
5 Induction and Recursion

Introduction
In  this  chapter  we  describe  how  Mathematica  can  be  used  to  help  you  make  conjectures  and  prove
them with mathematical induction and strong induction. We will also look at several examples of using
Mathematica  to  explore  recursive  definitions  and  to  implement  recursive  algorithms.  Recursion  is  an
important  tool  in  any  computer  programming  language,  and  Mathematica  is  no  exception.  We  con-
clude with an example of proving program correctness of a Mathematica function. 

5.1 Mathematical Induction
In this section we will demonstrate how to use Mathematica both to discover propositions and to aid in
the use of mathematical induction to verify them. We begin with two examples of how to use Mathemat-
ica to discover and prove summation formulas. We then consider a question of divisibility. 

Summation Example 1
As our first example, we will explore a formula that you've already seen: 

‚
i=1

n
i = 1+ 2+ 3+º⋯+ n =

nHn+ 1L
2

This formula is the subject of Example 1 in Section 5.1 of the text. Here, we will proceed as if we did
not already know the formula. 
Listing and Graphing to Find the Formula
Our first step is to discover the formula. To do this, we will have Mathematica compute the sums for a
variety of values of n, using the Sum function. 
The  Sum  function  has  essentially  the  same  syntax  as  Table.  The  first  argument  is  an  expression
representing the values to be added in terms of a variable. The second argument is a list indicating the
values of the variable over which the sum should be computed. Refer to Section 2.4 for a  description
of the behavior of the second argument. A table summarizing the main possibilities is shown below.

8i, imax< sum from i = 1 to imax
8i, imin, imax< sum from i = imin to imax

8i, imin, imax, step< sum from i = imin to imax by step
8i, list< sum over iœlist



8i, imax< sum from i = 1 to imax
8i, imin, imax< sum from i = imin to imax

8i, imin, imax, step< sum from i = imin to imax by step
8i, list< sum over iœlist

In our situation, we want to add the first several positive integers. For example, the sum of the first ten
positive integers is 

In[1]:= Sum@i, 8i, 10<D

Out[1]= 55

To discover the formula for the sum of the first n positive integers, we need several specific examples
to analyze. To calculate a lot of examples at once, we will embed the Sum function inside of a Table,
with the maximum value of the summation as the table variable. This will produce the list of the sums
of the first n positive integers for different values of n.

In[2]:= Table@Sum@i, 8i, n<D, 8n, 50<D

Out[2]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,
153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406,
435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820,
861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275<

Remember that we're working as if we do not already know the answer. Just looking at the data, you
might  notice  a  pattern,  but  if  not,  it's  sometimes  helpful  to  pair  the  value  of  n  with  the  result.  To do
this, we only need to modify the Table function so that the first argument is the list whose first ele-
ment is n and whose second is the Sum function. 

In[3]:= Table@8n, Sum@i, 8i, n<D<, 8n, 50<D

Out[3]= 881, 1<, 82, 3<, 83, 6<, 84, 10<, 85, 15<, 86, 21<, 87, 28<,
88, 36<, 89, 45<, 810, 55<, 811, 66<, 812, 78<, 813, 91<,
814, 105<, 815, 120<, 816, 136<, 817, 153<, 818, 171<, 819, 190<,
820, 210<, 821, 231<, 822, 253<, 823, 276<, 824, 300<, 825, 325<,
826, 351<, 827, 378<, 828, 406<, 829, 435<, 830, 465<,
831, 496<, 832, 528<, 833, 561<, 834, 595<, 835, 630<,
836, 666<, 837, 703<, 838, 741<, 839, 780<, 840, 820<,
841, 861<, 842, 903<, 843, 946<, 844, 990<, 845, 1035<,
846, 1081<, 847, 1128<, 848, 1176<, 849, 1225<, 850, 1275<<

The entry 823, 276< indicates that the sum of the first 23 positive integers is 276.
This still may not be enough to get an idea of what the formula could be, in which case a graph of the
data  can  be  of  use.  The  ListPlot  function  is  used  to  graph  functions  and  data,  and  was  first  dis-
cussed  in  Section  2.3  of  this  manual.  In  this  situation,  we  want  to  plot  the  points  that  the  previous
application  of  Table  produced:  81, 1<, 82, 3<, 83, 6<, ….  To  do  this,  we  apply  ListPlot  to  the
output above. Note that either of the previous two lists can be used. Given a list of pairs, ListPlot
produces the graph interpreting the pairs as x-y coordinate pairs. Given a list of values, the values are
interpreted as the y coordinates with the x coordinate being the position of the value in the list. That is,
the first element is plotted at x-value 1, the second element at x-value 2, etc. In this case, the plots are
identical,  so  we  will  use  the  shorter  of  the  two  expressions.  Since  Mathematica  computes  the  sums
quickly,  we'll  go out  to  a  maximum of  n  = 1000.  That  way,  we'll  be  sure  to  have a  good idea of  the
shape of the graph. 
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In[4]:= ListPlot@Table@Sum@i, 8i, n<D, 8n, 1000<DD

Out[4]=
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The particular values in the list may not have been helpful at all in figuring out what kind of formula
we were looking for. But this graph probably looks very familiar. It looks very much like the right half
of a parabola, suggesting that the formula is quadratic. (Of course, it may be cubic or quartic or some
other polynomial, but we'll start with the simplest possibility based on the graph.) 
Finding the Coefficients
Now that we have guessed the kind of formula, we can write it as f HnL = a ÿ n2 + b ÿ n+ c. Determining
the coefficients a, b, c is our next task. We will have Mathematica find them for us.
We already know a bunch of values for this function. Here are the first few again. 

In[5]:= sumList = Table@Sum@i, 8i, n<D, 8n, 10<D

Out[5]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55<

This  data  tells  us  a  lot  of  information  about  our  formula.  For  instance,  if  we  plug  in  n = 2,  then
f H2L = 3, meaning

3 = a ÿ 22 + b ÿ 2+ c = 4 a+ 2 b+ c

For n = 1, we have
1 = a+ b+ c

For n = 3:
6 = 9 a+ 3 b+ c

Mathematica  can generate these equations for us.  We can apply Table  with first  argument an equa-
tion,  formed  with  the  Equal  (==)  operator,  representing  the  function  f HnL = a ÿ n2 + b ÿ n+ c.  Instead
of  f HnL,  we  use  the  data  in  sumList.  So  our  expression  will  be
sumList@@nDD ã a*n^2 + b*n + c.  

In[6]:= sumEquations = Table@sumList@@nDD ã a*n^2 + b*n + c, 8n, 10<D

Out[6]= 81 ã a + b + c, 3 ã 4 a + 2 b + c, 6 ã 9 a + 3 b + c, 10 ã 16 a + 4 b + c,
15 ã 25 a + 5 b + c, 21 ã 36 a + 6 b + c, 28 ã 49 a + 7 b + c,
36 ã 64 a + 8 b + c, 45 ã 81 a + 9 b + c, 55 ã 100 a + 10 b + c<

The  list  of  equations  stored  as  sumEquations  is  a  system of  equations.  In  particular,  we  have  10
equations  in  three  variables.  You have  probably  seen  systems of  at  least  2  and  3  equations  in  2  or  3
variables in previous mathematics courses.  You can have Mathematica  solve the system of equations
by applying the Solve function to the list. We provide Solve with the list of equations and the list of
variables appearing in them. (The second argument can often be omitted and Mathematica will deduce
the variables.)

Chapter05.nb  3



The  list  of  equations  stored  as  sumEquations  is  a  system of  equations.  In  particular,  we  have  10
equations  in  three  variables.  You have  probably  seen  systems of  at  least  2  and  3  equations  in  2  or  3
variables in previous mathematics courses.  You can have Mathematica  solve the system of equations
by applying the Solve function to the list. We provide Solve with the list of equations and the list of
variables appearing in them. (The second argument can often be omitted and Mathematica will deduce
the variables.)

In[7]:= Solve@sumEquations, 8a, b, c<D

Out[7]= ::a Ø
1

2
, b Ø

1

2
, c Ø 0>>

You  may  recall  that  to  solve  a  system  of  equations  in  three  unknowns,  only  three  equations  are
required. In this situation, having more equations is useful. If we were wrong about the formula being
quadratic  but  attempted  to  find  coefficients  with  only  three  equations,  Mathematica  may  still  have
found values for a, b, and c that satisfied the three equations we chose. With ten equations, if the actual
formula were not quadratic, there is a greater chance that no values of a, b, and c would satisfy all ten
equations.  In  that  case,  Mathematica  would  have  returned  an  empty  list  to  indicate  the  absence  of  a
solution and that our guess about the kind of formula was incorrect. 

Let's review what we've done so far. Our goal is to find a formula for the sum ⁄
i=1

n
i. We used Mathemat-

ica  to  compute  a  bunch  of  values  of  this  sum  and  graphed  them.  This  graph  suggested  a  quadratic
formula, i.e., one of the form a ÿ n2 + b ÿ n+ c for some values of a, b, and c. We then used Mathemati-
ca's  Solve  function to determine that  a = b = 1

2
 and c = 0.  In other  words,  we've found the formula

1
2
n2 + 1

2
n, which, of course, is the same as nHn+1L

2
. Although we have found a formula, we have not yet

proven anything, we've only made a conjecture.
The Induction Proof
To prove that our formula is correct, we use mathematical induction. First, let's make our formula into
a function.

In[8]:= sumF@n_D := H1ê2L*n^2 + H1ê2L*n

To complete the basis  step of  the induction,  we need to see that  the formula agrees with the sum for
n = 1.

In[9]:= Sum@i, 8i, 1<D

Out[9]= 1

In[10]:= sumF@1D

Out[10]= 1

They are equal and the basis step is verified. 
For  the  inductive  step,  we assume that  the  formula  is  correct  for  k  and need to  demonstrate  that  it  is
true  for  k+ 1.  In  Example  1  in  the  textbook,  this  was  done  by  starting  with  the  sum
1+ 2+º⋯+ k+ Hk+ 1L  and  applying  the  inductive  hypothesis  to  the  first  k  terms  to  obtain
kHk+1L
2

+ Hk+ 1L.  Then algebra is  used to turn that  expression into the formula evaluated at  k+ 1.  With
Mathematica, we can just check whether the expressions are the same. 
The sum of the first k+ 1 terms is 1+ 2+º⋯+ k+ Hk+ 1L = f HkL+ Hk+ 1L.
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In[11]:= sumF@kD + Hk + 1L

Out[11]= 1 +
3 k

2
+
k2

2

That used the inductive hypothesis. We need to see if this is the same as f Hk+ 1L.
In[12]:= sumF@k + 1D

Out[12]=
1 + k

2
+
1

2
H1 + kL2

To check whether f Hk+ 1L is the same as f HkL+ Hk+ 1L, we will apply the Reduce function. The first
argument  to  Reduce  will  be  the  equation  formed  by  identifying  the  two  expressions.  The  second
argument  is  the  variable  k.  Reduce  will  apply  algebraic  rules  to  the  expression  to  determine  the
values of k for which the equation holds. If there is more than one equation or more than one variable,
you can use a list in either argument.

In[13]:= Reduce@sumF@kD + Hk + 1L ã sumF@k + 1D, kD

Out[13]= True

The output True indicates that the equation is valid for all values of k, in particular, it is true for the
positive integers. This means that the inductive step is verified, and hence the formula is correct.

Summation Example 2
As a second example of using Mathematica  to find and prove summation formulae, consider the sum

⁄
i=1

n
i2Hi+ 1L!.  For this example, we won't go through the process of computing values and graphing as

we  did  above.  That  is  a  very  valuable  process,  and  we  strongly  recommend  that  you  go  through  it
yourself with a few examples. But Mathematica includes a function that will give us the result. 
Using Sum to Determine the Formula
Above, we used the Sum function to determine the numeric sum of a sequence of numbers. While the
numbers being added were determined by a formula, nevertheless the bounds of the sum were explicit

so that specific values could be calculated and added. To calculate ⁄
i=1

10
i2Hi+ 1L!, we use Sum as in the

previous example, with the formula given as the first argument. The bounds, i ranging from 1 to 10, are
given in the second argument in the form 8i, 10<.

In[14]:= Sum@i^2*Hi + 1L!, 8i, 10<D

Out[14]= 4 311 014 402

(Note the use of the exclamation mark for the computation of factorial. You can also use the functional
form Factorial if you prefer.) 

The Sum function can also be used for computing symbolic sums, as in ⁄
i=1

n
i2Hi+ 1L!. All we need to do

is replace the upper bound of 10 with the symbol n, provided that n has not been assigned a value.
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In[15]:= Sum@i^2*Hi + 1L!, 8i, n<D

Out[15]= 2 - H2 + nL! + n H2 + nL!

Applying Simplify to the output, we obtain a slightly simpler formula.
In[16]:= Simplify@%D

Out[16]= 2 + H-1 + nL H2 + nL!

Note that you can use symbols in place of any of the bound specifications. You can also use the sym-
bol Infinity in place of the upper bound, provided the series is convergent.
Similarly,  Mathematica  provides  the  Product  function  for  computing  numeric  and  symbolic  prod-
ucts. The syntax is the same.
The Induction Proof

Now that the Sum  function has determined the formula ⁄
i=1

n
i2Hi+ 1L! = Hn- 1L Hn+ 2L! + 2, we will use

Mathematica to help us prove it. Even though we can be very confident that Mathematica has given us
a correct formula, applying a Mathematica function is not the same as a proof.
As before, we'll define a function based on the formula.

In[17]:= sumF2@n_D := Hn - 1L*Hn + 2L! + 2

For the basis  step of the induction,  we need to see that  the formula holds for n = 1. The value of the
sum for n = 1 is

In[18]:= 1^2*H1 + 1L

Out[18]= 2

And the formula applied to n = 1 is
In[19]:= sumF2@1D

Out[19]= 2

The basis step is verified.
For the inductive step, we assume that the formula is correct for k. That is, we assume that

‚
i=1

k
i2Hi+ 1L! = Hk- 1L Hk+ 2L! + 2

We need to show that the formula works for k+ 1. Now,

‚
i=1

k+1
i2Hi+ 1L! = ‚

i=1

k
i2Hi+ 1L! + Hk+ 1L2 HHk+ 1L+ 1L!

Using the inductive hypothesis that the formula is correct for k, this is
In[20]:= sumF2@kD + Hk + 1L^2*HHk + 1L + 1L!

Out[20]= 2 + H-1 + kL H2 + kL! + H1 + kL2 H2 + kL!

We need to check to see if this is the same as the formula applied to k+ 1.
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In[21]:= sumF2@k + 1D

Out[21]= 2 + k H3 + kL!

Again, we use Reduce applied to the equation formed by identifying these two expressions.
In[22]:= Reduce@sumF2@kD + Hk + 1L^2*HHk + 1L + 1L! ã sumF2@k + 1DD

Reduce::fexp :
Warning: Reduce used FunctionExpand to transform the system. Since

FunctionExpand transformation rules are only generically
correct, the solution set might have been altered. à

Out[22]= True

Observe  that  a  warning  message  was  produced  this  time.  The  reason  for  this  is  the  inclusion  of  the
factorials, which Mathematica  treats with particular care. However, the output is correct, the equation
is true, as you can verify by hand.
It should be pointed out that this “proof” of the formula for the sum is only correct modulo the correct-
ness of the Mathematica  functions that we have used and the proper functioning of the computer it is
run on. One of the drawbacks of computer-aided proof is the degree to which your computer or soft-
ware could be introducing hidden errors.

Divisibility
For a final example, we'll see how Mathematica can be used to help prove results about divisibility. In
Example 8 from Section 5.1 of the text, it was shown that n3 - n is divisible by 3 for all positive inte-
gers n.  Exercise 33 asks you to prove that n5 - n  is  divisible by 5 for all  positive integers.  These two
facts suggest that perhaps n7 - n is divisible by 7 for all positive integers n. Let's see how Mathematica
can help us prove this fact. 

We begin by creating a function to represent the expression n7 - n. 
In[23]:= divisibleEx@n_D := n^7 - n

The basis case is n = 1. For n = 1, the expression is
In[24]:= divisibleEx@1D

Out[24]= 0

This is divisible by 7, so the basis case holds.

The inductive hypothesis is that k7 - k  is divisible by 7 for a positive integer k. We need to show that
Hk+ 1L7 - Hk+ 1L is divisible by 7. To do this, we'll use the following fact: if n a and n b- a then n b.
(The reader should verify this statement, which is equivalent to Theorem 1, part (i), of Section 4.1.) 

By  assumption,  7  divides  k7 - k.  We  will  have  Mathematica  compute  the  difference  with
Hk+ 1L7 - Hk+ 1L.

In[25]:= divisibleEx@k + 1D - divisibleEx@kD

Out[25]= -1 - k7 + H1 + kL7
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We apply the Expand function to the result.
In[26]:= Expand@%D

Out[26]= 7 k + 21 k2 + 35 k3 + 35 k4 + 21 k5 + 7 k6

You can see that the coefficients are all multiples of 7 and thus the expression is divisible by 7. We can
confirm this with Mathematica by checking that the difference is divisible by 7 by using the Reduce
function on the equation formed by setting the difference equal to 0 and invoking the Modulus option.

In[27]:= Reduce@divisibleEx@k + 1D - divisibleEx@kD ã 0, Modulus -> 7D

Out[27]= True

Thus, the inductive step is verified and hence n7 - n is divisible by 7 for all positive integers n.

5.2 Strong Induction and Well-Ordering
In this section, we'll see one way that Mathematica can be used to support a proof by strong induction.
In particular, we will consider the class of problems illustrated in Example 4: prove that every amount
of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. The second solution
to that example will form the model for this discussion. (See also Exercises 3 through 8 as other exam-
ples of problems of this kind.) 
The basis  step of the induction argument requires several  propositions to be verified.  Using the nota-
tion in the text, the propositions PHbL, PHb+ 1L, …, PHb+ jL must all be demonstrated for some integer
b and a positive integer j. Mathematica can be useful in these situations because it can often verify the
basis cases for you. This is particularly useful when j is large.
Showing that every amount of postage over 12 cents can be formed using 4 and 5 cent stamps requires
4  basis  cases:  PH12L, PH13L, PH14L, PH15L.  We  begin  by  showing  how to  use  Mathematica  to  demon-
strate PH12L, that postage of 12 cents can be formed using 4 and 5 cent stamps. While you may object
that  it  is  obvious  that  12 = 4 ÿ 3,  our  ultimate  goal  is  to  generalize  our  code  to  encompass  the  entire
class of postage problems.
Making Postage
To verify PH12L, we must find nonnegative integers a and b, representing the number of stamps of the
two denominations, such that 12 = 4 a+ 5 b. The most straightforward way of finding a and b is to test
all the possibilities. We know that a and b must both be nonnegative. 

Also, the maximum possible values of a  and b  are f 12
4
v  and f 12

5
v,  respectively. (Recall  that dxt  is  the

notation used to represent the floor of x, that is, the largest integer less than or equal to x.) To see why
this  is  so,  consider  b:  12 = 4 a+ 5 b ¥ 5 b  since  a ¥ 0.  That  is,  5 b § 12  and  so  b § 12

5
.  And  since  b

must be an integer, we have b § f
12
5
v. Likewise for a.

Since a and b must be between 0 and the floor of 12 divided by 4 or 5, respectively, we can use a pair
of nested For loops to check all the possible values. Within the loops, we only need to check to see if
4 a+ 5 b = 12. If  so,  we'll  terminate the loops,  which we enclose in a Catch,  by applying Throw  to
the pair 8a, b<.
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In[28]:= Catch@
For@a = 0, a § Floor@12ê4D, a++,
For@b = 0, b § Floor@12ê5D, b++,
If@4*a + 5*b ã 12, Throw@8a, b<DD

D
D

D

Out[28]= 83, 0<

We  can  very  easily  generalize  this  by  replacing  the  target  value  and  the  stamp  denominations  with
variables. The following function implements this generalization. It accepts the two denominations and
the target value as input and returns a list whose elements represent the number of each kind of stamp
required.  In  the  event  that  the  function  fails  to  form  the  desired  amount  of  postage  with  the  given
stamps, it returns Null.

In[29]:= makePostage@stampA_Integer, stampB_Integer, postage_IntegerD :=
Module@8a, b<,
Catch@
For@a = 0, a § Floor@postageêstampAD, a++,
For@b = 0, b § Floor@postageêstampBD, b++,
If@stampA*a + stampB*b ã postage, Throw@8a, b<DD

D
D

D
D

Applying  makePostage  with  stamps  4  and  5  and  postage  13  tells  us  that  it  requires  two  4-cent
stamps and one 5 cent stamps to make 13 cents postage.

In[30]:= makePostage@4, 5, 13D

Out[30]= 82, 1<

On  the  other  hand,  it  is  not  possible  to  make  11  cents  postage  with  4  and  5  cent  stamps  and  so  the
function does not produce output.

In[31]:= makePostage@4, 5, 11D

Automating the Basis Step
The makePostage function finds the number of stamps of each denomination needed to produce the
desired  postage.  As  such,  it  verifies  individual  basis  step  propositions.  With  a  simple  loop,  we  can
verify all of the basis cases. Recall that the basis step was to verify that postage can be made for 12, 13,
14, and 15 cents.

In[32]:= For@p = 12, p § 15, p++,
Print@makePostage@4, 5, pDD

D
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83, 0<

82, 1<

81, 2<

80, 3<

We will make a function for this in a moment, but first observe that the number of propositions in the
basis step is equal to the smaller denomination stamp. The reason for this is in the proof of the induc-
tive  step.  You  should  review  the  second  solution  to  Example  4  in  the  text.  The  key  point  is  that  to
make postage of k+ 1 cents, the proof relies on the inductive assumption that you can make postage of
k+ 1- 4 = k- 3 cents. This requires that k- 3 ¥ 12, or k ¥ 15.
Generically, if a is the smaller of the stamps and x is the minimum postage that we claim can be made
(x = 12 in the example), then the inductive step requires k+ 1- a ¥ x.  Which is to say k ¥ x+ Ha- 1L.
Thus PHxL, PHx+ 1L, …, PHx+ Ha- 1LL must form the basis step. 
This  is  useful  to  us  in  the  following  way:  given  the  values  of  the  stamps  and  the  minimum value  of
postage, we can automate the verification of the appropriate basis cases. 
We first create the following message to be given in case one of the basis cases fails. Note the use of
placeholders `1`, `2`, and `3`. These serve as variables. When Message is called, it will be given
with three additional  arguments,  beyond the name of the message,  and the values of  these arguments
will be substituted in for these variables.

In[33]:= postageBasis::fail =
"Cannot form postage of `3` using stamps of

amounts `1` and `2`.";

Here  is  the  postageBasis  function.  Note  that  the  expression  postageList  terminates  the  first
argument of Check, and Null is the second argument of Check. Consequently, if the main body of
the function, contained in the first argument of Check, is successful, the result of the function will be
the list  of  rules that  specify the numbers of  stamps needed for each amount of  postage.  If  there is  an
amount of postage that is not possible, then the message will be generated and the result of the function
will be Null.
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In[34]:= postageBasis@stampA_Integer,
stampB_Integer, minpostage_IntegerD :=

Module@8small, postageList = 8<, postage, R<,
small = Min@stampA, stampBD;
Check@
For@postage = minpostage,
postage § minpostage + small - 1,
postage++,
R = makePostage@stampA, stampB, postageD;
If@R =!= Null,
AppendTo@postageList, postage Ø RD,
Message@postageBasis::fail, stampA, stampB, postageD

D
D;
postageList, H*end of Check argument 1*L
Null

D
D

We apply it to the example of using 4 and 5 cent stamps to make postage of at least 12 cents.
In[35]:= postageBasis@4, 5, 12D

Out[35]= 812 Ø 83, 0<, 13 Ø 82, 1<, 14 Ø 81, 2<, 15 Ø 80, 3<<

The postageBasis  function  above accepts  as  input  the  denominations  of  the  two stamps,  and the
minimum value such that all  postage values equal to or greater than that minimum can be made. The
function  uses  the  Min  command  to  set  small  equal  to  the  lesser  of  the  two  denominations.  The
postageList variable is used to store the information that shows how to make the various amounts
of postage. This list will store rules of the form postage Ø 8a, b< which indicate that the specified
amount of postage can be made with a stamps of value A and b of B.
The  For  loop  considers  each  of  the  basis  cases  (using  the  observation  above).  For  each  amount  of
postage,  we  use  makePostage  to  determine  if  it  is  possible  to  form  that  postage  from  the  stamp
values.  If  so,  makePostage  returns  a  pair  indicating  how  the  desired  postage  is  made  and  this  is
added to the postageList.
Check  evaluates  its  first  argument  and  the  output  of  the  Check  is  the  output  of  the  first  argument,
unless a message had been raised, in which case the second argument is evaluated. If makePostage
ever  returns  Null,  that  indicates  that  the  particular  basis  case  cannot  be  verified.  In  this  case,  the
message postageBasis::fail is raised. If no messages are raised, that means that every amount
of postage succeeded and postageList,  the last expression of the first argument to Check  is out-
put. 
The  following  indicates  that  it  is  false  that  every  amount  of  postage  of  12  cents  or  larger  can  be
obtained using 4 and 6 cent stamps.
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In[36]:= postageBasis@4, 6, 12D

postageBasis::fail : Cannot form postage of 13 using stamps of amounts 4 and 6.

postageBasis::fail : Cannot form postage of 15 using stamps of amounts 4 and 6.

5.3 Recursive Definitions and Structural Induction
In this section we will show how functions and sets can be defined recursively in Mathematica.

A Simple Recursive Function
First  we  consider  the  recursively  defined  function  from  Example  1  in  Section  5.3  of  the  text.  This
function is defined by f H0L = 3 and f Hn+ 1L = 2 ÿ f HnL+ 3.
In order to represent this function in Mathematica, we must transform the recursive part of the defini-
tion  into  an  equation  for  f HnL  instead  of  f Hn+ 1L.  We  have  to  decrease  all  of  the  arguments  in  the
recursive  part  of  the  definition  by  1:  f HnL = 2 ÿ f Hn- 1L+ 3.  The  formula  f Hn+ 1L = 2 ÿ f HnL+ 3 is  per-
haps  more  expressive  in  that  the  n+ 1  suggests  that  the  definition  is  about  the  “next”  value  of  the
function. But Mathematica cannot interpret n+ 1 as a parameter in a function definition, at least not in
a natural way.
It  is  also  important  to  point  out  that  changing  the  recursive  formula  also  changes  the  domain  over
which it  is  valid.  The formula  f Hn+ 1L = 2 ÿ f HnL+ 3 applies  for  all  n ¥ 0,  while  f HnL = 2 ÿ f Hn- 1L+ 3
applies for all n ¥ 1. This does not affect the value of f HnL for any n.
The most natural way to define a recursive function is to define the function just like any other. In this
case, the function will refer to itself, but Mathematica has no problem with that.

In[37]:= f@n_D := 2*f@n - 1D + 3

We also must define the basis step. To declare f H0L = 3, you make the assignment as shown below.
In[38]:= f@0D = 3

Out[38]= 3

Note that the recursive part of the definition must be given as a SetDelayed (:=). The basis step can
be defined with either Set (=) or SetDelayed (:=).
Now that the recursive definition and the basis step have been assigned, you can use f  like any other
function.

In[39]:= f@10D

Out[39]= 6141

And you can compute the values of f from 1 to 9 using Table.
In[40]:= Table@f@nD, 8n, 9<D

Out[40]= 89, 21, 45, 93, 189, 381, 765, 1533, 3069<

Down Values
It  is  worth  understanding  a  bit  of  what  Mathematica  is  doing  when  you  define  and  evaluate  a  recur-
sively  defined  function.  Any time you evaluate  a  function,  Mathematica  checks  the  function’s  list  of
down values. We first discussed down values in Section 2.3. Briefly, the down values for a symbol are
the expressions associated with the symbol  when it  is  given arguments,  as  opposed to  the symbol  by
itself.  Here are the down values for the function f. 
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It  is  worth  understanding  a  bit  of  what  Mathematica  is  doing  when you  define  and  evaluate  a  recur-
sively  defined  function.  Any time you evaluate  a  function,  Mathematica  checks  the  function’s  list  of
down values. We first discussed down values in Section 2.3. Briefly, the down values for a symbol are
the expressions associated with the symbol  when it  is  given arguments,  as  opposed to  the symbol  by
itself.  Here are the down values for the function f. 

In[41]:= DownValues@fD

Out[41]= 8HoldPattern@f@0DD ß 3, HoldPattern@f@n_DD ß 2 f@n - 1D + 3<

This  indicates  that  f  has  two  down  values:  one  associated  to  the  argument  0  and  one  to  arguments
matching the pattern n_.
Whenever you apply Set (=) or SetDelayed (:=) with the left hand side of the operator of the form
f[…],  Mathematica  understands  this  to  be  the  creation  or  modification  of  one  of  f’s  down  values.
Note  that  such  an  assignment  does  not  affect  any  down values  other  than  the  one,  if  any,  whose  left
hand  side  is  of  exactly  the  same  form.  Consequently,  when  dealing  with  recursive  functions,  it  is  a
good idea to apply Clear  to a function name when redefining a function, as this will remove all the
down values for the symbol.
When you  evaluate  f  at  a  particular  value,  Mathematica  checks  the  more  specific  down values  first.
That  is,  if  you  enter  f[0],  Mathematica  will  use  the  down  value  associated  to  f[0]  and  output  3
rather than applying the formula 2*f[0-1]+3.
If  you apply f  to  0,  Mathematica  sees that  0 has a specific  down value and returns the value.  If  you
apply  f  to  a  different  value,  say  2,  Mathematica  does  not  find  a  specific  down value  for  2  and  so  it
applies the formula. The formula says that f H2L = 2 ÿ f H1L+ 3. When Mathematica tries to evaluate this,
it recognizes that it needs to find f H1L. Again, it checks the down values and, not finding a result for 1,
it  applies  the  formula f H1L = 2 ÿ f H0L+ 3.  Since f H0L  has  a  specific  value,  Mathematica  looks up f H0L,
which allows it to compute f H1L = 9 and then f H2L = 21.
You may be wondering why the output above indicates that f's list of down values only has the value
for f H0L,  even though we've computed other values. The reason is that Mathematica  doesn't automati-
cally  store  down  values.  Most  of  the  time,  you  don't  execute  functions  on  the  same  input  multiple
times,  so  it  would  be  a  waste  of  memory  to  store  every  value  computed.  You  have  to  explicitly  tell
Mathematica to store down values.
We have  seen  that  you can  store  a  specific  value  as  a  down value  by  making an  assignment  such as
f[0]=3. An assignment of this form can be given within the body of a function. Doing so causes the
function to store values as it calculates them, as we’ll see below.

A Second Recursive Function
Now consider the function F  defined by the basis values FH0L = 1 and FH1L = 1 and the recursive for-
mula FHnL = FHn- 1L+FHn- 2L. This is the function whose values are the Fibonacci numbers.
We will define this function as indicated above. First, we establish the basis values.

In[42]:= F@0D = 1;
F@1D = 1;

Note that these have been stored as down values.
In[44]:= DownValues@FD

Out[44]= 8HoldPattern@F@0DD ß 1, HoldPattern@F@1DD ß 1<

Chapter05.nb  13



For the recursive part of the definition, we enter the following.
In[45]:= F@n_D := F@nD = F@n - 1D + F@n - 2D

This may look a bit strange, but it is actually fairly straightforward. The expression is an application of
SetDelayed (:=), which is an assignment to the symbol F with argument matching the pattern n_,
i.e., with any argument. Note that this has created a single entry in the down values list.

In[46]:= DownValues@FD

Out[46]= 8HoldPattern@F@0DD ß 1, HoldPattern@F@1DD ß 1,
HoldPattern@F@n_DD ß HF@nD = F@n - 1D + F@n - 2DL<

The  “value”  associated  to  F  with  argument  matching  n_  is  the  expression
F@nD = F@n - 1D + F@n - 2D.  It  can  be  useful  to  think  of  F  as  representing  both  a  function  and  a
computer program. Assigning F@0D = 1  and F@1D = 1  establish the basis values for the function F.
Setting F[n_]  defines the action of  the program F.  That  program has a  single line of  code which is
F@nD = F@n - 1D + F@n - 2D.  That  line of  code in  the program sets  a  particular  value of  the func-
tion F.
The function F is now completely defined and produces correct output.

In[47]:= Table@F@nD, 8n, 0, 10<D

Out[47]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89<

Also  note  that,  unlike  the  function  f  above,  F  has  added  the  results  of  its  calculations  to  its  down
values.

In[48]:= DownValues@FD

Out[48]= 8HoldPattern@F@0DD ß 1,
HoldPattern@F@1DD ß 1, HoldPattern@F@2DD ß 2,
HoldPattern@F@3DD ß 3, HoldPattern@F@4DD ß 5,
HoldPattern@F@5DD ß 8, HoldPattern@F@6DD ß 13,
HoldPattern@F@7DD ß 21, HoldPattern@F@8DD ß 34,
HoldPattern@F@9DD ß 55, HoldPattern@F@10DD ß 89,
HoldPattern@F@n_DD ß HF@nD = F@n - 1D + F@n - 2DL<

Comparing Complexity
The difference  in  time complexity  between a  recursive  function  that  stores  computed  values  and one
that does not is very significant, perhaps much more than you might think. Let's create two new func-
tions, both of which model the function gHnL = 2 ÿ gHn- 1L+ 3 ÿ gHn- 2L with gH0L = 5 and gH1L = 2. The
function gR will “remember” computed values while gF will be “forgetful” and not store values.
We will  track the recursive calls  by adding a  Print  statement  every time the formula is  used.  Here
are the two functions.
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In[49]:= gR@n_D := Module@8<,
Print@"Computing gR@", n, "D"D;
gR@nD = 2*gR@n - 1D + 3*gR@n - 2D

D

gR@0D = 5;
gR@1D = 2;

In[52]:= gF@n_D := Module@8<,
Print@"Computing gF@", n, "D"D;
2*gF@n - 1D + 3*gF@n - 2D

D

gF@0D = 5;
gF@1D = 2;

Let’s see what happens when we attempt to compute gR[5].
In[55]:= gR@5D

Computing gR@5D

Computing gR@4D

Computing gR@3D

Computing gR@2D

Out[55]= 422

This  appears  fairly  straightforward.  We  enter  gR[5],  and  since  this  has  not  been  stored  as  a  down
value, the formula is evaluated, causing the print statement to be executed. Then, since gH5L depends on
gH4L and gH3L,  Mathematica  needs to know, first, the value of gH4L.  Since this has not been previously
computed,  again  the  formula  needs  to  be  invoked  causing  Mathematica  to  print  “Computing
gR[4]”. Computing gH4L requires the values for gH3L and gH2L. Again, gH3L is needed first, so Mathemat-
ica  executes  gR[3].  This  requires  gH2L  and  gH1L.  To  obtain  the  value  for  gH2L,  the  formula  must  be
invoked once again. 
After  printing  “Computing  gR[2]”,  Mathematica  needs  to  evaluate  the  expression
gR@2D = 2*gR@1D + 3*gR@0D. This time, it can look to the stored values of gR[1] and gR[0]
to  compute  that  gH2L = 19.  This  value  is  stored  as  a  down  value  of  gR,  and  we  begin  unwinding.
gR[2]  was called when attempting to compute gR[3],  which depends on values for 2 and 1.  Since
gR[2]  was  just  returned  and  gR[1]  is  stored,  gR[3]  can  be  computed  and  stored.  The  value  of
gR[3] is sent back up to the computation of gR[4]. gR[4] depends on values of 3 and 2 and both of
those  values  are  now  available,  so  gR[4]  can  be  computed.  Likewise,  gR[5]  can  be  determined
using the values of gR[4] and gR[3].
Contrast this with what happens for gF[5].

In[56]:= gF@5D
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Computing gF@5D

Computing gF@4D

Computing gF@3D

Computing gF@2D

Computing gF@2D

Computing gF@3D

Computing gF@2D

Out[56]= 422

Things begin the same.  We execute gF[5]  causing the print  statement  to  report  the fact  that  we are
computing that  value.  To obtain gF[5],  we need the values of  gF[4]  and gF[3].  gF[4]  is  com-
puted first, since it is leftmost in the formula and “Computing gF[4]” is displayed. To obtain the
value  for  4,  we need the  values  for  3  and 2,  and so  gF[3]  is  executed.  This  requires  the  values  for
gF[2]  and gF[1].  Again, since it is leftmost, gF[2]  is tackled first, causing “Computing gF[2]”
to be displayed. 
This  value  can  be  computed  from  the  stored  values  gF[1]  and  gF[0].  That  means  that  gF[2],
which was invoked in the attempt to compute gF[3], is complete and we move back up to the compu-
tation of gF[3]. Since gF[3] depends on the recently computed gF[2] and on gF[1], which was
stored as an initial condition, gF[3] can be computed as well.
This  means  that  gF[4]  now  knows  the  value  of  gF[3].  You  can  think  about  it  as  if  the  formula
gF[4] is working with is now 2*44 + 3*gF@2D. gF[4] now just needs the value of gF[2]. gR
could just look that value up, since it had recorded the value gR[2] when it was first computed. But
gF  is  not  storing  values  that  are  computed,  so  it  must  apply  the  formula  to  compute  gF[2]  again.
Thus,  “Computing gF[2]”  is  displayed  a  second  time.  Once  the  formula  has  been  used  to  once
again compute gF[2], then this value is available to gF[4] to complete its computation.
Once  gF[4]  has  finished  computing,  that  value  is  sent  up.  gF[5],  which  required  gF[4]  and
gF[3], now knows one of the two values it required. But again, gF[3], which was computed as part
of  gF[4],  must  be  computed  all  over  again.  Consequently,  you  see  the  message  “Computing
gF[3]” again. And gF[3] requires the value for 2, so gF[2] must be executed a third time. 
As  you  can  imagine,  the  difference  between  storing  values  and  not  is  even  more  extreme  for  larger
input values. When values are stored, once the recursion starts working its way back up the ladder, it
remembers  all  the  results  from  the  lower  values.  When  values  are  not  stored,  the  chain  of  recursive
calls has to keep recomputing the results from lower valued inputs.

A Recursive Function with Two Parameters
In  Example  13  of  Section  5.3  of  the  text,  the  sequence  am,n  is  defined.  We  will  define  a  function
AHm, nL that models the sequence am,n. The basis value is AH0, 0L = 0, and the recursion formula is

AHm, nL = ¶ AHm- 1, nL+ 1 if n = 0 andm > 0
AHm, n- 1L+ n if n > 0

As with the previous example, we will define the function so as to store values. The initial value is as
follows.
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As with the previous example, we will define the function so as to store values. The initial value is as
follows.

In[57]:= A@0, 0D = 0;

We will define the recursive formula using a Which. Recall that the Which function accepts an even
number of arguments, with the first in each pair a condition and the second in the pair evaluated if the
condition holds.

In[58]:= A@m_, n_D :=
A@m, nD = Which@n ã 0 && m > 0, A@m - 1, nD + 1, n > 0, A@m, n - 1D + nD

Now we can compute some values of am,n.

In[59]:= A@3, 2D

Out[59]= 6

In[60]:= A@5, 3D

Out[60]= 11

To  get  a  better  idea  of  what  the  values  of  am,n  are,  we  can  display  a  Table  of  them  using
TableForm.

In[61]:= Table@A@m, nD, 8m, 0, 10<, 8n, 0, 10<D êê TableForm
Out[61]//TableForm=

0 1 3 6 10 15 21 28 36 45 55
1 2 4 7 11 16 22 29 37 46 56
2 3 5 8 12 17 23 30 38 47 57
3 4 6 9 13 18 24 31 39 48 58
4 5 7 10 14 19 25 32 40 49 59
5 6 8 11 15 20 26 33 41 50 60
6 7 9 12 16 21 27 34 42 51 61
7 8 10 13 17 22 28 35 43 52 62
8 9 11 14 18 23 29 36 44 53 63
9 10 12 15 19 24 30 37 45 54 64
10 11 13 16 20 25 31 38 46 55 65

Note that the first variable to be specified is shown in rows. That is, the first row corresponds to m = 0,
the second row has m = 1, etc.

A Recursively Defined Set
In Example 5, the text describes how to recursively define a set. Here, we will consider a slightly more
complicated example. 
Let S be the subset of the integers defined by:

Basis step: 4 œ S and 7 œ S.
Recursive step: if x œ S and y œ S, then x+ y œ S.

(Note that this is the set of all postage that can be formed with 4 cent and 7 cent stamps.)
To model S in Mathematica, we will define a list that includes the elements called for in the basis step.
For the recursive step, we will define a function that applies the recursion to the set.
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To model S in Mathematica, we will define a list that includes the elements called for in the basis step.
For the recursive step, we will define a function that applies the recursion to the set.
The basis step requires that 4 and 7 are members of S. So we define S to be the list consisting of 4 and
7.

In[62]:= S = 84, 7<

Out[62]= 84, 7<

To implement  the  recursive  step,  we  will  create  a  function  recurseS.  This  function  will  accept  as
input  the  current  S  and will  return the list  obtained after  applying the recursive rule.  For  instance,  in
the first application of recurseS, the procedure needs to add 4+ 4, 4+ 7, 7+ 4, and 7+ 7. (We will
eliminate duplication by applying the Union function.)
We will use a Do loop. Recall that in a Do loop, the first argument is the expression that is evaluated.
Subsequent arguments specify the loop variables.  Also recall  that  a variable specification of the form
8i, list< causes i to take on each element of the list.
Here is the function.

In[63]:= recurseS@S_ListD := Module@8x, y, T = S<,
Do@T = Union@T, 8x + y<D, 8x, S<, 8y, S<D;
T

D

Now we apply this function to S.
In[64]:= S = recurseS@SD

Out[64]= 84, 7, 8, 11, 14<

After a second iteration:
In[65]:= S = recurseS@SD

Out[65]= 84, 7, 8, 11, 12, 14, 15, 16, 18, 19, 21, 22, 25, 28<

A third:
In[66]:= S = recurseS@SD

Out[66]= 84, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 53, 56<

A Set of Strings
As the final example in this section, we will look at how to generate sets of strings over a finite alpha-
bet, as described in Definition 1 of Section 5.3. 
The alphabet we will use is 8"a", "b", "c", "d"<. We begin by assigning this to a name.

In[67]:= alphabet = 8"a", "b", "c", "d"<

Out[67]= 8a, b, c, d<

According  to  Definition  1,  the  basis  step  is  that  our  set  of  strings  must  contain  the  empty  string.  In
Mathematica, the empty string is given by "". We will use the name S2 for our set of strings, since S
is used above.
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According  to  Definition  1,  the  basis  step  is  that  our  set  of  strings  must  contain  the  empty  string.  In
Mathematica, the empty string is given by "". We will use the name S2 for our set of strings, since S
is used above.

In[68]:= S2 = 8""<

Out[68]= 8<

Note that while the output makes this appear to be an empty list,  applying FullForm  reveals that it
does in fact contain the empty string.

In[69]:= S2 êê FullForm
Out[69]//FullForm=

List@""D

Like the previous example,  we will  create a function to build the set  of strings.  The recursive step in
the definition tells us that we build the set by combining every element of S2  with every letter in the
alphabet. Again we will use a Do  loop with two loop variables. We will define the function to accept
the current version of the set and the alphabet as arguments.
To combine two strings, we apply the StringJoin (<>) operator. Here is the function.

In[70]:= buildStrings@S_List, A_ListD := Module@8T = S, w, x<,
Do@T = Union@T, 8w <> x<D, 8w, S<, 8x, A<D;
T

D

The first application of the recursion adds the alphabet to the set. 
In[71]:= S2 = buildStrings@S2, alphabetD

Out[71]= 8, a, b, c, d<

Again,  since Mathematica  does not display the enclosing quotation marks of strings in its  output,  the
initial comma in the output above is separating the empty string from “a”. The second application adds
all the two-character strings.

In[72]:= S2 = buildStrings@S2, alphabetD

Out[72]= 8, a, aa, ab, ac, ad, b, ba, bb, bc,
bd, c, ca, cb, cc, cd, d, da, db, dc, dd<

The third application includes the three-character strings.
In[73]:= S2 = buildStrings@S2, alphabetD

Out[73]= 8, a, aa, aaa, aab, aac, aad, ab, aba, abb, abc, abd, ac,
aca, acb, acc, acd, ad, ada, adb, adc, add, b, ba, baa,
bab, bac, bad, bb, bba, bbb, bbc, bbd, bc, bca, bcb, bcc,
bcd, bd, bda, bdb, bdc, bdd, c, ca, caa, cab, cac, cad,
cb, cba, cbb, cbc, cbd, cc, cca, ccb, ccc, ccd, cd, cda,
cdb, cdc, cdd, d, da, daa, dab, dac, dad, db, dba, dbb,
dbc, dbd, dc, dca, dcb, dcc, dcd, dd, dda, ddb, ddc, ddd<

A General Function
We can put  this  process  all  together  in  one  function.  Given a  set  of  strings  representing the  alphabet
and a positive integer indicating the number of iterations desired, the following function will return the
set of strings obtained after the given number of iterations. 
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In[74]:= allStrings@A_List, n_IntegerD := Module@8S = 8""<, i<,
For@i = 1, i § n, i++,
S = buildStrings@S, AD

D;
S

D

Below, we apply this function to the alphabet consisting of the strings “ab” and “ba” (in discrete mathe-
matics, an alphabet does not have to consist of individual letters).

In[75]:= allStrings@8"ab", "ba"<, 4D

Out[75]= 8, ab, abab, ababab, abababab, abababba, ababba,
ababbaab, ababbaba, abba, abbaab, abbaabab, abbaabba,
abbaba, abbabaab, abbababa, ba, baab, baabab, baababab,
baababba, baabba, baabbaab, baabbaba, baba, babaab,
babaabab, babaabba, bababa, bababaab, babababa<

5.4 Recursive Algorithms
In this section we will use Mathematica to implement several different recursive algorithms. First, we
will  look  at  two  different  recursive  implementations  of  modular  exponentiation  and  compare  their
performance.  Then  we  will  contrast  a  recursive  approach  to  computing  factorial  with  an  iterative
approach. And finally, we will provide an implementation of merge sort.

Modular Exponentiation
Example 4 of Section 5.4 of the text describes two recursive approaches to computing bn modm. Both
of  these  use  the  initial  condition  b0 modm = 1.  The  first  approach  is  based  on  the  fact  that
bn modm = Ib ÿ Ibn-1 modmMM modm.

The  second  approach  is  based  on  the  observation  that  for  even  exponents,  we  can  compute  via  the
formula  bn modm = Ibnê2 modmM2 modm.  And  if  the  exponent  is  odd,  we  can  use  the  identity
bn modm = IIbdnê2t modmM2 modmM ÿ HbmodmL modm.

Approach 1
First  we  will  implement  exponentiation  based  on  the  initial  condition  b0 modm = 1  and  the  formula
bn modm = Ib ÿ Ibn-1 modmMM modm.  The  function  power1  will  accept  three  arguments:  the  base  b,
the exponent n, and the modulus m.
If the exponent is 0, then regardless of the base or the modulus, the function returns 1. We can specify
that  behavior  as  follows.  Observe  that  it  is  not  necessary  to  give  names  to  the  other  two  arguments,
since their specific values are irrelevant.

In[76]:= power1@_Integer, 0, _IntegerD := 1

In  Mathematica,  you  are  allowed  to  provide  multiple  definitions  for  the  same  function,  provided  the
arguments  have  different  forms.  If  two definitions  both  match  a  particular  set  of  arguments,  then  the
definition that is issued first, and is thus first in the list of down values, is the one applied. However, it
is generally a good idea to ensure that the two patterns do not overlap. Consequently, for the recursive
part of power1, we will explicitly insist that the exponent be positive.
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In  Mathematica,  you  are  allowed  to  provide  multiple  definitions  for  the  same  function,  provided  the
arguments  have  different  forms.  If  two definitions  both  match  a  particular  set  of  arguments,  then  the
definition that is issued first, and is thus first in the list of down values, is the one applied. However, it
is generally a good idea to ensure that the two patterns do not overlap. Consequently, for the recursive
part of power1, we will explicitly insist that the exponent be positive.
If the exponent is greater than 0, then we compute the product of the base with the function applied to
the same base and modulus but the power decreased by 1. To ensure that the exponent is in fact posi-
tive,  we  will  impose  a  Condition  (/;)  by  entering  the  operator  /;  following  by  the  proposition
n>0 between the argument list and the SetDelayed (:=) operator.

In[77]:= power1@b_Integer, n_Integer, m_IntegerD ê; n > 0 :=
Mod@b*power1@b, n - 1, mD, mD

Notice that the down values of the symbol power1 now includes both definitions.
In[78]:= DownValues@power1D

Out[78]= 8HoldPattern@power1@_Integer, 0, _IntegerDD ß 1,
HoldPattern@power1@b_Integer, n_Integer, m_IntegerD ê; n > 0D ß
Mod@b power1@b, n - 1, mD, mD<

Note that we did not store computed values in this function. The reason for this is that each iteration of
the  function  only  depends  on  one  other  call  to  the  function.  This  is  in  contrast  with  the  gR  and  gF
functions  from  the  previous  section.  Those  functions  called  themselves  twice  in  each  iteration.  As  a
result,  those  functions  made  use  of  the  same  value  multiple  times.  When  deciding  whether  or  not  to
store values, you must weigh its potential benefit for not unnecessarily repeating computations with the
cost of storage requirements.

We can use power1 to compute 36 mod 7 and compare the result to Mathematica’s computation of the
same expression.

In[79]:= power1@3, 6, 7D

Out[79]= 1

In[80]:= Mod@3^6, 7D

Out[80]= 1

Approach 2
The second approach computes the power based on Algorithm 4 from Section 5.4. For exponent 0, it
returns  1,  just  as  before.  If  the  exponent  is  even,  then  the  algorithm  uses  the  formula
bn modm = Ibnê2 modmM2 modm,  and  for  odd  powers,  it  computes  the  power  using  the  identity
bn modm = IIbdnê2t modmM2 modmM ÿ HbmodmL modm.

Since there are three possibilities, 0, even, or odd, we give the definition in three parts. 
In[81]:= power2@_Integer, 0, _IntegerD := 1;

power2@b_Integer, n_Integer, m_IntegerD ê; n > 0 && EvenQ@nD :=
Mod@power2@b, nê2, mD^2, mD;

power2@b_Integer, n_Integer, m_IntegerD ê; n > 0 && OddQ@nD :=
Mod@Mod@power2@b, Floor@nê2D, mD^2, mD*b, mD;

We apply power2 to 36 mod 7 as well.
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In[84]:= power2@3, 6, 7D

Out[84]= 1

Comparing Performance of the Functions
Now  that  we've  implemented  these  two  algorithms,  let's  compare  their  performance  on  a  variety  of
input values. 
We fix  the  base  3  and the  modulus  7  and consider  the  exponents  from 100 to  1000.  To compare  the
performance,  we'll  time  the  execution  of  each  function  on  the  exponents  from  100  to  1000.  We  use
Table  to build the two lists consisting of the exponent/time pairs.  Recall  that Timing  returns a list
consisting of the time taken and the result, so we apply the Part ([[…]]) operator to extract the time.
In order to obtain results with exponents as large as 1000, we need to temporarily increase the variable
$RecursionLimit.  Mathematica  normally  restricts  the  depth  to  which  a  recursive  algorithm  can
go.  This  is  useful,  as  it  helps  prevent  infinite  loops  and  other  potential  computer-crashing  events.  In
this case, we are certain that our function will not cause such problems and we need large exponents in
order to have times large enough to be compared. We modify the recursion limit by setting the symbol
$RecursionLimit to Infinity. Doing so within a Block ensures that this is only a temporary
modification.

In[85]:= times1 = Block@8$RecursionLimit = Infinity<,
Table@8n, Timing@power1@3, n, 7DD@@1DD<, 8n, 100, 1000<DD;

In[86]:= times2 = Block@8$RecursionLimit = Infinity<,
Table@8n, Timing@power2@3, n, 7DD@@1DD<, 8n, 100, 1000<DD;

We have  suppressed  the  output  in  the  statements  above,  but  now times1  and  times2  contain  the
running times for power1 and power2, respectively.
Now let’s graph the time results. The ListPlot function can be used to plot multiple sets of data by
giving as its argument a list whose elements are the lists of data. Also, by placing the data lists inside
of  the  Tooltip  function,  you  can  have  labels  appear  when  you  hover  your  mouse  pointer  over  the
graph.

In[87]:= ListPlot@8times1, times2<, PlotLegends Ø 8"power1", "power2"<D
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This gives us a visual comparison of the time complexity of the two algorithms. You can see that the
second approach significantly outperforms the first. It is left to the reader to compare the functions we
created to Mathematica’s built-in PowerMod function.
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This gives us a visual comparison of the time complexity of the two algorithms. You can see that the
second approach significantly outperforms the first. It is left to the reader to compare the functions we
created to Mathematica’s built-in PowerMod function.

Recursion and Iteration
In this subsection we compare recursive and iterative approaches for computing factorial. 
Recursive Factorial
First  we will  implement  Algorithm 1 from Section  5.4,  a  recursive  algorithm for  computing n!.  This
function  accepts  a  nonnegative  integer  n  as  its  input.  If  the  input  value  is  0,  the  function  returns  1.
Otherwise, it multiplies n by the value of the function applied to n- 1. 

In[88]:= factorialR@n_IntegerD := Module@8<,
If@n ã 0, 1, n*factorialR@n - 1DD

D

Note  that,  while  we  could  have  defined  the  function’s  action  on  n = 0  and  n ¹≠ 0  without  using  the
Module structure, a Module will be needed in the iterative version and in comparing performance of
algorithms, it is important to keep as much of the implementations the same as possible.
We test this function on 10 and verify that it has the same result as Mathematica's built-in operator.

In[89]:= factorialR@10D

Out[89]= 3 628 800

In[90]:= 10!

Out[90]= 3 628 800

Iterative Factorial
We  can  implement  factorial  with  an  iterative  algorithm  as  well.  Our  function  will  use  a  variable  f,
initialized to 1, to store the value of the factorial. It will compute using a For loop with a loop variable
running from 1 to n. Within the loop, f will be multiplied by the current value of the loop variable.

In[91]:= factorialI@n_IntegerD := Module@8f, i<,
f = 1;
For@i = 1, i § n, i++,
f = f*i

D;
f

D

We again check to make sure the result is correct on n = 10.
In[92]:= factorialI@10D

Out[92]= 3 628 800

Comparing Recursion and Iteration
Note that these two algorithms require exactly the same number of multiplications. From this point of
view, their complexity is the same. 
However,  let's  look at  their  performance.  We consider  values  of  n  from 1 to  1500.  We use  the  same
approach as we did for power1 and power2 above to record and plot the time performance. 
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In[93]:= timesR = Block@8$RecursionLimit = Infinity<,
Table@8n, Timing@factorialR@nDD@@1DD<, 8n, 1500<DD;

In[94]:= timesI = Table@8n, Timing@factorialI@nDD@@1DD<, 8n, 1500<D;

In[95]:= ListPlot@8timesR, timesI<,
PlotLegends Ø 8"recursive", "iterative"<D
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First, you might wonder about the outliers which appear to be values of n for which one function or the
other  performs  particularly  poorly.  These  are  essentially  noise  resulting  from  other  processes  on  the
computer.  They  are  also  inconsistent;  running  the  commands  again  will  produce  slightly  different
results. 
However,  it  is  clear  that,  despite  the  occasional  peculiar  value,  the  iterative  function  outperforms the
recursive one for large values of n. This is in spite of the fact that the two algorithms involve the same
number of multiplications. Let's consider other sources of potential differences in complexity.
The For loop in the iterative function includes a comparison (i must be tested against n to determine
if the loop continues) and the recursive function makes the comparison in the If statement. So the two
functions are effectively equal in terms of the number of comparisons used.
The iterative function involves two assignments (the assignment of f and the implicit assignment of i
when it  is  incremented)  absent  from the recursive version.  But  two assignments  are  much less  costly
than a function call. Recursive function calls require Mathematica to perform several operations in the
background, both in order to execute the recursive call  and to keep track of where Mathematica  is  in
the chain of recursive calls.  All  of which takes time and memory that the iterative approach does not
require.
It is important to keep in mind the cost of recursion. When an iterative algorithm is available, it may be
more  efficient.  On  the  other  hand,  recursive  algorithms  are  often  more  natural  to  use  and  can  better
reveal the mathematical concepts. 

Merge Sort
We conclude this section by implementing merge sort.
The  merge  sort  algorithm  is  described  in  Algorithm  9  of  the  text.  The  mergeSort  function  will
accept  as  its  input  a  list  of  integers.  Its  main  function  is  to  split  the  single  list  it  receives  into  two
halves, unless the list contains only one element. The output of mergeSort is the result of applying
mergeSort to both halves of the list and then recombining them with merge.

24   Chapter05.nb



The  merge  sort  algorithm  is  described  in  Algorithm  9  of  the  text.  The  mergeSort  function  will
accept  as  its  input  a  list  of  integers.  Its  main  function  is  to  split  the  single  list  it  receives  into  two
halves, unless the list contains only one element. The output of mergeSort is the result of applying
mergeSort to both halves of the list and then recombining them with merge.
The following implements Algorithm 9. Note that the merge  function will be written next. For now,
Mathematica simply accepts merge as a symbol.

In[96]:= mergeSort@L : 8__Integer<D := Module@8m, L1, L2<,
If@Length@LD > 1,
m = Floor@Length@LDê2D;
L1 = L@@ ;; mDD;
L2 = L@@m + 1 ;;DD;
merge@mergeSort@L1D, mergeSort@L2DD,
H*else*L
L

D
D

Note the use of the Span (;;) operator to determine the two sublists. The syntax a ;; b, within the
Part ([[…]]) operator, is used to obtain the sublist of elements from position a to b. Omitting a, as
in ;;5, obtains the elements from the beginning to position 5. And omitting b, as in 3;;, obtains the
elements from position 3 to the end of the list.
Implementing Merge
To complete the function, we need to define merge.  The merge  function accepts two lists, which it
assumes are sorted, and returns a single list that contains all the elements of both of the inputs and is
sorted. The procedure is described in Algorithm 10 of the text.
In implementing merge, the first step is to duplicate the input lists. This is because the lists are emp-
tied  of  their  elements  as  the  merge  proceeds,  and  arguments  to  a  function  cannot  be  modified.  We
also initialize the list that will be the result to the empty list.
The  main  work  of  merge  is  contained  in  a  While  loop  conditioned  on  both  lists  being  nonempty.
Within this While loop there are an If statement and a Which. The If statement will implement the
instruction to “remove smaller of first elements of L1  and L2  from its list; put it at the right end of L”
from Algorithm 10. This If statement will test whether the first element of L1  is smaller than the first
element of L2. If so, then the first element is removed from L1 and added to L. If not, in the else clause,
the first element of L2 is moved to L.
We use AppendTo to add elements to the end of the list L. Note that AppendTo, when applied to the
name of a list and an element, automatically replaces the list stored in the symbol. We use Delete to
remove the first  element  from the list.  Delete  is  applied to a  list  and a position and returns the list
with the element in that position removed. Unlike AppendTo, Delete does not automatically update
a symbol representing a list, so we must reassign the name of the list to the result of the Delete.
The Which statement will implement the if statement found in Algorithm 10. The first condition will
be that L1  is empty, and if so the remainder of L2  will be added to L and L2  will be emptied. In a sec-
ond condition, L2  will be tested. Note that the Which is Mathematica’s answer to the else-if construc-
tion. Join is used to combine two lists.
Here is the implementation of merge.
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In[97]:= merge@l1 : 8__Integer<, l2 : 8__Integer<D :=
Module@8L = 8<, L1 = l1, L2 = l2<,
While@HL1 =!= 8<L && HL2 =!= 8<L,
If@L1@@1DD < L2@@1DD,
AppendTo@L, L1@@1DDD;
L1 = Delete@L1, 1D,
H*else*L
AppendTo@L, L2@@1DDD;
L2 = Delete@L2, 1D

D;
Which@L1 === 8<,
L = Join@L, L2D; L2 = 8<,
L2 === 8<,
L = Join@L, L1D; L1 = 8<

D
D;
L

D

We apply mergeSort to a list as follows.
In[98]:= mergeSort@87, 4, 1, 5, 2, 3, 6<D

Out[98]= 81, 2, 3, 4, 5, 6, 7<

Tracing Merge Sort
To better understand how functions work, it is sometimes useful to create “verbose” versions of them.
That is,  versions of the functions that use Print  or other means to report on what it  is  that they are
doing. We provide a verbose version of mergeSort and apply it to the list 83, 1, 2<.

In[99]:= mergeSortVerbose@L : 8__Integer<D := Module@8m, L1, L2<,
Print@"mergeSort called on ", LD;
If@Length@LD > 1,
m = Floor@Length@LDê2D;
Print@"m=", mD;
L1 = L@@ ;; mDD;
Print@"L1=", L1D;
L2 = L@@m + 1 ;;DD;
Print@"L2=", L2D;
merge@mergeSortVerbose@L1D, mergeSortVerbose@L2DD,
H*else*L
Print@"length=1"D;
L

D
D
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In[100]:= mergeSortVerbose@83, 1, 2<D

mergeSort called on 83, 1, 2<

m=1

L1=83<

L2=81, 2<

mergeSort called on 83<

length=1

mergeSort called on 81, 2<

m=1

L1=81<

L2=82<

mergeSort called on 81<

length=1

mergeSort called on 82<

length=1

Out[100]= 81, 2, 3<

We recommend reading through the output. Then try it with a larger example, say with 7 elements, to
make sure that you understand how merge sort works. You can also create a verbose version of merge
to see the details of how that function works.

5.5 Program Correctness
In this section we will prove the correctness of the merge sort program that we implemented in the last
section. This will require that we prove the correctness of merge  as well as mergeSort.  We begin
with merge.

merge
For  convenience,  we  will  repeat  the  definition  of  merge.  Also,  we've  added  comments  to  indicate
where we've broken the procedure into three segments: S1, S2, and S3.
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In[101]:= merge@l1 : 8__Integer<, l2 : 8__Integer<D := Module@8L, L1, L2<,
H*begin S1*L
L = 8<;
L1 = l1;
L2 = l2;
H*end S1*L
While@HL1 =!= 8<L && HL2 =!= 8<L,
H*begin S2*L
If@L1@@1DD < L2@@1DD,
AppendTo@L, L1@@1DDD;
L1 = Delete@L1, 1D,
H*else*L
AppendTo@L, L2@@1DDD;
L2 = Delete@L2, 1D

D;
H*end S2*L
H*begin S3*L
Which@L1 === 8<,
L = Join@L, L2D; L2 = 8<,
L2 === 8<,
L = Join@L, L1D; L1 = 8<

D

H*end S3*L
D;
L

D

Let p be the assertion that l1 and l2 (the inputs to the function) are ordered, nonempty, and disjoint lists
of  integers.  Let  q  be  the  proposition  that  L  (the  output)  is  an  ordered  list  and  that  L = l1‹ l2  as  sets
(that is, the set of integers appearing in L is equal to the union of the set of integers appearing in l1 and
the set of integers in l2). We claim that p 8merge< q, i.e., that merge is partially correct with respect to
the initial condition p and the final assertion q.
Let q1 be the proposition that L1 = l1, L2 = l2, and L is the empty list. It is clear that p 8S1< pÏ q1.
Define the following propositional variables:

† r1 is the proposition that L1 is a sublist of l1; that is, the set of elements appearing in L1 is a subset 
of the set of elements appearing in l1, and the order of the elements in L1 is the same as their order 
in l1. Note that it immediately follows from p and r1 that L1 is ordered.

† r2 is the proposition that L2 is a sublist of l2 (and thus L2 is ordered).
† r3 is the assertion that L is ordered.
† r4 is the assertion that L‹ L1‹ L2 = l1‹ l2 as sets.
† r5 is the proposition that all members of L are smaller than all members of L1 and L2. That is, 
H" x œ LL H" y œ L1‹ L2L Hx < yL.

† r is the proposition r1Ï r2Ï r3Ï r4Ï r5.
We claim that pÏ q1 Ø r. Assume pÏ q1. That is, l1 and l2 are ordered, nonempty, and disjoint lists of
integers.  Also,  L1 = l1,  L2 = l2,  and L  is  empty.  Then r1  and r2  hold  since  a  list  is  a  sublist  of  itself.
Proposition r3 holds since L is empty and thus is ordered vacuously. That r4 is true follows from substi-
tuting  l1,  l2,  and  «  for  L1,  L2,  and  L.  And  r5  is  vacuous  since  L  is  empty.  From  p 8S1< pÏ q1  and
HpÏ q1L Ø r, we have p 8S1< r.
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We claim that pÏ q1 Ø r. Assume pÏ q1. That is, l1 and l2 are ordered, nonempty, and disjoint lists of
integers.  Also,  L1 = l1,  L2 = l2,  and L  is  empty.  Then r1  and r2  hold  since  a  list  is  a  sublist  of  itself.
Proposition r3 holds since L is empty and thus is ordered vacuously. That r4 is true follows from substi-
tuting  l1,  l2,  and  «  for  L1,  L2,  and  L.  And  r5  is  vacuous  since  L  is  empty.  From  p 8S1< pÏ q1  and
HpÏ q1L Ø r, we have p 8S1< r.
Next, we will show that r is a loop invariant for the loop while HL1 ¹≠ 8< and L2 ¹≠ 8<L S2; S3. Denote by c
the condition L1 ¹≠ 8< fl L2 ¹≠ 8<. We must show that if r and c hold, then r is true after S2; S3 is executed.
First we will show rfl c 8S2< r and then that r 8S3< r.
To show that rfl c 8S2< r,  assume rfl c.  That is,  L1  is a sublist of l1,  L2  is a sublist of l2,  L  is ordered,
L‹ L1‹ L2 = l1‹ l2, and all members of L are smaller than every member of L1  and L2. Also, L1  and
L2  are nonempty.  Then both L1  and L2  have first  elements.  Assume that  the if  condition of S2  holds.
That is, the first element of L1  is smaller than the first element of L2.  Then the two commands in the
then clause of S2  are executed: the first element of L1  is added to the end of L and L1  has its first ele-
ment removed.
We need to show that r holds following the execution of the then clause of S2.

† r1: the new L1 is a sublist of the old L1 since an element was removed meaning that L1 new Õ L1 old 
as sets and the order of the remaining elements was not modified. Since L1 new is a sublist of L1 old 
which was a sublist of l1, the new L1 is a sublist of l1.

† r2: the new L2 is identical is the old L2 and thus remains a sublist of l2.
† r3: the old L was ordered, and, since we assume that r5 held before execution of S2, every element 

of Lold was smaller than every element of L1 old‹ L2 old. In particular, the first element of L1 old 
was larger than all elements of Lold. And so Lnew is ordered.

† r4: The smallest element of L1 was removed from L1 and added to L. Thus 
Lnew‹ L1 new = Lold‹ L1 old and hence L‹ L1‹ L2 = l1‹ l2.

† r5: We must show that all members of Lnew are smaller than all members of both L1 new and 
L2 new. Let x be an arbitrary element of Lnew. Either x was a member of Lold or x was the first 
element of L1 old. If x was a member of Lold then the assumption that r5 held before execution of 
S2 guarantees that x is smaller than all elements of L1 new‹ L2 new. On the other hand, assume x 
was the first element of L1 old. Since L1 old is a sublist of l1, it is ordered and thus x was also the 
smallest element of L1 old and hence is less than all elements of L1 new. Also, by the assumption 
that the if condition of S2 evaluated true, x is smaller than the first (and smallest) element of 
L2 old = L2 new as well. So x is smaller than all members of L1 new‹ L2 new.

The  above  shows that  if  the  if  condition  of  S2  holds,  then  r  holds  after  executing  the  then  clause.  In
case the condition fails and the else clause executes, the proof is similar. We conclude that rfl c 8S2< r.
Next  we  will  show  that  r 8S3< r.  Assume  r  holds.  Consider  the  case  that  L1  is  empty.  Then  L2  is
appended onto the end of L and L2 is set to the empty list.

† r1: L1 is, since we assume the if condition, empty and thus a sublist of l1.
† r2: the second statement in the then clause sets L2 equal to the empty list, which is a sublist of l2.
† r3: we assume that Lold is ordered, that L2 old is a sublist of l2 and thus is ordered, and that all 

members of Lold are smaller than all members of L2 old. Thus, adding L2 old to the end of Lold to 
produce Lnew results in an ordered list.

† r4: as sets, Lnew = Lold‹ L2 old, so Lnew‹ L1 new‹ L2 new = HLold‹ L2 oldL‹ L1 old‹«. This is 
equal to l1‹ l2 by the assumption that r4 held before execution.

† r5: after execution of S3, both L1 and L2 are empty and assertion r5 is true vacuously.
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The case that L2 is empty is similar. Thus, r 8S3< r.
We  have  shown  rfl c 8S2< r  and  r 8S3< r,  and  thus  rfl c 8S2; S3< r.  Hence  r  is  a  loop  invariant  for  the
while loop. By the inference rule for while loops, we have that r 8while c S2; S3< HŸ cfl rL.
Combining this  result  with the conclusion that  p 8S1< r  from the paragraph immediately following the
definition of r, we have that p 8merge< HŸ cfl rL.
We  conclude  by  claiming  Ÿ cfl r Ø q.  Recall  that  q  was  the  final  assertion  that  L  is  ordered  and
L = l1‹ l2  as  sets.  Assume Ÿ cfl r.  That  L  is  ordered is  the claim of  r3.  By r4,  we have that,  as  sets,
L‹ L1‹ L2 = l1‹ l2. But Ÿ c implies that L1  and L2  are empty. Hence, L = l1‹ l2. Thus q holds and
we have completed the proof that p 8merge< q and hence merge is partially correct.

mergeSort
Now we turn to the mergeSort function. We repeat its definition below.
In[102]:= mergeSort@L : 8__Integer<D := Module@8m, L1, L2<,

If@Length@LD > 1,
m = Floor@Length@LDê2D;
L1 = L@@ ;; mDD;
L2 = L@@m + 1 ;;DD;
merge@mergeSort@L1D, mergeSort@L2DD,
H*else*L
L

D
D

Let p  be the assertion that L  is a nonempty list  of distinct integers,  and let q  be the assertion that the
function  returns  a  list  which  has  the  same  elements  as  L  and  is  ordered.  Our  claim  is  that
p 8mergeSort< q.  Since mergeSort  is recursive, our proof will be by strong induction on the length
of the list L.
For  the  basis  case,  assume  that  L  has  only  one  element.  Also  assume  p.  Then  the  if  condition  of
mergeSort  fails  and  the  program terminates  by  returning  L  unmodified.  But  since  L  has  only  one
element,  it  is  trivially  ordered.  Thus,  under  the  basis  assumption  that  L  has  only  one  element,
p 8mergeSort< q.
For the inductive case, we make the inductive assumption that for all k § n,  if a list has length k  then
mergeSort returns the list sorted. Assume L has n+ 1 elements. Also assume p. Under these assump-
tions, the if condition is satisfied.

The first command in the then clause assigns m = f
n+1
2
v.  Note that m < n+ 1 and, since n > 1, m > 0.

All of the inequalities are strict.
The next two commands assign L1 to the list consisting of the first m elements in L and L2 to the remain-
der. Note that since 0 < m < n+ 1, both of these lists are nonempty with at most n elements.
In  the  final  statement  of  the  if  clause,  mergeSort  is  applied  to  L1  and  to  L2.  Since  these  two  lists
both have length at most n, the inductive assumption implies that the results of mergeSort on L1 and
L2  are  lists  with  the  same  elements  and  ordered.  Since  merge  is  partially  correct,  as  shown  in  the
previous subsection, the result of merge is an ordered list consisting of the elements of its input lists.
Hence,  the  result  of  mergeSort  is  an  ordered  list  consisting  of  the  same  elements  as  L.  That  is,  q
holds.
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In  the  final  statement  of  the  if  clause,  mergeSort  is  applied  to  L1  and  to  L2.  Since  these  two  lists
both have length at most n, the inductive assumption implies that the results of mergeSort on L1 and
L2  are  lists  with  the  same  elements  and  ordered.  Since  merge  is  partially  correct,  as  shown  in  the
previous subsection, the result of merge is an ordered list consisting of the elements of its input lists.
Hence,  the  result  of  mergeSort  is  an  ordered  list  consisting  of  the  same  elements  as  L.  That  is,  q
holds.
This  concludes  the  inductive  step  and  we  conclude  p 8mergeSort< q  for  all  lengths  of  L.  Hence,
mergeSort is partially correct.

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 2

Generate all well-formed formulae for expressions involving the variables x, y, and z and the 
operators 	

 8+ , ÿ , ê , -< with n or fewer symbols.

Solution:  This  problem  asks  us  to  not  only  generate  well-formed  formulae,  but  to  generate  all  such
formulae subject to a limitation on the number of symbols.
To begin, we present a recursive definition of the set of well-formed formulae on the symbols.

Basis step: x, y, and z are well-formed formulae.
Recursive step: If F and G are well-formed formulae, then so are: H-FL, HF+GL, HF-GL, HF ÿGL,
and HF êGL.

Note that we will fully parenthesize the well-formed formulae so as to avoid ambiguity, but parenthe-
ses will not be considered symbols for the purpose of counting symbols in the formula.
Also  note  that  we  will  implement  the  well-formed  formulae  as  strings,  not  as  algebraic  expressions.
The  reason  for  this  is  that  if  we  build  algebraic  expressions,  Mathematica  will  perform  unwanted
simplification. For example, -H-xL is a well-formed formula distinct from x, but if we enter -H-xL as a
Mathematica expression, it will be simplified to x.
We will approach this problem in two steps. First, we generate well-formed formulae using a function
with sufficiently many applications of the recursive step to guarantee that  every well-formed formula
of  length  n  or  less  is  produced.  Second,  we  will  prune  the  well-formed formulae  with  greater  than  n
symbols. This will leave us with all well-formed formulae involving at most n symbols.
Generating Formulae
The first step is to generate well-formed formulae. For this, we will create a pair of functions, similar
to allStrings and buildStrings from Section 5.3 of this manual.
The function buildWFFs will accept a single argument, a list of well-formed formulae. It will apply
the recursive step to the existing set. The function first makes a copy of the input set, since arguments
cannot be modified. Second, using a Do loop over the input set, it applies unary negation. Then, with a
Do loop over the input set and over the binary operations, the function adds the rest of the well-formed
formulae.
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In[103]:= buildWFFs@S_ListD := Module@8T = S, f, g, o<,
Do@T = Union@T, 8"H-" <> f <> "L"<D, 8f, S<D;
Do@T = Union@T, 8"H" <> f <> o <> g <> "L"<D,
8f, S<, 8g, S<, 8o, 8"+", "-", "*", "ê"<<D;

T
D

Let's confirm that this works as expected by applying it to the basis set 8"x", "y", "z"<.
In[104]:= buildWFFs@8"x", "y", "z"<D

Out[104]= 8H-xL, x, Hx*xL, Hx-xL, Hx+xL, HxêxL, Hx*yL, Hx-yL,
Hx+yL, HxêyL, Hx*zL, Hx-zL, Hx+zL, HxêzL, H-yL, y, Hy*xL,
Hy-xL, Hy+xL, HyêxL, Hy*yL, Hy-yL, Hy+yL, HyêyL, Hy*zL,
Hy-zL, Hy+zL, HyêzL, H-zL, z, Hz*xL, Hz-xL, Hz+xL, HzêxL,
Hz*yL, Hz-yL, Hz+yL, HzêyL, Hz*zL, Hz-zL, Hz+zL, HzêzL<

Note that  the  order  is  not  the  order  in  which the  well-formed formulae  are  added,  it  is  the  order  that
Union imposes on the set.
The other component is the function that calls buildWFFs. This is nearly identical to allStrings.
allWFFs  accepts  a  positive  integer  m  representing  the  number  of  applications  of  the  recursive  step
that are to be performed. It initializes the set of formulae to the basis set and applies buildWFFs  as
many times as is called for.
In[105]:= allWFFs@m_IntegerD := Module@8S, i<,

S = 8"x", "y", "z"<;
For@i = 1, i § m, i++,
S = buildWFFs@SD

D;
S

D

Now the question is: how many applications of the recursive step are needed to be sure that the result
contains  all  well-formed  formulae  of  length  at  most  n?  Clearly,  0  applications  of  buildWFFs  are
needed to obtain all formulae consisting of 1 symbol, as this is the basis step. Also, the formulae pro-
duced  by  an  application  of  buildWFFs  contain  at  least  one  symbol  more  than  was  present  in  the
previous step (from the unary negation). So after n- 1 applications of buildWFFs, we are guaranteed
to have all well-formed formulae with n symbols or fewer.
To illustrate, we will find all well-formed formulae of length at most 3. Apply AllWFFs to 2.
In[106]:= allWFF3 = allWFFs@2D;

We suppressed the output since the output would be lengthy.
In[107]:= Length@allWFF3D

Out[107]= 7101

Here is the list of every 300th formula. 

32   Chapter05.nb



In[108]:= Table@allWFF3@@iDD, 8i, 1, 7101, 300<D

Out[108]= 8H-H-xLL, HHx-xL-H-yLL, HHx*xL*Hz-xLL, HHx-yL+Hx-xLL,
HHx*yL-Hy-yLL, HHxêyL*Hz-yLL, HHx*zL+Hx-zLL, HHxêzL-Hy-zLL,
HH-yL+Hx+xLL, Hy-Hx+yLL, HHy+xL*Hz+xLL, HHyêyL+Hx+xLL,
HHy+yL-Hy+yLL, HHy-yL*Hz+zLL, HHy+zL+Hx+zLL, HHy-zL+H-zLL,
HHz+xLêxL, HHz-xL-HyêxLL, HHz*xL*HzêyLL, HHz-yL+HxêyLL,
HHz*yL-HyêzLL, HHzêyL*HzêzLL, HH-zL+HzêyLL, Hz-HzêzLL<

Note that these involve up to seven symbols. Since we want the formulae with at most three symbols,
we must remove from this set all the formulae with more than three. For this, we will need a function
that calculates the number of symbols in a formula. 
Pruning the Set
To count the number of characters in a string, Mathematica provides the StringLength function. If
you apply StringLength to a string, the command returns the number of characters in the string.
In[109]:= StringLength@"abcde"D

Out[109]= 5

However, the number of symbols in a well-formed formula is not equal to its length, since parentheses
are  not  considered  symbols.  Fortunately,  Mathematica  also  provides  the  function  StringCount.
This  function  takes  two arguments.  The  first  is  the  string.  The  second is  a  substring  or  a  list  of  sub-
strings  that  you  wish  to  count  within  the  first.  For  example,  to  determine  the  number  of  a’s  and  b’s
within the string “abcccbabbcab”, you enter the following.
In[110]:= StringCount@"abcccbabbcab", 8"a", "b"<D

Out[110]= 8

To  count  the  number  of  symbols  in  a  well-formed  formula,  we  apply  StringCount  with  second
argument  the  list  of  all  symbols:  8"x", "y", "z", "+", "-", "*", "ê"<.  For  example,  the  number  of  sym-
bols in "HHz-xL-Hz*xLL" is:
In[111]:= StringCount@"HHz-xL-Hz*xLL",

8"x", "y", "z", "+", "-", "*", "ê"<D

Out[111]= 7

In order to prune the set allWFF3 so that it contains only the formulae with 3 or fewer symbols, we’ll
use the Select function. The Select function can be used to find the subset of a given set consist-
ing  of  those  elements  satisfying  a  given  condition.  Select  requires  two  arguments.  The  first  is  the
original  list.  The second is  a boolean-valued function of one argument that  can be applied to the ele-
ments of the list and returns True  for those elements that should be selected. The result is the list of
elements of the original list for which the function returned true. 
In  our  case,  the  Boolean-valued  function  should  return  true  if  the  well-formed  formula  has  three  or
fewer symbols. We will create a function to test the result of StringCount against 3.
In[112]:= testWFF3@s_StringD :=

StringCount@s, 8"x", "y", "z", "+", "-", "*", "ê"<D <= 3

We can now use the name of this function as the second argument to Select.
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In[113]:= Select@allWFF3, testWFF3D

Out[113]= 8H-H-xLL, H-xL, x, Hx*xL, Hx-xL, Hx+xL, HxêxL, Hx*yL, Hx-yL,
Hx+yL, HxêyL, Hx*zL, Hx-zL, Hx+zL, HxêzL, H-H-yLL, H-yL, y,
Hy*xL, Hy-xL, Hy+xL, HyêxL, Hy*yL, Hy-yL, Hy+yL, HyêyL, Hy*zL,
Hy-zL, Hy+zL, HyêzL, H-H-zLL, H-zL, z, Hz*xL, Hz-xL, Hz+xL,
HzêxL, Hz*yL, Hz-yL, Hz+yL, HzêyL, Hz*zL, Hz-zL, Hz+zL, HzêzL<

It is left to the reader to generalize and combine these functions into a single function that accepts n as
an argument and returns the list of all well-formed formulae with n or fewer symbols.

Computations and Explorations 2

Determine which Fibonacci numbers are divisible by 5, which are divisible by 7, and which 
are divisible by 11. Prove that your conjectures are correct. 

Solution: We use the Fibonacci function to determine the Fibonacci numbers. This function applied
to an integer n returns the nth Fibonacci number.
To answer the first part of the question, we want to know which Fibonacci numbers are divisible by 5.
That is, we want to determine for which n is the nth Fibonacci divisible by 5. We will construct a list
consisting of those indices between 1 and 50 for which the corresponding Fibonacci number is divisi-
ble by 5.
In[114]:= Reap@For@n = 1, n § 50, n++,

If@Divisible@Fibonacci@nD, 5D, Sow@nDD
DD

Out[114]= 8Null, 885, 10, 15, 20, 25, 30, 35, 40, 45, 50<<<

This list suggests that the nth Fibonacci number is divisible by 5 when n is. To obtain more evidence,
we'll design a function to look for counterexamples to the assertion: Fn is divisible by 5 if and only if n
is divisible by 5.
We first create a function that accepts a positive integer n and checks whether or not n is a counterexam-
ple of the assertion that Fn is divisible by 5 if and only if n is divisible by 5. If either Fn is not divisible
by 5  when n  is,  or  Fn  is  divisible  by  5  when n  is  not,  then  this  function  will  print  a  message  to  that
effect. 
In[115]:= checkFib5@n_IntegerD := Module@8F<,

F = Fibonacci@nD;
If@Divisible@F, 5D && Not@Divisible@n, 5DD,
Print@"Fn=" F, " is not divisible by 5, but n=", n, " is"D

D;
If@Divisible@n, 5D && Not@Divisible@F, 5DD,
Print@"Fn=" F, " is divisible by 5, but n=", n, " is not"D

D;
D

In  order  to  check  as  many  Fibonacci  numbers  as  possible,  while  not  spending  too  much  time  on  the
process,  we  will  apply  the  TimeConstrained  function.  The  first  argument  to  TimeCon-
strained is an expression to be evaluated. In this case, the expression will be an infinite For loop
that applies checkFib5. We make the loop infinite by entering True for the test. The second argu-
ment  to  TimeConstrained  is  the  time,  in  seconds,  that  the  expression  should  be  allowed  to  run.
TimeConstrained  also accepts a third, optional, argument, that is evaluated if the first expression
fails  to  finish.  If  the  third  argument  is  not  given,  the  output  in  case  the  time  runs  out  will  be
$Aborted. We will use a Print statement as the third argument to report the largest value of n for
which Fn  was checked. Note that we subtract one from the value of the loop variable since we cannot
be certain whether the current value was in fact checked or if it was aborted.
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In  order  to  check  as  many  Fibonacci  numbers  as  possible,  while  not  spending  too  much  time  on  the
process,  we  will  apply  the  TimeConstrained  function.  The  first  argument  to  TimeCon-
strained is an expression to be evaluated. In this case, the expression will be an infinite For loop
that applies checkFib5. We make the loop infinite by entering True for the test. The second argu-
ment  to  TimeConstrained  is  the  time,  in  seconds,  that  the  expression  should  be  allowed  to  run.
TimeConstrained  also accepts a third, optional, argument, that is evaluated if the first expression
fails  to  finish.  If  the  third  argument  is  not  given,  the  output  in  case  the  time  runs  out  will  be
$Aborted. We will use a Print statement as the third argument to report the largest value of n for
which Fn  was checked. Note that we subtract one from the value of the loop variable since we cannot
be certain whether the current value was in fact checked or if it was aborted.
Below, we allow the test to run for 3 seconds.
In[116]:= TimeConstrained@For@n = 1, True, n++, checkFib5@nDD, 3,

Print@"Checked through n=", n - 1DD

Checked through n=58 273

How many Fibonacci numbers can be checked will depend on your computer. Proving the conjecture,
as well as forming and proving conjectures for 7 and 11, is left to the reader.

Exercises
1. Use Mathematica to find and prove formulas for the sum of the first k nth powers of positive 

integers for n = 4, 5, 6, 7, 8, 9, 10.

2. For what positive integers k is nk - n divisible by k for all positive integers n?
3. Use Mathematica to help you find and prove the formulas sought in Exercises 9, 10, and 11 of 

Section 5.1 of the text. Do not use the symbolic capabilities of the Sum command to form 
your conjectures.

4. Find integers a and d such that d divides an+1 + Ha+ 1L2 n-1 for all positive integers n. 
(Exercises 36 and 37 in Section 5.1 indicate that a = 4, d = 21 and a = 11, d = 133 are two 
such pairs.)

5. Supplementary Exercises 4 and 5 suggest a more general conjecture. Use Mathematica's Sum 
function to produce evidence for this conjecture.

6. Use the postageBasis algorithm from Section 5.2 of this manual to find the smallest n 
such that every amount of postage of n cents or more can be made from stamps worth 78 cents 
and $5.95.

7. Write a function that accepts two stamp denominations as input and returns the smallest n 
such that every amount of postage of n cents or more can be made from the given 
denominations, or returns $Failed if it cannot find such an n. Use your function to make a 
conjecture that describes for which pairs of denominations such an n exists and for which 
there is no such n.

8. Write a function to recursively build a set from the following definition: basis step: 2 and 3 
belong to the set; recursive step: if x and y are members, then x ÿ y is a member.
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9. Use the Timing function to compare the performance of gR and gF from Section 5.3. Graph 
the time performance for the two functions. (Be sure to Clear gR prior to every execution so 
that the comparison is fair.)

10. Write a function that accepts two stamp denominations and returns all amounts of postage that 
can be paid with up to n stamps.

11. The solution provided for Computer Projects 2 is inefficient as a means of finding all well-
formed formulae involving at most n symbols. This is because formulae which already have 
more symbols than the maximum are retained and used to produce even longer formulae. In 
particular, after n iterations, the resulting set includes formulae of up to 2n+1 - 1 symbols (but 
not all such formulae). Modify the approach taken in the solution to Computer Projects 2 so 
that strings that include more than n symbols are pruned at each step of the recursion.

12. Write a function to compute the number of partitions of a positive integer (see Exercise 47 in 
Section 5.3 of the text).

13. Write a function to compute Ackermann's function (see the prelude to Exercise 48 in Section 
5.3).

14. Implement Algorithm 3 for computing gcdHa, bL from Section 5.4 of the text.
15. Implement Algorithm 5, the recursive linear search algorithm, from Section 5.4 of the text. 
16. Implement Algorithm 6, the recursive binary search algorithm, from Section 5.4 of the text. 
17. Compare the performance of your implementations of Algorithm 5 and Algorithm 6 as 

follows: for a variety of values of n, let L be the list of integers from 1 to n. Randomly choose 
one hundred integers between 1 and n and measure the average of the times taken for each 
algorithm to find the randomly chosen integers. Graph n versus the average times. 
(RandomInteger@8 min, max<, countD will output a list of count randomly chosen 
integers between min and max.)

18. Create three functions to compute Fibonacci numbers: an iterative function, a recursive 
function that stores values, and a recursive function that does not store values. Base your 
functions on Algorithms 7 and 8 in Section 5.4 of the text. Create a graph illustrating the time 
performance of the three functions.

19. Implement quick sort, described in the prelude to Exercise 50 in Section 5.4 of the text. 
Compare the performance with the merge sort implemented in this manual. 

20. Implement the algorithm described in Supplementary Exercise 44 for expressing a rational 
number as a sum of Egyptian fractions. 

21. Use Mathematica to study the McCarthy 91 function. (See the prelude to problem 45 in the 
Supplementary Exercises of Chapter 5.)
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