  function  randomIDs,
which will accept a positive integer as input to control the number of IDs to generate. It will return a
sequence of that number of random student IDs. 
Recall  that a student ID, in the context described above, is  a four-digit  number.  So our random num-
bers  must  be  between  1000  and  9999.  We  can  obtain  such  numbers  by  generating  random  integers
between 0 and 8999 and adding 1000. So our modulus will be 8999. We will choose a multiplier of 57
and an increment of 328. (These values were chosen for no particular reason, but in practice the choice
of c and a can be an important consideration. See the references in the textbook for more information.)
The seed will be determined from SessionTime as described above. 
The function is straightforward.
In[142]:= randomIDs@n_IntegerD := Module@8m = 8999, a = 57, c = 328, x, i<,

x = Mod@Floor@1000*SessionTime@DD, mD;
Reap@

For@i = 1, i § n, i++,
Sow@x = Mod@a*x + c, mDD

D
D@@2, 1DD

D

We generate 10 random IDs by applying the procedure to 10. 
In[143]:= someIDs = randomIDs@10D

Out[143]= 83578, 6296, 8239, 2003, 6511, 2496, 7615, 2431, 3910, 7222<

To generate GPAs, the approach will be essentially the same. We use the pure multiplicative generator
mentioned in the text with modulus 231 - 1, multiplier 75, and increment 0. This will produce integers
between 0 and 231 - 2. To obtain numbers between 0 and 4, we'll divide the random integer by 231 - 2
and multiply by 4. 
In[144]:= randomGPAs@n_IntegerD := Module@8m = 2^31 - 1, a = 7^5, x, i<,

x = Mod@Floor@1000*SessionTime@DD, mD;
Reap@

For@i = 1, i § n, i++,
x = Mod@a*x, mD;
Sow@Round@HxêHm - 1LL*4, 0.01DD

D
D@@2, 1DD

D

In[145]:= someGPAs = randomGPAs@10D

Out[145]= 80.25, 3.13, 3.87, 2.61, 0.1, 2.06, 0.07, 0.06, 1.6, 2.92<

Note that we use Round to round the random number to the nearest hundredth, so that out output has
at most two digits after the decimal place. The second argument to Round  being 0.01 means that the
result will be rounded to the nearest multiple of 0.01.
Now we add the random students to studentRecords.
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In[146]:= For@i = 1, i § 10, i++,
storeRecord@someIDs@@iDD, someGPAs@@iDDD

D

In[147]:= printRecords@studentRecordsD

2 82908, 2.89<

9 82003, 2.61<

14 86511, 0.1<

15 81325, 3.14<

24 87319, 3.21<

25 86578, 3.42<

27 86296, 3.13<

32 88239, 3.87<

35 87615, 0.07<

36 83910, 1.6<

38 82431, 0.06<

41 87222, 2.92<

45 83578, 0.25<

46 82496, 2.06<

51 82216, 1.98<

52 87061, 3.51<

Check Digits
We conclude  this  section  with  a  function  to  check  the  validity  of  an  ISBN.  Recall  that  the  ISBN-10
code consists of 10 digits, the last of which is computed by the formula 

x10 =⁄
i=1

9
i ÿ xi Hmod 11L

The symbol X is used in case x10 = 10.
Our checkISBN function will accept the ISBN as a string. It is necessary that we use strings in case
the ISBN contains X as the check digit. Consider the ISBN below.
In[148]:= isbnExample = "0073383090"

Out[148]= 0073383090

In Mathematica, in order to access a character within a string, you use the StringTake function. The
first argument to StringTake is the string. In order to obtain a single character, you provide as the
second  argument  a  list  with  the  position  of  the  character  as  the  sole  element.  For  example,  the  third
character of our example is obtained as follows.
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In Mathematica, in order to access a character within a string, you use the StringTake function. The
first argument to StringTake is the string. In order to obtain a single character, you provide as the
second  argument  a  list  with  the  position  of  the  character  as  the  sole  element.  For  example,  the  third
character of our example is obtained as follows.
In[149]:= StringTake@isbnExample, 83<D

Out[149]= 7

Note that the output is still a string, however.
In[150]:= StringTake@isbnExample, 83<D êê FullForm

Out[150]//FullForm=
"7"

In order to perform arithmetic, we need to turn the character into an integer. To do this, we can use the
ToExpression  function. When ToExpression  is applied to a string, Mathematica  interprets the
string as Mathematica input. In this example, the string “7” will be interpreted as if we had entered 7
on an input line. 
In[151]:= ToExpression@StringTake@isbnExample, 83<DD êê FullForm

Out[151]//FullForm=
7

Conversely, the function ToString  will  convert an expression into a string. The following converts
the number 7 into the string “7”.
In[152]:= ToString@7D êê FullForm

Out[152]//FullForm=
"7"

Our  function  will  compute  the  sum  indicated  by  the  formula  above  using  Sum.  Recall  that  the  first
argument to Sum  is an expression in terms of an index variable and the second argument is the range
for  the  variable.  Once  the  value  of  x10  is  determined,  we  compare  it  to  the  check  digit.  This  is  only
slightly  complicated  by  the  fact  that  a  check  digit  of  10  corresponds  to  the  symbol  X.  Note  that  we
must  compare  the  check  digit  with  the  value  of  x10  as  strings  in  both  the  case  that  the  x10 = 10  and
when x10 < 10. This is because the last digit may be X, whether it should be or not, and applying the
ToExpression function to the string “X” will result in the symbol X, which may in fact be assigned
to an expression.
In[153]:= checkISBN@isbn_StringD := Module@8i, check<,

check = Mod@
Sum@i*ToExpression@StringTake@isbn, 8i<DD, 8i, 9<D, 11D;

Which@
check < 10,
ToString@checkD ã StringTake@isbn, 810<D,
check ã 10,
StringTake@isbn, 810<D ã "X"

D
D

Recall  that  a  Which  statement  evaluates  the  first  argument  and  if  it  is  true,  returns  the  value  of  the
second argument. If the first argument is false, then it moves to the third argument and evaluates that
test, and so on.
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In[154]:= checkISBN@isbnExampleD

Out[154]= True

In[155]:= checkISBN@"084930149X"D

Out[155]= False

In[156]:= checkISBN@"232150031X"D

Out[156]= True

4.6 Cryptography
In this, the final section of Chapter 4, we will see how Mathematica can be used to encode and decode
strings using two of the approaches described in the textbook. Specifically, we will see how to imple-
ment a classical affine cypher and the RSA system. 

Encoding Strings
Before  we  can  implement  the  encryption  algorithms,  we  need  to  encode  strings  as  numbers.  In  this
manual,  we  will  deviate  slightly  from  the  convention  used  in  the  textbook.  Instead  of  assigning  the
letter A to 0, B to 1, and so on with Z assigned to 25, we will assign the space character to 0, A to 1, B
to 2, and so on with Z set to 26. We will then work modulo 27 instead of 26. 
Some Functions for Working with Strings
Mathematica  contains  a  variety  of  functions  for  working  with  strings.  We  have  already  seen,  in  the
previous  section,  the  StringTake  function.  This  function  is  used  to  obtain  a  substring  of  a  given
string. Its first argument is the initial string, and the second argument specifies what part of the string
to return. 
If the second argument to StringTake is a positive integer, n, the result will be the first n characters.
For example, the following produces the first 5 characters in the string “The quick brown fox”.
In[157]:= StringTake@"The quick brown fox", 5D

Out[157]= The q

If the second argument is a negative integer, say -n, the result is the final n characters.
In[158]:= StringTake@"The quick brown fox", -5D

Out[158]= n fox

To  obtain  the  character  in  a  particular  location,  as  was  done  in  Section  4.5,  the  second  argument  is
given as a list containing the desired position. For example, to obtain the character in position 8, enter
the following.
In[159]:= StringTake@"The quick brown fox", 88<D

Out[159]= c

With  a  pair  of  integers  in  a  list  given  as  the  second  argument,  StringTake  returns  the  substring
between  the  given  two  positions.  The  following  produces  the  substring  consisting  of  characters  5
through 8.
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In[160]:= StringTake@"The quick brown fox", 85, 8<D

Out[160]= quic

The ToUpperCase function makes all of the letters in its input string upper case.
In[161]:= ToUpperCase@"The quick brown fox"D

Out[161]= THE QUICK BROWN FOX

The ToUpperCase  command is  useful  in  this  context  because it  means we only have to work with
the 26 uppercase letters and the space character instead of the full 53 characters, including both upper
and lower case letters and space.
The next function we will need is the Characters function and its inverse StringJoin (<>). The
Characters function takes a string and returns a list of characters.
In[162]:= Characters@"THE QUICK BROWN FOX"D

Out[162]= 8T, H, E, , Q, U, I, C, K, , B, R, O, W, N, , F, O, X<

The StringJoin function does the opposite. Given two or more strings as arguments, it joins them
into one string.
In[163]:= StringJoin@"The quick", " ", "brown fox"D

Out[163]= The quick brown fox

StringJoin also has an operator form, <>.
In[164]:= "The quick" <> " " <> "brown fox"

Out[164]= The quick brown fox

It  can  also  accept  a  list  of  strings  as  its  arguments  and  will  return  the  string  formed  by  joining  the
members of the list. 
In[165]:= StringJoin@8"T", "H", "E", " ", "Q", "U", "I", "C",

"K", " ", "B", "R", "O", "W", "N", " ", "F", "O", "X"<D

Out[165]= THE QUICK BROWN FOX

Mapping Characters to Integers
To  represent  the  function  that  maps  characters  to  integers,  and  its  inverse,  we  will  use  two  indexed
variables, charToNum and numToChar. In the charToNum variable, the space character and capi-
tal letters will serve as the indices with the corresponding integers the entries. The numToChar vari-
able will be the reverse. 
To define  these  two indexed variables,  rather  than entering  each individual  assignment  manually,  we
will  apply  the  MapThread  function.  Recall  that  MapThread  is  used  to  apply  a  function  to  lists  of
arguments. The first argument to MapThread is a function. In this case, we will create a pure function
that sets a value of the indexed variable. The second argument to MapThread is a list of lists, with the
inner lists containing the arguments. The elements of the first sublist are values of the first argument of
the function, the elements of the second sublist values of the second argument and so forth. The result
of MapThread is that the function is evaluated on corresponding pairs of elements from the lists.
Here,  MapThread  is  used  to  define  charToNum.  Note  that  the  parentheses  are  needed  in  the  pure
function, since Function (&) has greater precedence than Set (=).
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Here,  MapThread  is  used  to  define  charToNum.  Note  that  the  parentheses  are  needed  in  the  pure
function, since Function (&) has greater precedence than Set (=).
In[166]:= MapThread@HcharToNum@Ò1D = Ò2L &,

8Characters@" ABCDEFGHIJKLMNOPQRSTUVWXYZ"D, Range@0, 26D<D;

After  executing  this  MapThread  expression,  charToNum,  issued  with  a  character  as  an  index,
returns the appropriate value.
In[167]:= charToNum@"F"D

Out[167]= 6

The numToChar indexed variable is created in the same way, but reversed.
In[168]:= MapThread@HnumToChar@Ò1D = Ò2L &,

8Range@0, 26D, Characters@" ABCDEFGHIJKLMNOPQRSTUVWXYZ"D<D;

In[169]:= numToChar@6D

Out[169]= F

Converting Between a String and a Numerical Representation
We  now  have  the  tools  needed  to  encode  a  string  as  a  list  of  numbers  and  a  decode  the  numerical
representation as a string. 
In the stringToNums function, we will first apply ToUpperCase and Characters to produce a
list of uppercase characters. Then we will use the Map (/@) function to apply the charToNum table to
each  character.  When  Map  (/@)  is  applied  to  a  function  (in  this  case  a  function  represented  by  an
indexed variable) and a list, it returns the list obtained by applying the function to each element of the
list. 
In[170]:= stringToNums@s_StringD := Module@8charList<,

charList = Characters@ToUpperCase@sDD;
Map@charToNum, charListD

D

In[171]:= stringToNums@"The quick brown fox"D

Out[171]= 820, 8, 5, 0, 17, 21, 9, 3, 11, 0, 2, 18, 15, 23, 14, 0, 6, 15, 24<

The numsToString function begins with a list of integers and returns the string.
In[172]:= numsToString@numList : 8__Integer<D := Module@8charList<,

charList = Map@numToChar, numListD;
StringJoin@charListD

D

In[173]:= numsToString@88, 5, 12, 12, 15, 0, 23, 15, 18, 12, 4<D

Out[173]= HELLO WORLD

Now that we have the ability to convert strings into a numerical representation and back again, we are
ready to implement our encryption algorithms. 
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Classical Cryptography
We  will  now  implement  an  affine  cipher  in  Mathematica.  Recall  from  the  text  that  a  general  affine
cipher has the form

f HpL = Ha ÿ p+ bL Hmod 27L

where  p  is  an  integer  corresponding  to  a  character  that  is  to  be  encrypted.  We  will  refer  to  the  pair
Ha, bL  as  the  key  to  the  cipher.  For  decryption  to  be  feasible,  the  key  must  be  chosen  so  that  f  is  a
bijection. This amounts to choosing an a that is relatively prime to 27. (Note that the text uses a modu-
lus of 26 where we use 27 because we are considering space to be an encodable character.) 
Encrypting a string requires three simple steps. First, the string is transformed into its numerical repre-
sentation  via  stringToNums.  Second,  the  function  f  is  applied  to  each  number.  And  third,  the
numsToString  function  transforms  the  result  back  into  a  string.  Our  affineCipher  function
accepts as input a string and values of a and b. 
We ensure that the argument a is relatively prime to 27 by imposing a Condition (/;) and creating
a message if it is not. 
In[174]:= affineCipher::arga =

"Second argument must be relatively prime to 27.";

Recall that following the name and arguments of a function definition with the condition operator /;
and an  expression  that  results  in  true  or  false  allows  you to  create  functions  that  will  not  execute  on
invalid arguments.
In[175]:= affineCipher@s_String, a_Integer, b_IntegerD ê;

If@CoprimeQ@a, 27D, True,
Message@affineCipher::argaD; FalseD := Module@8S, T<,

S = stringToNums@sD;
T = Map@Mod@a*Ò + b, 27D &, SD;
numsToString@TD

D

Note the use of Map (/@) to apply the function f HpL, defined as a pure function, to each character.
We now use the cipher to encrypt “The quick brown fox” with the key H5, 3L.
In[176]:= affineCipher@"The quick brown fox", 5, 3D

Out[176]= VPACG URDCMLXJSCFXO

To decrypt the message, we use the same function. The discussion following Example 4 in Section 4.5
of  the  text  indicates  that  decrypting  amounts  to  solving  c ª Ha ÿ p+ bL Hmod 27L  for  p.  As  the  text
shows,  we  obtain  p ª a-1Hc- bL Hmod 27L ª a-1 c- a-1 b Hmod 27L.  In  other  words,  to  decrypt  a  mes-
sage encrypted using the key Ha, bL, we use the same procedure but with key Ia-1, -a-1 bM.

First, compute the inverse of a = 5.
In[177]:= PowerMod@5, -1, 27D

Out[177]= 11

And then -a-1 b, being sure to include the negative.
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In[178]:= Mod@-11*3, 27D

Out[178]= 21

Thus the decryption key is H11, 21L.
In[179]:= affineCipher@"VPACG URDCMLXJSCFXO", 11, 21D

Out[179]= THE QUICK BROWN FOX

RSA Encryption
We will now see how to use Mathematica to implement the RSA cryptosystem. Implementing the RSA
system involves two steps: key generation and the encryption algorithm. 
To construct keys in the RSA system, we need to find pairs of large primes, say with 200 digits each.
Since  messages  can  be  decrypted  by  anyone  who  can  factor  the  product  of  these  primes,  the  two
primes must be large enough so that their  product is  extremely difficult  to factor.  A 400 digit  integer
fits the bill since factoring requires an extremely large amount of computer time. 
Because the use of very large prime numbers would make our examples impractical  as examples,  we
shall  illustrate  the  RSA system using  smaller  primes.  We will  discuss  at  the  end  of  this  section  how
you can use Mathematica to generate large prime numbers. 
Key Generation
The first step in key generation is to choose two distinct large prime numbers, p and q. From these, we
produce the public key, which consists of the public modulus n = p ÿ q and the public exponent e which
is  relatively  prime to  fHnL = Hp- 1L Hq- 1L.  We also  produce  the  private  key,  consisting  of  the  public
modulus n and the inverse of e modulo Hp- 1L Hq- 1L. Since e is unrelated to the primes p and q, it can
be generated in a number of ways. For our implementation below, we will take e to be 13. 
Here  is  a  Mathematica  function  to  handle  key  generation.  The  generateKeys  function  accepts  as
input two prime numbers. It returns a list of two lists where the sublists are the public and private keys.
That  is,  it  returns  98n, e<, 9n, e-1==.  Given  the  primes  p  and  q,  the  procedure  computes  n = p ÿ q,
fHnL = Hp- 1L Hq- 1L, and d = e-1 Hmod fHnLL. 
In[180]:= generateKeys@p_?PrimeQ, q_?PrimeQD := Module@8n, phin, e, d<,

e = 13;
n = p*q;
phin = Hp - 1L*Hq - 1L;
d = PowerMod@e, -1, phinD;
88n, e<, 8n, d<<

D

In a practical RSA implementation, we would likely use some of the techniques discussed at the end of
this section to incorporate into our generateKeys  procedure the generation of the primes p  and q,
rather than passing them as arguments.
We generate keys using the prime numbers p = 59 and q = 71
In[181]:= keys = generateKeys@59, 71D

Out[181]= 884189, 13<, 84189, 937<<
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The public and private keys are:
In[182]:= publickey = keys@@1DD

Out[182]= 84189, 13<

In[183]:= privatekey = keys@@2DD

Out[183]= 84189, 937<

Encoding
Now that we have the keys, we turn to encoding the message. As described in the text, we encode the
message  in  much  the  same  way  as  for  affine  ciphers,  except  that  we  block  groups  of  characters  into
single integers. The block length must be chosen so that, after conversion, the largest integer produced
is less than the modulus n. Here, we have n = 4198 and the largest block that can be produced is 2626
for “ZZ”. 
We need to ensure that this part of the process is reversible. Consider the string “VA”. This comprises
one block. Since “V” has code 22 and “A” has code 1, it is tempting to code “VA” as 221. But when
you go to convert this back to a string, it is impossible to tell if it was 22 and 1 indicating “VA” or if it
was 2 and 21, which represents “BU”. To avoid this, we code “A” as 01. Or, what amounts to the same
thing, when we compose the block, we multiply the value of the first character by 100. 
For  a  specific  example,  consider  the  message  “SECRET  MESSAGE”.  We  can  use  our
stringToNums function from above to get the numeric representation of each character. 
In[184]:= messageString = stringToNums@"SECRET MESSAGE"D

Out[184]= 819, 5, 3, 18, 5, 20, 0, 13, 5, 19, 19, 1, 7, 5<

You can see that the first pair should be encoded as 1905, the second as 0318, and so on. Note that the
extra 0 is unnecessary in second block, since 0318 and 318 are numerically equal.  We can obtain the
desired results by multiplying the first number in each pair by 100 as follows. 
In[185]:= messageCode =

Table@messageString@@i - 1DD*100 + messageString@@iDD,
8i, 2, Length@messageStringD, 2<D

Out[185]= 81905, 318, 520, 13, 519, 1901, 705<

Note  that  the  final  2  in  the  list  describing  the  table  variable  i  indicates  that  the  variable  should  be
increased by 2 each iteration.
Encryption
The encryption algorithm will take as input this list of integers and the public key. Each message block
mi is transformed into a ciphertext block ci with the function C ª Me Hmod nL. 
In[186]:= RSA@8n_Integer, e_Integer<, msg : 8__Integer<D := Module@8c<,

c = Map@PowerMod@Ò, e, nD &, msgD
D

Observe how the arguments for this function were defined. The function RSA accepts a list consisting
of two integers named n and e and a list of integers called msg.
Our “SECRET MESSAGE” is encrypted as
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In[187]:= cipherText = RSA@publickey, messageCodeD

Out[187]= 8723, 3360, 2306, 1979, 2695, 917, 1863<

Decryption is accomplished by applying the same algorithm with the private decryption key. 
In[188]:= RSA@privatekey, cipherTextD

Out[188]= 81905, 318, 520, 13, 519, 1901, 705<

Note that the result is identical to messageCode  and it can be decoded into the message “SECRET
MESSAGE”.
Generating Large Primes
If  you  were  to  use  small  primes,  as  we  did  in  the  example,  there  would  be  no  real  security.  Anyone
could factor n, the product of the primes, and then could compute the decrypting key d from the encrypt-
ing key e. 
Using Mathematica's computational abilities, we can generate fairly large prime numbers for use in an
RSA key. Remember that what is needed is a pair of prime numbers, each of about 200 digits. More-
over,  they should be selected in an unpredictable fashion. To do this in Mathematica,  we can use the
RandomPrime function.
The first  argument to RandomPrime  is  either an integer,  in which case the function returns a prime
up to that value, or a list of two integers, in which case the prime generated will be between them. The
function can also accept a second argument in order to produce more than one at a time. For example,
with second argument 2, the function will return a list of two primes.
Of course, the primes generated by RandomPrime are in fact pseudorandom, not truly random.
To produce two random primes with between 200 and 300 digits, we call RandomPrime as follows.
In[189]:= RandomPrime@810^200, 10^300<, 2D

Out[189]= 8457 470 868 081 910 306 859 462 238 743 895 755 314 347 261 556 410 903 Ö
640 625 321 769 946 844 773 754 142 026 227 432 145 916 096 381 792 Ö
696 409 400 992 053 626 995 507 142 873 626 500 111 933 890 008 195 Ö
751 585 051 179 309 967 799 727 851 917 975 154 148 052 787 289 033 Ö
177 677 770 723 780 447 683 644 745 273 832 584 852 454 770 176 179 Ö
686 565 703 694 327 587 460 149 242 772 179 945 323 701,

842 162 494 477 098 003 796 865 021 670 155 127 125 584 249 463 527 635 Ö
849 111 696 959 608 420 595 155 514 529 336 562 896 667 053 489 876 Ö
715 729 724 227 110 612 112 784 311 745 623 039 975 364 378 292 920 Ö
705 556 809 814 274 749 416 848 059 270 839 233 189 581 662 359 185 Ö
337 025 502 391 921 791 572 073 995 567 674 054 818 872 858 284 792 Ö
885 548 490 389 975 624 702 221 425 127 071 640 653 459<

It is left to the reader to incorporate these ideas in improved versions of the generateKeys and RSA
functions.
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Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 3

Given a positive integer, find the Cantor expansion of this integer (see the preamble to 
Exercise 48 of Section 4.2).

Solution: Recall the definition of the Cantor expansion. Given an integer a, the Cantor expansion of a is
a = an n! + an-1Hn- 1L! +º⋯+ a2 2! + a1 1!

Observe that every term except for a1 1! is divisible by 2. That is, 
an n! + an-1Hn- 1L! +º⋯+ a2 2! + a1 1! Hmod 2L = a1

So set a1 = a Hmod 2L. And let y1 be the remainder with the 2 divided out. In other words, y1 =
a-a1
2

, or

y1 =
an n! + an-1Hn- 1L! +º⋯+ a2 2!

2
= an

n!

2
+ an-1

Hn- 1L!
2

+º⋯+ a3 3+ a2

Now every term other than the last contains a factor of 3, so set a2 = y1 Hmod 3L and let y2 =
y1-a2
3

.

In  general,  ak = yk-1 Hmod k+ 1L  and  yk =
yk-1-ak
k+1

.  It  is  left  to  the  reader  to  verify  that  this  process
produces the Cantor expansion of a.
The  algorithm described  above  leads  to  the  function  below which  accepts  a  positive  integer  as  input
and returns a list of integers 8a1, a2, …, an<.
In[190]:= cantorExpansion@n_IntegerD := Module@8a, k = 1, y = n<,

Reap@
While@y ¹≠ 0,
a = Mod@y, k + 1D;
Sow@aD;
y = Hy - aLêHk + 1L;
k++

D
D@@2, 1DD

D

In[191]:= cantorExpansion@471D

Out[191]= 81, 1, 2, 4, 3<

Computer Projects 21

Generate a shared key using the Diffie-Hellman key exchange protocol.
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Solution: Recall from Section 4.6 of the text the Diffie-Hellman key exchange protocol. 
(1) Alice and Bob agree on a prime number p and a primitive root a of p. For this example, we’ll use a
relatively small prime, one with between 6 and 8 digits.
In[192]:= dhPrime = RandomPrime@810^6, 10^8<D

Out[192]= 24 720 211

For the primitive root, we’ll use PrimitiveRoot to get the smallest primitive root of the prime.
In[193]:= dhRoot = PrimitiveRoot@dhPrimeD

Out[193]= 2

(2) Alice chooses a secret integer k1. Let's choose 421 since this is Computer Project 21 in Chapter 4.
We need to compute  ak1Hmod pL and send the resulting value to Bob. 
In[194]:= aliceSends = PowerMod@dhRoot, 421, dhPrimeD

Out[194]= 18 566 175

Note that we use PowerMod so that the exponentiation is computed efficiently.
(3) Bob also chooses a secret integer k2. From the perspective of Alice, we won't know what value of
k2  that Bob chooses, only the value of ak2Hmod pL. So we'll have Mathematica choose k2  randomly in
the computation. 
In[195]:= bobSends =

PowerMod@dhRoot, RandomInteger@81, dhPrime<D, dhPrimeD

Out[195]= 14 065 885

The RandomInteger function has similar syntax to RandomPrime. Given a list of two integers as
its  argument,  it  returns  a  pseudorandom  integer  between  the  two  integers.  There  are  no  necessary
restrictions on the values of k1  and k2, however, ak+p ª ak Hmod pL, so it is no loss to assume the inte-
gers lie between 1 and p.

(4) and (5) Alice computes Iak2Mk1 Hmod pL using the result that Bob transmitted and her k1.  Bob does
the same using the value he got from Alice and his secret k2. 
In[196]:= sharedKey = PowerMod@bobSends, 421, dhPrimeD

Out[196]= 2 470 046

At the conclusion, both Alice and Bob know this shared key, but no one else does. 

Computations and Explorations 1

Determine whether 2p - 1 is prime for each of the primes not exceeding 100.

Solution: To solve this problem, we will write a Mathematica program that tests each prime p less than
or equal to a given value to see whether 2p - 1 is a Mersenne prime. The function will output a list of
those primes p for which 2p - 1 is prime.
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In[197]:= checkMersenne@max_IntegerD := Module@8p = 2<,
Reap@

While@p § max,
If@PrimeQ@2^p - 1D, Sow@pDD;
p = NextPrime@pD

D
D@@2, 1DD

D

The primes p less than 100 such that 2p - 1 is prime are:
In[198]:= checkMersenne@100D

Out[198]= 82, 3, 5, 7, 13, 17, 19, 31, 61, 89<

It is of note that there is a better test, called the Lucas-Lehmer test, that is more efficient than PrimeQ
for checking primality of numbers of the form 2p - 1, and can be implemented in Mathematica. For a
complete description of that algorithm, consult Rosen's text on Number Theory. 

Computations and Explorations 5

Find as many primes of the form n2 + 1 where n is a positive integer as you can. It is not 
known whether there are infinitely many such primes.

Solution:  We write  a  Mathematica  function  that,  given  a  maximum n,  tests  the  integers  of  the  given
form.
In[199]:= ce5@max_IntegerD := Module@8n<,

Reap@
For@n = 1, n § max, n++,
If@PrimeQ@n^2 + 1D, Sow@n^2 + 1DD

D
D@@2, 1DD

D

To save space, we’ll only compute up to a maximum of n = 100.
In[200]:= ce5@100D

Out[200]= 82, 5, 17, 37, 101, 197, 257, 401, 577, 677,
1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837<

Exercises
1. Use Mathematica to generate the list of the first 100 prime numbers larger than one million.
2. Use Mathematica to find the one's complement of an arbitrary integer (see the prelude to 

Exercise 34 of Section 4.2).
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3. For which odd prime moduli is -1 a square? That is, for which prime numbers p does there 
exist an integer x such that x2 ª -1 Hmod pL?

4. Use Mathematica to determine which numbers are perfect squares modulo n for various 
values of the modulus n. For each perfect square s, determine how many square roots s has. 
That is, for how many values of x is x2 ª s Hmod nL. What conjectures can you make about the 
number of different square roots an integer has modulo n? (The Mathematica functions 
PowerMod and Solve may be of use.)

5. Use Mathematica to find the base 2 expansion of the 4th Fermat number F4 = 224 + 1. Do the 
following for several large integers n. Compute the time required to calculate the remainder 
modulo n of various bases b raised to the power F4 (that is, to calculate bF4Hmod nL) using two 
different methods. First, do the calculation by a straightforward exponentiation. Second, do it 
using the binary expansion of F4 with repeated squaring and multiplications. Why do you 
think F4 is a good choice for the public exponent in the RSA encryption scheme? 

6. Modify the function generateKeys that we developed to produce the keys for the RSA 
system to incorporate the techniques for generating random large primes. Make your 
procedure take as an argument a “security” parameter which measures the number of digits in 
the primes.

7. Write Mathematica functions to encode and decode English sentences into lists of integers, 
appropriate for encryption with RSA. You may ignore punctuation and insist that all letters 
are uppercase. Your functions should accept as input the block size.

8. There are infinitely many primes of the form 4 n+ 1 and infinitely many of the form 4 n+ 3. 
Use Mathematica to determine for various values of x whether there are more primes of the 
form 4 n+ 1 less than x than there are of the form 4 n+ 3. What conjectures can you make 
from this evidence?

9. Develop a function for determining whether Mersenne numbers are prime using the Lucas-
Lehmer test as described in number theory books, such as Elementary Number Theory and its 
Applications by K. Rosen. How many Mersenne numbers can you test for primality using 
Mathematica? 

10. Repunits are integers with decimal expansions consisting entirely of 1s (e.g., 11, 111, 1111, 
etc.). Use Mathematica to factor repunits. How many prime repunits can you find? Explore 
the same question for repunits in different base expansions.

11. Compute the sequence of pseudorandom numbers generated by the linear congruential 
generator xn+1 = Ha ÿ xn + cL Hmod mL for various values of the multiplier a, the increment c, 
and the modulus m. For which values do you get a period of length m for the sequence that 
you generate? Formulate a conjecture.

12. The Mathematica function DivisorSigma implements the function defined, for all positive 
integers n, by: skHnL is the sum of the kth powers of the positive divisors of n, i.e., 
skHnL =⁄

d n
dk. For k = 0, s0HnL is the number of positive divisors of n, which is sometimes 

also denoted tHnL. Use Mathematica to study the function s0. What conjectures can you make 
about it? For example, when is s0HnL odd? Is there a formula for s0HnL? For which integers m 
does s0HnL = m have a solution for some integer n? Is there a formula for s0Hm ÿ nL in terms of 
s0HmL and s0HnL? (Note: s0HnL is computed by DivisorSigma[0,n].)

13. A sequence a1, a2, a3, … is called periodic if there are positive integers N and p for which 
an = an+p for all n ¥ N. The least integer p for which this is true is called the period of the 
sequence. The sequence is said to be periodic modulo m, for a positive integer m, if the 
sequence a1 Hmod mL, a2 Hmod mL, a3 Hmod mL … is periodic. Use Mathematica to determine 
whether the Fibonacci sequence is periodic modulo m for various integers m and, if so, find 
the period. Can you, by examining enough different values of m, make any conjectures 
concerning the relationship between m and the period? Do the same thing for other sequences 
that you find interesting.
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13.

A sequence a1, a2, a3, … is called periodic if there are positive integers N and p for which 
an = an+p for all n ¥ N. The least integer p for which this is true is called the period of the 
sequence. The sequence is said to be periodic modulo m, for a positive integer m, if the 
sequence a1 Hmod mL, a2 Hmod mL, a3 Hmod mL … is periodic. Use Mathematica to determine 
whether the Fibonacci sequence is periodic modulo m for various integers m and, if so, find 
the period. Can you, by examining enough different values of m, make any conjectures 
concerning the relationship between m and the period? Do the same thing for other sequences 
that you find interesting.

14. (Class project) The Data Encryption Standard (DES) specifies a widely used algorithm for 
private key cryptography. Find a description of this algorithm (for example, in Cryptography, 
Theory and Practice by Douglas Stinson). Implement the DES in Mathematica.
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