
5 Induction and Recursion

Introduction
In this chapter we describe how Mathematica can be used to help you make conjectures and prove
them with mathematical induction and strong induction. We will also look at several examples of using
Mathematica to explore recursive definitions and to implement recursive algorithms. Recursion is an
important tool in any computer programming language, and Mathematica is no exception. We con-
clude with an example of proving program correctness of a Mathematica function.

5.1 Mathematical Induction
In this section we will demonstrate how to use Mathematica both to discover propositions and to aid in
the use of mathematical induction to verify them. We begin with two examples of how to use Mathemat-
ica to discover and prove summation formulas. We then consider a question of divisibility.

Summation Example 1
As our first example, we will explore a formula that you've already seen:

‚
i=1

n
i = 1+ 2+ 3+º⋯+ n =

nHn+ 1L
2

This formula is the subject of Example 1 in Section 5.1 of the text. Here, we will proceed as if we did
not already know the formula.
Listing and Graphing to Find the Formula
Our first step is to discover the formula. To do this, we will have Mathematica compute the sums for a
variety of values of n, using the Sum function.
The Sum function has essentially the same syntax as Table. The first argument is an expression
representing the values to be added in terms of a variable. The second argument is a list indicating the
values of the variable over which the sum should be computed. Refer to Section 2.4 for a description
of the behavior of the second argument. A table summarizing the main possibilities is shown below.

8i, imax< sum from i = 1 to imax
8i, imin, imax< sum from i = imin to imax

8i, imin, imax, step< sum from i = imin to imax by step
8i, list< sum over iœlist

8i, imax< sum from i = 1 to imax
8i, imin, imax< sum from i = imin to imax

8i, imin, imax, step< sum from i = imin to imax by step
8i, list< sum over iœlist

In our situation, we want to add the first several positive integers. For example, the sum of the first ten
positive integers is

In[1]:= Sum@i, 8i, 10<D

Out[1]= 55

To discover the formula for the sum of the first n positive integers, we need several specific examples
to analyze. To calculate a lot of examples at once, we will embed the Sum function inside of a Table,
with the maximum value of the summation as the table variable. This will produce the list of the sums
of the first n positive integers for different values of n.

In[2]:= Table@Sum@i, 8i, n<D, 8n, 50<D

Out[2]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,
153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406,
435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820,
861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275<

Remember that we're working as if we do not already know the answer. Just looking at the data, you
might notice a pattern, but if not, it's sometimes helpful to pair the value of n with the result. To do
this, we only need to modify the Table function so that the first argument is the list whose first ele-
ment is n and whose second is the Sum function.

In[3]:= Table@8n, Sum@i, 8i, n<D<, 8n, 50<D

Out[3]= 881, 1<, 82, 3<, 83, 6<, 84, 10<, 85, 15<, 86, 21<, 87, 28<,
88, 36<, 89, 45<, 810, 55<, 811, 66<, 812, 78<, 813, 91<,
814, 105<, 815, 120<, 816, 136<, 817, 153<, 818, 171<, 819, 190<,
820, 210<, 821, 231<, 822, 253<, 823, 276<, 824, 300<, 825, 325<,
826, 351<, 827, 378<, 828, 406<, 829, 435<, 830, 465<,
831, 496<, 832, 528<, 833, 561<, 834, 595<, 835, 630<,
836, 666<, 837, 703<, 838, 741<, 839, 780<, 840, 820<,
841, 861<, 842, 903<, 843, 946<, 844, 990<, 845, 1035<,
846, 1081<, 847, 1128<, 848, 1176<, 849, 1225<, 850, 1275<<

The entry 823, 276< indicates that the sum of the first 23 positive integers is 276.
This still may not be enough to get an idea of what the formula could be, in which case a graph of the
data can be of use. The ListPlot function is used to graph functions and data, and was first dis-
cussed in Section 2.3 of this manual. In this situation, we want to plot the points that the previous
application of Table produced: 81, 1<, 82, 3<, 83, 6<, …. To do this, we apply ListPlot to the
output above. Note that either of the previous two lists can be used. Given a list of pairs, ListPlot
produces the graph interpreting the pairs as x-y coordinate pairs. Given a list of values, the values are
interpreted as the y coordinates with the x coordinate being the position of the value in the list. That is,
the first element is plotted at x-value 1, the second element at x-value 2, etc. In this case, the plots are
identical, so we will use the shorter of the two expressions. Since Mathematica computes the sums
quickly, we'll go out to a maximum of n = 1000. That way, we'll be sure to have a good idea of the
shape of the graph.

2 Chapter05.nb

In[4]:= ListPlot@Table@Sum@i, 8i, n<D, 8n, 1000<DD

Out[4]=

200 400 600 800 1000

100000

200000

300000

400000

500000

The particular values in the list may not have been helpful at all in figuring out what kind of formula
we were looking for. But this graph probably looks very familiar. It looks very much like the right half
of a parabola, suggesting that the formula is quadratic. (Of course, it may be cubic or quartic or some
other polynomial, but we'll start with the simplest possibility based on the graph.)
Finding the Coefficients
Now that we have guessed the kind of formula, we can write it as f HnL = a ÿ n2 + b ÿ n+ c. Determining
the coefficients a, b, c is our next task. We will have Mathematica find them for us.
We already know a bunch of values for this function. Here are the first few again.

In[5]:= sumList = Table@Sum@i, 8i, n<D, 8n, 10<D

Out[5]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55<

This data tells us a lot of information about our formula. For instance, if we plug in n = 2, then
f H2L = 3, meaning

3 = a ÿ 22 + b ÿ 2+ c = 4 a+ 2 b+ c

For n = 1, we have
1 = a+ b+ c

For n = 3:
6 = 9 a+ 3 b+ c

Mathematica can generate these equations for us. We can apply Table with first argument an equa-
tion, formed with the Equal (==) operator, representing the function f HnL = a ÿ n2 + b ÿ n+ c. Instead
of f HnL, we use the data in sumList. So our expression will be
sumList@@nDD ã a*n^2 + b*n + c.

In[6]:= sumEquations = Table@sumList@@nDD ã a*n^2 + b*n + c, 8n, 10<D

Out[6]= 81 ã a + b + c, 3 ã 4 a + 2 b + c, 6 ã 9 a + 3 b + c, 10 ã 16 a + 4 b + c,
15 ã 25 a + 5 b + c, 21 ã 36 a + 6 b + c, 28 ã 49 a + 7 b + c,
36 ã 64 a + 8 b + c, 45 ã 81 a + 9 b + c, 55 ã 100 a + 10 b + c<

The list of equations stored as sumEquations is a system of equations. In particular, we have 10
equations in three variables. You have probably seen systems of at least 2 and 3 equations in 2 or 3
variables in previous mathematics courses. You can have Mathematica solve the system of equations
by applying the Solve function to the list. We provide Solve with the list of equations and the list of
variables appearing in them. (The second argument can often be omitted and Mathematica will deduce
the variables.)

Chapter05.nb 3

The list of equations stored as sumEquations is a system of equations. In particular, we have 10
equations in three variables. You have probably seen systems of at least 2 and 3 equations in 2 or 3
variables in previous mathematics courses. You can have Mathematica solve the system of equations
by applying the Solve function to the list. We provide Solve with the list of equations and the list of
variables appearing in them. (The second argument can often be omitted and Mathematica will deduce
the variables.)

In[7]:= Solve@sumEquations, 8a, b, c<D

Out[7]= ::a Ø
1

2
, b Ø

1

2
, c Ø 0>>

You may recall that to solve a system of equations in three unknowns, only three equations are
required. In this situation, having more equations is useful. If we were wrong about the formula being
quadratic but attempted to find coefficients with only three equations, Mathematica may still have
found values for a, b, and c that satisfied the three equations we chose. With ten equations, if the actual
formula were not quadratic, there is a greater chance that no values of a, b, and c would satisfy all ten
equations. In that case, Mathematica would have returned an empty list to indicate the absence of a
solution and that our guess about the kind of formula was incorrect.

Let's review what we've done so far. Our goal is to find a formula for the sum ⁄
i=1

n
i. We used Mathemat-

ica to compute a bunch of values of this sum and graphed them. This graph suggested a quadratic
formula, i.e., one of the form a ÿ n2 + b ÿ n+ c for some values of a, b, and c. We then used Mathemati-
ca's Solve function to determine that a = b = 1

2
 and c = 0. In other words, we've found the formula

1
2
n2 + 1

2
n, which, of course, is the same as nHn+1L

2
. Although we have found a formula, we have not yet

proven anything, we've only made a conjecture.
The Induction Proof
To prove that our formula is correct, we use mathematical induction. First, let's make our formula into
a function.

In[8]:= sumF@n_D := H1ê2L*n^2 + H1ê2L*n

To complete the basis step of the induction, we need to see that the formula agrees with the sum for
n = 1.

In[9]:= Sum@i, 8i, 1<D

Out[9]= 1

In[10]:= sumF@1D

Out[10]= 1

They are equal and the basis step is verified.
For the inductive step, we assume that the formula is correct for k and need to demonstrate that it is
true for k+ 1. In Example 1 in the textbook, this was done by starting with the sum
1+ 2+º⋯+ k+ Hk+ 1L and applying the inductive hypothesis to the first k terms to obtain
kHk+1L
2

+ Hk+ 1L. Then algebra is used to turn that expression into the formula evaluated at k+ 1. With
Mathematica, we can just check whether the expressions are the same.
The sum of the first k+ 1 terms is 1+ 2+º⋯+ k+ Hk+ 1L = f HkL+ Hk+ 1L.

4 Chapter05.nb

In[11]:= sumF@kD + Hk + 1L

Out[11]= 1 +
3 k

2
+
k2

2

That used the inductive hypothesis. We need to see if this is the same as f Hk+ 1L.
In[12]:= sumF@k + 1D

Out[12]=
1 + k

2
+
1

2
H1 + kL2

To check whether f Hk+ 1L is the same as f HkL+ Hk+ 1L, we will apply the Reduce function. The first
argument to Reduce will be the equation formed by identifying the two expressions. The second
argument is the variable k. Reduce will apply algebraic rules to the expression to determine the
values of k for which the equation holds. If there is more than one equation or more than one variable,
you can use a list in either argument.

In[13]:= Reduce@sumF@kD + Hk + 1L ã sumF@k + 1D, kD

Out[13]= True

The output True indicates that the equation is valid for all values of k, in particular, it is true for the
positive integers. This means that the inductive step is verified, and hence the formula is correct.

Summation Example 2
As a second example of using Mathematica to find and prove summation formulae, consider the sum

⁄
i=1

n
i2Hi+ 1L!. For this example, we won't go through the process of computing values and graphing as

we did above. That is a very valuable process, and we strongly recommend that you go through it
yourself with a few examples. But Mathematica includes a function that will give us the result.
Using Sum to Determine the Formula
Above, we used the Sum function to determine the numeric sum of a sequence of numbers. While the
numbers being added were determined by a formula, nevertheless the bounds of the sum were explicit

so that specific values could be calculated and added. To calculate ⁄
i=1

10
i2Hi+ 1L!, we use Sum as in the

previous example, with the formula given as the first argument. The bounds, i ranging from 1 to 10, are
given in the second argument in the form 8i, 10<.

In[14]:= Sum@i^2*Hi + 1L!, 8i, 10<D

Out[14]= 4 311 014 402

(Note the use of the exclamation mark for the computation of factorial. You can also use the functional
form Factorial if you prefer.)

The Sum function can also be used for computing symbolic sums, as in ⁄
i=1

n
i2Hi+ 1L!. All we need to do

is replace the upper bound of 10 with the symbol n, provided that n has not been assigned a value.

Chapter05.nb 5

In[15]:= Sum@i^2*Hi + 1L!, 8i, n<D

Out[15]= 2 - H2 + nL! + n H2 + nL!

Applying Simplify to the output, we obtain a slightly simpler formula.
In[16]:= Simplify@%D

Out[16]= 2 + H-1 + nL H2 + nL!

Note that you can use symbols in place of any of the bound specifications. You can also use the sym-
bol Infinity in place of the upper bound, provided the series is convergent.
Similarly, Mathematica provides the Product function for computing numeric and symbolic prod-
ucts. The syntax is the same.
The Induction Proof

Now that the Sum function has determined the formula ⁄
i=1

n
i2Hi+ 1L! = Hn- 1L Hn+ 2L! + 2, we will use

Mathematica to help us prove it. Even though we can be very confident that Mathematica has given us
a correct formula, applying a Mathematica function is not the same as a proof.
As before, we'll define a function based on the formula.

In[17]:= sumF2@n_D := Hn - 1L*Hn + 2L! + 2

For the basis step of the induction, we need to see that the formula holds for n = 1. The value of the
sum for n = 1 is

In[18]:= 1^2*H1 + 1L

Out[18]= 2

And the formula applied to n = 1 is
In[19]:= sumF2@1D

Out[19]= 2

The basis step is verified.
For the inductive step, we assume that the formula is correct for k. That is, we assume that

‚
i=1

k
i2Hi+ 1L! = Hk- 1L Hk+ 2L! + 2

We need to show that the formula works for k+ 1. Now,

‚
i=1

k+1
i2Hi+ 1L! = ‚

i=1

k
i2Hi+ 1L! + Hk+ 1L2 HHk+ 1L+ 1L!

Using the inductive hypothesis that the formula is correct for k, this is
In[20]:= sumF2@kD + Hk + 1L^2*HHk + 1L + 1L!

Out[20]= 2 + H-1 + kL H2 + kL! + H1 + kL2 H2 + kL!

We need to check to see if this is the same as the formula applied to k+ 1.

6 Chapter05.nb

In[21]:= sumF2@k + 1D

Out[21]= 2 + k H3 + kL!

Again, we use Reduce applied to the equation formed by identifying these two expressions.
In[22]:= Reduce@sumF2@kD + Hk + 1L^2*HHk + 1L + 1L! ã sumF2@k + 1DD

Reduce::fexp :
Warning: Reduce used FunctionExpand to transform the system. Since

FunctionExpand transformation rules are only generically
correct, the solution set might have been altered. à

Out[22]= True

Observe that a warning message was produced this time. The reason for this is the inclusion of the
factorials, which Mathematica treats with particular care. However, the output is correct, the equation
is true, as you can verify by hand.
It should be pointed out that this “proof” of the formula for the sum is only correct modulo the correct-
ness of the Mathematica functions that we have used and the proper functioning of the computer it is
run on. One of the drawbacks of computer-aided proof is the degree to which your computer or soft-
ware could be introducing hidden errors.

Divisibility
For a final example, we'll see how Mathematica can be used to help prove results about divisibility. In
Example 8 from Section 5.1 of the text, it was shown that n3 - n is divisible by 3 for all positive inte-
gers n. Exercise 33 asks you to prove that n5 - n is divisible by 5 for all positive integers. These two
facts suggest that perhaps n7 - n is divisible by 7 for all positive integers n. Let's see how Mathematica
can help us prove this fact.

We begin by creating a function to represent the expression n7 - n.
In[23]:= divisibleEx@n_D := n^7 - n

The basis case is n = 1. For n = 1, the expression is
In[24]:= divisibleEx@1D

Out[24]= 0

This is divisible by 7, so the basis case holds.

The inductive hypothesis is that k7 - k is divisible by 7 for a positive integer k. We need to show that
Hk+ 1L7 - Hk+ 1L is divisible by 7. To do this, we'll use the following fact: if n a and n b- a then n b.
(The reader should verify this statement, which is equivalent to Theorem 1, part (i), of Section 4.1.)

By assumption, 7 divides k7 - k. We will have Mathematica compute the difference with
Hk+ 1L7 - Hk+ 1L.

In[25]:= divisibleEx@k + 1D - divisibleEx@kD

Out[25]= -1 - k7 + H1 + kL7

Chapter05.nb 7

We apply the Expand function to the result.
In[26]:= Expand@%D

Out[26]= 7 k + 21 k2 + 35 k3 + 35 k4 + 21 k5 + 7 k6

You can see that the coefficients are all multiples of 7 and thus the expression is divisible by 7. We can
confirm this with Mathematica by checking that the difference is divisible by 7 by using the Reduce
function on the equation formed by setting the difference equal to 0 and invoking the Modulus option.

In[27]:= Reduce@divisibleEx@k + 1D - divisibleEx@kD ã 0, Modulus -> 7D

Out[27]= True

Thus, the inductive step is verified and hence n7 - n is divisible by 7 for all positive integers n.

5.2 Strong Induction and Well-Ordering
In this section, we'll see one way that Mathematica can be used to support a proof by strong induction.
In particular, we will consider the class of problems illustrated in Example 4: prove that every amount
of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. The second solution
to that example will form the model for this discussion. (See also Exercises 3 through 8 as other exam-
ples of problems of this kind.)
The basis step of the induction argument requires several propositions to be verified. Using the nota-
tion in the text, the propositions PHbL, PHb+ 1L, …, PHb+ jL must all be demonstrated for some integer
b and a positive integer j. Mathematica can be useful in these situations because it can often verify the
basis cases for you. This is particularly useful when j is large.
Showing that every amount of postage over 12 cents can be formed using 4 and 5 cent stamps requires
4 basis cases: PH12L, PH13L, PH14L, PH15L. We begin by showing how to use Mathematica to demon-
strate PH12L, that postage of 12 cents can be formed using 4 and 5 cent stamps. While you may object
that it is obvious that 12 = 4 ÿ 3, our ultimate goal is to generalize our code to encompass the entire
class of postage problems.
Making Postage
To verify PH12L, we must find nonnegative integers a and b, representing the number of stamps of the
two denominations, such that 12 = 4 a+ 5 b. The most straightforward way of finding a and b is to test
all the possibilities. We know that a and b must both be nonnegative.

Also, the maximum possible values of a and b are f 12
4
v and f 12

5
v, respectively. (Recall that dxt is the

notation used to represent the floor of x, that is, the largest integer less than or equal to x.) To see why
this is so, consider b: 12 = 4 a+ 5 b ¥ 5 b since a ¥ 0. That is, 5 b § 12 and so b § 12

5
. And since b

must be an integer, we have b § f
12
5
v. Likewise for a.

Since a and b must be between 0 and the floor of 12 divided by 4 or 5, respectively, we can use a pair
of nested For loops to check all the possible values. Within the loops, we only need to check to see if
4 a+ 5 b = 12. If so, we'll terminate the loops, which we enclose in a Catch, by applying Throw to
the pair 8a, b<.

8 Chapter05.nb

In[28]:= Catch@
For@a = 0, a § Floor@12ê4D, a++,
For@b = 0, b § Floor@12ê5D, b++,
If@4*a + 5*b ã 12, Throw@8a, b<DD

D
D

D

Out[28]= 83, 0<

We can very easily generalize this by replacing the target value and the stamp denominations with
variables. The following function implements this generalization. It accepts the two denominations and
the target value as input and returns a list whose elements represent the number of each kind of stamp
required. In the event that the function fails to form the desired amount of postage with the given
stamps, it returns Null.

In[29]:= makePostage@stampA_Integer, stampB_Integer, postage_IntegerD :=
Module@8a, b<,
Catch@
For@a = 0, a § Floor@postageêstampAD, a++,
For@b = 0, b § Floor@postageêstampBD, b++,
If@stampA*a + stampB*b ã postage, Throw@8a, b<DD

D
D

D
D

Applying makePostage with stamps 4 and 5 and postage 13 tells us that it requires two 4-cent
stamps and one 5 cent stamps to make 13 cents postage.

In[30]:= makePostage@4, 5, 13D

Out[30]= 82, 1<

On the other hand, it is not possible to make 11 cents postage with 4 and 5 cent stamps and so the
function does not produce output.

In[31]:= makePostage@4, 5, 11D

Automating the Basis Step
The makePostage function finds the number of stamps of each denomination needed to produce the
desired postage. As such, it verifies individual basis step propositions. With a simple loop, we can
verify all of the basis cases. Recall that the basis step was to verify that postage can be made for 12, 13,
14, and 15 cents.

In[32]:= For@p = 12, p § 15, p++,
Print@makePostage@4, 5, pDD

D

Chapter05.nb 9

83, 0<

82, 1<

81, 2<

80, 3<

We will make a function for this in a moment, but first observe that the number of propositions in the
basis step is equal to the smaller denomination stamp. The reason for this is in the proof of the induc-
tive step. You should review the second solution to Example 4 in the text. The key point is that to
make postage of k+ 1 cents, the proof relies on the inductive assumption that you can make postage of
k+ 1- 4 = k- 3 cents. This requires that k- 3 ¥ 12, or k ¥ 15.
Generically, if a is the smaller of the stamps and x is the minimum postage that we claim can be made
(x = 12 in the example), then the inductive step requires k+ 1- a ¥ x. Which is to say k ¥ x+ Ha- 1L.
Thus PHxL, PHx+ 1L, …, PHx+ Ha- 1LL must form the basis step.
This is useful to us in the following way: given the values of the stamps and the minimum value of
postage, we can automate the verification of the appropriate basis cases.
We first create the following message to be given in case one of the basis cases fails. Note the use of
placeholders `1`, `2`, and `3`. These serve as variables. When Message is called, it will be given
with three additional arguments, beyond the name of the message, and the values of these arguments
will be substituted in for these variables.

In[33]:= postageBasis::fail =
"Cannot form postage of `3` using stamps of

amounts `1` and `2`.";

Here is the postageBasis function. Note that the expression postageList terminates the first
argument of Check, and Null is the second argument of Check. Consequently, if the main body of
the function, contained in the first argument of Check, is successful, the result of the function will be
the list of rules that specify the numbers of stamps needed for each amount of postage. If there is an
amount of postage that is not possible, then the message will be generated and the result of the function
will be Null.

10 Chapter05.nb

In[34]:= postageBasis@stampA_Integer,
stampB_Integer, minpostage_IntegerD :=

Module@8small, postageList = 8<, postage, R<,
small = Min@stampA, stampBD;
Check@
For@postage = minpostage,
postage § minpostage + small - 1,
postage++,
R = makePostage@stampA, stampB, postageD;
If@R =!= Null,
AppendTo@postageList, postage Ø RD,
Message@postageBasis::fail, stampA, stampB, postageD

D
D;
postageList, H*end of Check argument 1*L
Null

D
D

We apply it to the example of using 4 and 5 cent stamps to make postage of at least 12 cents.
In[35]:= postageBasis@4, 5, 12D

Out[35]= 812 Ø 83, 0<, 13 Ø 82, 1<, 14 Ø 81, 2<, 15 Ø 80, 3<<

The postageBasis function above accepts as input the denominations of the two stamps, and the
minimum value such that all postage values equal to or greater than that minimum can be made. The
function uses the Min command to set small equal to the lesser of the two denominations. The
postageList variable is used to store the information that shows how to make the various amounts
of postage. This list will store rules of the form postage Ø 8a, b< which indicate that the specified
amount of postage can be made with a stamps of value A and b of B.
The For loop considers each of the basis cases (using the observation above). For each amount of
postage, we use makePostage to determine if it is possible to form that postage from the stamp
values. If so, makePostage returns a pair indicating how the desired postage is made and this is
added to the postageList.
Check evaluates its first argument and the output of the Check is the output of the first argument,
unless a message had been raised, in which case the second argument is evaluated. If makePostage
ever returns Null, that indicates that the particular basis case cannot be verified. In this case, the
message postageBasis::fail is raised. If no messages are raised, that means that every amount
of postage succeeded and postageList, the last expression of the first argument to Check is out-
put.
The following indicates that it is false that every amount of postage of 12 cents or larger can be
obtained using 4 and 6 cent stamps.

Chapter05.nb 11

In[36]:= postageBasis@4, 6, 12D

postageBasis::fail : Cannot form postage of 13 using stamps of amounts 4 and 6.

postageBasis::fail : Cannot form postage of 15 using stamps of amounts 4 and 6.

5.3 Recursive Definitions and Structural Induction
In this section we will show how functions and sets can be defined recursively in Mathematica.

A Simple Recursive Function
First we consider the recursively defined function from Example 1 in Section 5.3 of the text. This
function is defined by f H0L = 3 and f Hn+ 1L = 2 ÿ f HnL+ 3.
In order to represent this function in Mathematica, we must transform the recursive part of the defini-
tion into an equation for f HnL instead of f Hn+ 1L. We have to decrease all of the arguments in the
recursive part of the definition by 1: f HnL = 2 ÿ f Hn- 1L+ 3. The formula f Hn+ 1L = 2 ÿ f HnL+ 3 is per-
haps more expressive in that the n+ 1 suggests that the definition is about the “next” value of the
function. But Mathematica cannot interpret n+ 1 as a parameter in a function definition, at least not in
a natural way.
It is also important to point out that changing the recursive formula also changes the domain over
which it is valid. The formula f Hn+ 1L = 2 ÿ f HnL+ 3 applies for all n ¥ 0, while f HnL = 2 ÿ f Hn- 1L+ 3
applies for all n ¥ 1. This does not affect the value of f HnL for any n.
The most natural way to define a recursive function is to define the function just like any other. In this
case, the function will refer to itself, but Mathematica has no problem with that.

In[37]:= f@n_D := 2*f@n - 1D + 3

We also must define the basis step. To declare f H0L = 3, you make the assignment as shown below.
In[38]:= f@0D = 3

Out[38]= 3

Note that the recursive part of the definition must be given as a SetDelayed (:=). The basis step can
be defined with either Set (=) or SetDelayed (:=).
Now that the recursive definition and the basis step have been assigned, you can use f like any other
function.

In[39]:= f@10D

Out[39]= 6141

And you can compute the values of f from 1 to 9 using Table.
In[40]:= Table@f@nD, 8n, 9<D

Out[40]= 89, 21, 45, 93, 189, 381, 765, 1533, 3069<

Down Values
It is worth understanding a bit of what Mathematica is doing when you define and evaluate a recur-
sively defined function. Any time you evaluate a function, Mathematica checks the function’s list of
down values. We first discussed down values in Section 2.3. Briefly, the down values for a symbol are
the expressions associated with the symbol when it is given arguments, as opposed to the symbol by
itself. Here are the down values for the function f.

12 Chapter05.nb

It is worth understanding a bit of what Mathematica is doing when you define and evaluate a recur-
sively defined function. Any time you evaluate a function, Mathematica checks the function’s list of
down values. We first discussed down values in Section 2.3. Briefly, the down values for a symbol are
the expressions associated with the symbol when it is given arguments, as opposed to the symbol by
itself. Here are the down values for the function f.

In[41]:= DownValues@fD

Out[41]= 8HoldPattern@f@0DD ß 3, HoldPattern@f@n_DD ß 2 f@n - 1D + 3<

This indicates that f has two down values: one associated to the argument 0 and one to arguments
matching the pattern n_.
Whenever you apply Set (=) or SetDelayed (:=) with the left hand side of the operator of the form
f[…], Mathematica understands this to be the creation or modification of one of f’s down values.
Note that such an assignment does not affect any down values other than the one, if any, whose left
hand side is of exactly the same form. Consequently, when dealing with recursive functions, it is a
good idea to apply Clear to a function name when redefining a function, as this will remove all the
down values for the symbol.
When you evaluate f at a particular value, Mathematica checks the more specific down values first.
That is, if you enter f[0], Mathematica will use the down value associated to f[0] and output 3
rather than applying the formula 2*f[0-1]+3.
If you apply f to 0, Mathematica sees that 0 has a specific down value and returns the value. If you
apply f to a different value, say 2, Mathematica does not find a specific down value for 2 and so it
applies the formula. The formula says that f H2L = 2 ÿ f H1L+ 3. When Mathematica tries to evaluate this,
it recognizes that it needs to find f H1L. Again, it checks the down values and, not finding a result for 1,
it applies the formula f H1L = 2 ÿ f H0L+ 3. Since f H0L has a specific value, Mathematica looks up f H0L,
which allows it to compute f H1L = 9 and then f H2L = 21.
You may be wondering why the output above indicates that f's list of down values only has the value
for f H0L, even though we've computed other values. The reason is that Mathematica doesn't automati-
cally store down values. Most of the time, you don't execute functions on the same input multiple
times, so it would be a waste of memory to store every value computed. You have to explicitly tell
Mathematica to store down values.
We have seen that you can store a specific value as a down value by making an assignment such as
f[0]=3. An assignment of this form can be given within the body of a function. Doing so causes the
function to store values as it calculates them, as we’ll see below.

A Second Recursive Function
Now consider the function F defined by the basis values FH0L = 1 and FH1L = 1 and the recursive for-
mula FHnL = FHn- 1L+FHn- 2L. This is the function whose values are the Fibonacci numbers.
We will define this function as indicated above. First, we establish the basis values.

In[42]:= F@0D = 1;
F@1D = 1;

Note that these have been stored as down values.
In[44]:= DownValues@FD

Out[44]= 8HoldPattern@F@0DD ß 1, HoldPattern@F@1DD ß 1<

Chapter05.nb 13

For the recursive part of the definition, we enter the following.
In[45]:= F@n_D := F@nD = F@n - 1D + F@n - 2D

This may look a bit strange, but it is actually fairly straightforward. The expression is an application of
SetDelayed (:=), which is an assignment to the symbol F with argument matching the pattern n_,
i.e., with any argument. Note that this has created a single entry in the down values list.

In[46]:= DownValues@FD

Out[46]= 8HoldPattern@F@0DD ß 1, HoldPattern@F@1DD ß 1,
HoldPattern@F@n_DD ß HF@nD = F@n - 1D + F@n - 2DL<

The “value” associated to F with argument matching n_ is the expression
F@nD = F@n - 1D + F@n - 2D. It can be useful to think of F as representing both a function and a
computer program. Assigning F@0D = 1 and F@1D = 1 establish the basis values for the function F.
Setting F[n_] defines the action of the program F. That program has a single line of code which is
F@nD = F@n - 1D + F@n - 2D. That line of code in the program sets a particular value of the func-
tion F.
The function F is now completely defined and produces correct output.

In[47]:= Table@F@nD, 8n, 0, 10<D

Out[47]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89<

Also note that, unlike the function f above, F has added the results of its calculations to its down
values.

In[48]:= DownValues@FD

Out[48]= 8HoldPattern@F@0DD ß 1,
HoldPattern@F@1DD ß 1, HoldPattern@F@2DD ß 2,
HoldPattern@F@3DD ß 3, HoldPattern@F@4DD ß 5,
HoldPattern@F@5DD ß 8, HoldPattern@F@6DD ß 13,
HoldPattern@F@7DD ß 21, HoldPattern@F@8DD ß 34,
HoldPattern@F@9DD ß 55, HoldPattern@F@10DD ß 89,
HoldPattern@F@n_DD ß HF@nD = F@n - 1D + F@n - 2DL<

Comparing Complexity
The difference in time complexity between a recursive function that stores computed values and one
that does not is very significant, perhaps much more than you might think. Let's create two new func-
tions, both of which model the function gHnL = 2 ÿ gHn- 1L+ 3 ÿ gHn- 2L with gH0L = 5 and gH1L = 2. The
function gR will “remember” computed values while gF will be “forgetful” and not store values.
We will track the recursive calls by adding a Print statement every time the formula is used. Here
are the two functions.

14 Chapter05.nb

In[49]:= gR@n_D := Module@8<,
Print@"Computing gR@", n, "D"D;
gR@nD = 2*gR@n - 1D + 3*gR@n - 2D

D

gR@0D = 5;
gR@1D = 2;

In[52]:= gF@n_D := Module@8<,
Print@"Computing gF@", n, "D"D;
2*gF@n - 1D + 3*gF@n - 2D

D

gF@0D = 5;
gF@1D = 2;

Let’s see what happens when we attempt to compute gR[5].
In[55]:= gR@5D

Computing gR@5D

Computing gR@4D

Computing gR@3D

Computing gR@2D

Out[55]= 422

This appears fairly straightforward. We enter gR[5], and since this has not been stored as a down
value, the formula is evaluated, causing the print statement to be executed. Then, since gH5L depends on
gH4L and gH3L, Mathematica needs to know, first, the value of gH4L. Since this has not been previously
computed, again the formula needs to be invoked causing Mathematica to print “Computing
gR[4]”. Computing gH4L requires the values for gH3L and gH2L. Again, gH3L is needed first, so Mathemat-
ica executes gR[3]. This requires gH2L and gH1L. To obtain the value for gH2L, the formula must be
invoked once again.
After printing “Computing gR[2]”, Mathematica needs to evaluate the expression
gR@2D = 2*gR@1D + 3*gR@0D. This time, it can look to the stored values of gR[1] and gR[0]
to compute that gH2L = 19. This value is stored as a down value of gR, and we begin unwinding.
gR[2] was called when attempting to compute gR[3], which depends on values for 2 and 1. Since
gR[2] was just returned and gR[1] is stored, gR[3] can be computed and stored. The value of
gR[3] is sent back up to the computation of gR[4]. gR[4] depends on values of 3 and 2 and both of
those values are now available, so gR[4] can be computed. Likewise, gR[5] can be determined
using the values of gR[4] and gR[3].
Contrast this with what happens for gF[5].

In[56]:= gF@5D

Chapter05.nb 15

Computing gF@5D

Computing gF@4D

Computing gF@3D

Computing gF@2D

Computing gF@2D

Computing gF@3D

Computing gF@2D

Out[56]= 422

Things begin the same. We execute gF[5] causing the print statement to report the fact that we are
computing that value. To obtain gF[5], we need the values of gF[4] and gF[3]. gF[4] is com-
puted first, since it is leftmost in the formula and “Computing gF[4]” is displayed. To obtain the
value for 4, we need the values for 3 and 2, and so gF[3] is executed. This requires the values for
gF[2] and gF[1]. Again, since it is leftmost, gF[2] is tackled first, causing “Computing gF[2]”
to be displayed.
This value can be computed from the stored values gF[1] and gF[0]. That means that gF[2],
which was invoked in the attempt to compute gF[3], is complete and we move back up to the compu-
tation of gF[3]. Since gF[3] depends on the recently computed gF[2] and on gF[1], which was
stored as an initial condition, gF[3] can be computed as well.
This means that gF[4] now knows the value of gF[3]. You can think about it as if the formula
gF[4] is working with is now 2*44 + 3*gF@2D. gF[4] now just needs the value of gF[2]. gR
could just look that value up, since it had recorded the value gR[2] when it was first computed. But
gF is not storing values that are computed, so it must apply the formula to compute gF[2] again.
Thus, “Computing gF[2]” is displayed a second time. Once the formula has been used to once
again compute gF[2], then this value is available to gF[4] to complete its computation.
Once gF[4] has finished computing, that value is sent up. gF[5], which required gF[4] and
gF[3], now knows one of the two values it required. But again, gF[3], which was computed as part
of gF[4], must be computed all over again. Consequently, you see the message “Computing
gF[3]” again. And gF[3] requires the value for 2, so gF[2] must be executed a third time.
As you can imagine, the difference between storing values and not is even more extreme for larger
input values. When values are stored, once the recursion starts working its way back up the ladder, it
remembers all the results from the lower values. When values are not stored, the chain of recursive
calls has to keep recomputing the results from lower valued inputs.

A Recursive Function with Two Parameters
In Example 13 of Section 5.3 of the text, the sequence am,n is defined. We will define a function
AHm, nL that models the sequence am,n. The basis value is AH0, 0L = 0, and the recursion formula is

AHm, nL = ¶ AHm- 1, nL+ 1 if n = 0 andm > 0
AHm, n- 1L+ n if n > 0

As with the previous example, we will define the function so as to store values. The initial value is as
follows.

16 Chapter05.nb

As with the previous example, we will define the function so as to store values. The initial value is as
follows.

In[57]:= A@0, 0D = 0;

We will define the recursive formula using a Which. Recall that the Which function accepts an even
number of arguments, with the first in each pair a condition and the second in the pair evaluated if the
condition holds.

In[58]:= A@m_, n_D :=
A@m, nD = Which@n ã 0 && m > 0, A@m - 1, nD + 1, n > 0, A@m, n - 1D + nD

Now we can compute some values of am,n.

In[59]:= A@3, 2D

Out[59]= 6

In[60]:= A@5, 3D

Out[60]= 11

To get a better idea of what the values of am,n are, we can display a Table of them using
TableForm.

In[61]:= Table@A@m, nD, 8m, 0, 10<, 8n, 0, 10<D êê TableForm
Out[61]//TableForm=

0 1 3 6 10 15 21 28 36 45 55
1 2 4 7 11 16 22 29 37 46 56
2 3 5 8 12 17 23 30 38 47 57
3 4 6 9 13 18 24 31 39 48 58
4 5 7 10 14 19 25 32 40 49 59
5 6 8 11 15 20 26 33 41 50 60
6 7 9 12 16 21 27 34 42 51 61
7 8 10 13 17 22 28 35 43 52 62
8 9 11 14 18 23 29 36 44 53 63
9 10 12 15 19 24 30 37 45 54 64
10 11 13 16 20 25 31 38 46 55 65

Note that the first variable to be specified is shown in rows. That is, the first row corresponds to m = 0,
the second row has m = 1, etc.

A Recursively Defined Set
In Example 5, the text describes how to recursively define a set. Here, we will consider a slightly more
complicated example.
Let S be the subset of the integers defined by:

Basis step: 4 œ S and 7 œ S.
Recursive step: if x œ S and y œ S, then x+ y œ S.

(Note that this is the set of all postage that can be formed with 4 cent and 7 cent stamps.)
To model S in Mathematica, we will define a list that includes the elements called for in the basis step.
For the recursive step, we will define a function that applies the recursion to the set.

Chapter05.nb 17

To model S in Mathematica, we will define a list that includes the elements called for in the basis step.
For the recursive step, we will define a function that applies the recursion to the set.
The basis step requires that 4 and 7 are members of S. So we define S to be the list consisting of 4 and
7.

In[62]:= S = 84, 7<

Out[62]= 84, 7<

To implement the recursive step, we will create a function recurseS. This function will accept as
input the current S and will return the list obtained after applying the recursive rule. For instance, in
the first application of recurseS, the procedure needs to add 4+ 4, 4+ 7, 7+ 4, and 7+ 7. (We will
eliminate duplication by applying the Union function.)
We will use a Do loop. Recall that in a Do loop, the first argument is the expression that is evaluated.
Subsequent arguments specify the loop variables. Also recall that a variable specification of the form
8i, list< causes i to take on each element of the list.
Here is the function.

In[63]:= recurseS@S_ListD := Module@8x, y, T = S<,
Do@T = Union@T, 8x + y<D, 8x, S<, 8y, S<D;
T

D

Now we apply this function to S.
In[64]:= S = recurseS@SD

Out[64]= 84, 7, 8, 11, 14<

After a second iteration:
In[65]:= S = recurseS@SD

Out[65]= 84, 7, 8, 11, 12, 14, 15, 16, 18, 19, 21, 22, 25, 28<

A third:
In[66]:= S = recurseS@SD

Out[66]= 84, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 53, 56<

A Set of Strings
As the final example in this section, we will look at how to generate sets of strings over a finite alpha-
bet, as described in Definition 1 of Section 5.3.
The alphabet we will use is 8"a", "b", "c", "d"<. We begin by assigning this to a name.

In[67]:= alphabet = 8"a", "b", "c", "d"<

Out[67]= 8a, b, c, d<

According to Definition 1, the basis step is that our set of strings must contain the empty string. In
Mathematica, the empty string is given by "". We will use the name S2 for our set of strings, since S
is used above.

18 Chapter05.nb

According to Definition 1, the basis step is that our set of strings must contain the empty string. In
Mathematica, the empty string is given by "". We will use the name S2 for our set of strings, since S
is used above.

In[68]:= S2 = 8""<

Out[68]= 8<

Note that while the output makes this appear to be an empty list, applying FullForm reveals that it
does in fact contain the empty string.

In[69]:= S2 êê FullForm
Out[69]//FullForm=

List@""D

Like the previous example, we will create a function to build the set of strings. The recursive step in
the definition tells us that we build the set by combining every element of S2 with every letter in the
alphabet. Again we will use a Do loop with two loop variables. We will define the function to accept
the current version of the set and the alphabet as arguments.
To combine two strings, we apply the StringJoin (<>) operator. Here is the function.

In[70]:= buildStrings@S_List, A_ListD := Module@8T = S, w, x<,
Do@T = Union@T, 8w <> x<D, 8w, S<, 8x, A<D;
T

D

The first application of the recursion adds the alphabet to the set.
In[71]:= S2 = buildStrings@S2, alphabetD

Out[71]= 8, a, b, c, d<

Again, since Mathematica does not display the enclosing quotation marks of strings in its output, the
initial comma in the output above is separating the empty string from “a”. The second application adds
all the two-character strings.

In[72]:= S2 = buildStrings@S2, alphabetD

Out[72]= 8, a, aa, ab, ac, ad, b, ba, bb, bc,
bd, c, ca, cb, cc, cd, d, da, db, dc, dd<

The third application includes the three-character strings.
In[73]:= S2 = buildStrings@S2, alphabetD

Out[73]= 8, a, aa, aaa, aab, aac, aad, ab, aba, abb, abc, abd, ac,
aca, acb, acc, acd, ad, ada, adb, adc, add, b, ba, baa,
bab, bac, bad, bb, bba, bbb, bbc, bbd, bc, bca, bcb, bcc,
bcd, bd, bda, bdb, bdc, bdd, c, ca, caa, cab, cac, cad,
cb, cba, cbb, cbc, cbd, cc, cca, ccb, ccc, ccd, cd, cda,
cdb, cdc, cdd, d, da, daa, dab, dac, dad, db, dba, dbb,
dbc, dbd, dc, dca, dcb, dcc, dcd, dd, dda, ddb, ddc, ddd<

A General Function
We can put this process all together in one function. Given a set of strings representing the alphabet
and a positive integer indicating the number of iterations desired, the following function will return the
set of strings obtained after the given number of iterations.

Chapter05.nb 19

In[74]:= allStrings@A_List, n_IntegerD := Module@8S = 8""<, i<,
For@i = 1, i § n, i++,
S = buildStrings@S, AD

D;
S

D

Below, we apply this function to the alphabet consisting of the strings “ab” and “ba” (in discrete mathe-
matics, an alphabet does not have to consist of individual letters).

In[75]:= allStrings@8"ab", "ba"<, 4D

Out[75]= 8, ab, abab, ababab, abababab, abababba, ababba,
ababbaab, ababbaba, abba, abbaab, abbaabab, abbaabba,
abbaba, abbabaab, abbababa, ba, baab, baabab, baababab,
baababba, baabba, baabbaab, baabbaba, baba, babaab,
babaabab, babaabba, bababa, bababaab, babababa<

5.4 Recursive Algorithms
In this section we will use Mathematica to implement several different recursive algorithms. First, we
will look at two different recursive implementations of modular exponentiation and compare their
performance. Then we will contrast a recursive approach to computing factorial with an iterative
approach. And finally, we will provide an implementation of merge sort.

Modular Exponentiation
Example 4 of Section 5.4 of the text describes two recursive approaches to computing bn modm. Both
of these use the initial condition b0 modm = 1. The first approach is based on the fact that
bn modm = Ib ÿ Ibn-1 modmMM modm.

The second approach is based on the observation that for even exponents, we can compute via the
formula bn modm = Ibnê2 modmM2 modm. And if the exponent is odd, we can use the identity
bn modm = IIbdnê2t modmM2 modmM ÿ HbmodmL modm.

Approach 1
First we will implement exponentiation based on the initial condition b0 modm = 1 and the formula
bn modm = Ib ÿ Ibn-1 modmMM modm. The function power1 will accept three arguments: the base b,
the exponent n, and the modulus m.
If the exponent is 0, then regardless of the base or the modulus, the function returns 1. We can specify
that behavior as follows. Observe that it is not necessary to give names to the other two arguments,
since their specific values are irrelevant.

In[76]:= power1@_Integer, 0, _IntegerD := 1

In Mathematica, you are allowed to provide multiple definitions for the same function, provided the
arguments have different forms. If two definitions both match a particular set of arguments, then the
definition that is issued first, and is thus first in the list of down values, is the one applied. However, it
is generally a good idea to ensure that the two patterns do not overlap. Consequently, for the recursive
part of power1, we will explicitly insist that the exponent be positive.

20 Chapter05.nb

In Mathematica, you are allowed to provide multiple definitions for the same function, provided the
arguments have different forms. If two definitions both match a particular set of arguments, then the
definition that is issued first, and is thus first in the list of down values, is the one applied. However, it
is generally a good idea to ensure that the two patterns do not overlap. Consequently, for the recursive
part of power1, we will explicitly insist that the exponent be positive.
If the exponent is greater than 0, then we compute the product of the base with the function applied to
the same base and modulus but the power decreased by 1. To ensure that the exponent is in fact posi-
tive, we will impose a Condition (/;) by entering the operator /; following by the proposition
n>0 between the argument list and the SetDelayed (:=) operator.

In[77]:= power1@b_Integer, n_Integer, m_IntegerD ê; n > 0 :=
Mod@b*power1@b, n - 1, mD, mD

Notice that the down values of the symbol power1 now includes both definitions.
In[78]:= DownValues@power1D

Out[78]= 8HoldPattern@power1@_Integer, 0, _IntegerDD ß 1,
HoldPattern@power1@b_Integer, n_Integer, m_IntegerD ê; n > 0D ß
Mod@b power1@b, n - 1, mD, mD<

Note that we did not store computed values in this function. The reason for this is that each iteration of
the function only depends on one other call to the function. This is in contrast with the gR and gF
functions from the previous section. Those functions called themselves twice in each iteration. As a
result, those functions made use of the same value multiple times. When deciding whether or not to
store values, you must weigh its potential benefit for not unnecessarily repeating computations with the
cost of storage requirements.

We can use power1 to compute 36 mod 7 and compare the result to Mathematica’s computation of the
same expression.

In[79]:= power1@3, 6, 7D

Out[79]= 1

In[80]:= Mod@3^6, 7D

Out[80]= 1

Approach 2
The second approach computes the power based on Algorithm 4 from Section 5.4. For exponent 0, it
returns 1, just as before. If the exponent is even, then the algorithm uses the formula
bn modm = Ibnê2 modmM2 modm, and for odd powers, it computes the power using the identity
bn modm = IIbdnê2t modmM2 modmM ÿ HbmodmL modm.

Since there are three possibilities, 0, even, or odd, we give the definition in three parts.
In[81]:= power2@_Integer, 0, _IntegerD := 1;

power2@b_Integer, n_Integer, m_IntegerD ê; n > 0 && EvenQ@nD :=
Mod@power2@b, nê2, mD^2, mD;

power2@b_Integer, n_Integer, m_IntegerD ê; n > 0 && OddQ@nD :=
Mod@Mod@power2@b, Floor@nê2D, mD^2, mD*b, mD;

We apply power2 to 36 mod 7 as well.

Chapter05.nb 21

In[84]:= power2@3, 6, 7D

Out[84]= 1

Comparing Performance of the Functions
Now that we've implemented these two algorithms, let's compare their performance on a variety of
input values.
We fix the base 3 and the modulus 7 and consider the exponents from 100 to 1000. To compare the
performance, we'll time the execution of each function on the exponents from 100 to 1000. We use
Table to build the two lists consisting of the exponent/time pairs. Recall that Timing returns a list
consisting of the time taken and the result, so we apply the Part ([[…]]) operator to extract the time.
In order to obtain results with exponents as large as 1000, we need to temporarily increase the variable
$RecursionLimit. Mathematica normally restricts the depth to which a recursive algorithm can
go. This is useful, as it helps prevent infinite loops and other potential computer-crashing events. In
this case, we are certain that our function will not cause such problems and we need large exponents in
order to have times large enough to be compared. We modify the recursion limit by setting the symbol
$RecursionLimit to Infinity. Doing so within a Block ensures that this is only a temporary
modification.

In[85]:= times1 = Block@8$RecursionLimit = Infinity<,
Table@8n, Timing@power1@3, n, 7DD@@1DD<, 8n, 100, 1000<DD;

In[86]:= times2 = Block@8$RecursionLimit = Infinity<,
Table@8n, Timing@power2@3, n, 7DD@@1DD<, 8n, 100, 1000<DD;

We have suppressed the output in the statements above, but now times1 and times2 contain the
running times for power1 and power2, respectively.
Now let’s graph the time results. The ListPlot function can be used to plot multiple sets of data by
giving as its argument a list whose elements are the lists of data. Also, by placing the data lists inside
of the Tooltip function, you can have labels appear when you hover your mouse pointer over the
graph.

In[87]:= ListPlot@8times1, times2<, PlotLegends Ø 8"power1", "power2"<D

200 400 600 800 1000

0.0005

0.0010

0.0015

0.0020

0.0025

power1

power2

This gives us a visual comparison of the time complexity of the two algorithms. You can see that the
second approach significantly outperforms the first. It is left to the reader to compare the functions we
created to Mathematica’s built-in PowerMod function.

22 Chapter05.nb

This gives us a visual comparison of the time complexity of the two algorithms. You can see that the
second approach significantly outperforms the first. It is left to the reader to compare the functions we
created to Mathematica’s built-in PowerMod function.

Recursion and Iteration
In this subsection we compare recursive and iterative approaches for computing factorial.
Recursive Factorial
First we will implement Algorithm 1 from Section 5.4, a recursive algorithm for computing n!. This
function accepts a nonnegative integer n as its input. If the input value is 0, the function returns 1.
Otherwise, it multiplies n by the value of the function applied to n- 1.

In[88]:= factorialR@n_IntegerD := Module@8<,
If@n ã 0, 1, n*factorialR@n - 1DD

D

Note that, while we could have defined the function’s action on n = 0 and n ¹≠ 0 without using the
Module structure, a Module will be needed in the iterative version and in comparing performance of
algorithms, it is important to keep as much of the implementations the same as possible.
We test this function on 10 and verify that it has the same result as Mathematica's built-in operator.

In[89]:= factorialR@10D

Out[89]= 3 628 800

In[90]:= 10!

Out[90]= 3 628 800

Iterative Factorial
We can implement factorial with an iterative algorithm as well. Our function will use a variable f,
initialized to 1, to store the value of the factorial. It will compute using a For loop with a loop variable
running from 1 to n. Within the loop, f will be multiplied by the current value of the loop variable.

In[91]:= factorialI@n_IntegerD := Module@8f, i<,
f = 1;
For@i = 1, i § n, i++,
f = f*i

D;
f

D

We again check to make sure the result is correct on n = 10.
In[92]:= factorialI@10D

Out[92]= 3 628 800

Comparing Recursion and Iteration
Note that these two algorithms require exactly the same number of multiplications. From this point of
view, their complexity is the same.
However, let's look at their performance. We consider values of n from 1 to 1500. We use the same
approach as we did for power1 and power2 above to record and plot the time performance.

Chapter05.nb 23

In[93]:= timesR = Block@8$RecursionLimit = Infinity<,
Table@8n, Timing@factorialR@nDD@@1DD<, 8n, 1500<DD;

In[94]:= timesI = Table@8n, Timing@factorialI@nDD@@1DD<, 8n, 1500<D;

In[95]:= ListPlot@8timesR, timesI<,
PlotLegends Ø 8"recursive", "iterative"<D

200 400 600 800 1000 1200 1400

0.001

0.002

0.003

0.004

recursive

iterative

First, you might wonder about the outliers which appear to be values of n for which one function or the
other performs particularly poorly. These are essentially noise resulting from other processes on the
computer. They are also inconsistent; running the commands again will produce slightly different
results.
However, it is clear that, despite the occasional peculiar value, the iterative function outperforms the
recursive one for large values of n. This is in spite of the fact that the two algorithms involve the same
number of multiplications. Let's consider other sources of potential differences in complexity.
The For loop in the iterative function includes a comparison (i must be tested against n to determine
if the loop continues) and the recursive function makes the comparison in the If statement. So the two
functions are effectively equal in terms of the number of comparisons used.
The iterative function involves two assignments (the assignment of f and the implicit assignment of i
when it is incremented) absent from the recursive version. But two assignments are much less costly
than a function call. Recursive function calls require Mathematica to perform several operations in the
background, both in order to execute the recursive call and to keep track of where Mathematica is in
the chain of recursive calls. All of which takes time and memory that the iterative approach does not
require.
It is important to keep in mind the cost of recursion. When an iterative algorithm is available, it may be
more efficient. On the other hand, recursive algorithms are often more natural to use and can better
reveal the mathematical concepts.

Merge Sort
We conclude this section by implementing merge sort.
The merge sort algorithm is described in Algorithm 9 of the text. The mergeSort function will
accept as its input a list of integers. Its main function is to split the single list it receives into two
halves, unless the list contains only one element. The output of mergeSort is the result of applying
mergeSort to both halves of the list and then recombining them with merge.

24 Chapter05.nb

The merge sort algorithm is described in Algorithm 9 of the text. The mergeSort function will
accept as its input a list of integers. Its main function is to split the single list it receives into two
halves, unless the list contains only one element. The output of mergeSort is the result of applying
mergeSort to both halves of the list and then recombining them with merge.
The following implements Algorithm 9. Note that the merge function will be written next. For now,
Mathematica simply accepts merge as a symbol.

In[96]:= mergeSort@L : 8__Integer<D := Module@8m, L1, L2<,
If@Length@LD > 1,
m = Floor@Length@LDê2D;
L1 = L@@ ;; mDD;
L2 = L@@m + 1 ;;DD;
merge@mergeSort@L1D, mergeSort@L2DD,
H*else*L
L

D
D

Note the use of the Span (;;) operator to determine the two sublists. The syntax a ;; b, within the
Part ([[…]]) operator, is used to obtain the sublist of elements from position a to b. Omitting a, as
in ;;5, obtains the elements from the beginning to position 5. And omitting b, as in 3;;, obtains the
elements from position 3 to the end of the list.
Implementing Merge
To complete the function, we need to define merge. The merge function accepts two lists, which it
assumes are sorted, and returns a single list that contains all the elements of both of the inputs and is
sorted. The procedure is described in Algorithm 10 of the text.
In implementing merge, the first step is to duplicate the input lists. This is because the lists are emp-
tied of their elements as the merge proceeds, and arguments to a function cannot be modified. We
also initialize the list that will be the result to the empty list.
The main work of merge is contained in a While loop conditioned on both lists being nonempty.
Within this While loop there are an If statement and a Which. The If statement will implement the
instruction to “remove smaller of first elements of L1 and L2 from its list; put it at the right end of L”
from Algorithm 10. This If statement will test whether the first element of L1 is smaller than the first
element of L2. If so, then the first element is removed from L1 and added to L. If not, in the else clause,
the first element of L2 is moved to L.
We use AppendTo to add elements to the end of the list L. Note that AppendTo, when applied to the
name of a list and an element, automatically replaces the list stored in the symbol. We use Delete to
remove the first element from the list. Delete is applied to a list and a position and returns the list
with the element in that position removed. Unlike AppendTo, Delete does not automatically update
a symbol representing a list, so we must reassign the name of the list to the result of the Delete.
The Which statement will implement the if statement found in Algorithm 10. The first condition will
be that L1 is empty, and if so the remainder of L2 will be added to L and L2 will be emptied. In a sec-
ond condition, L2 will be tested. Note that the Which is Mathematica’s answer to the else-if construc-
tion. Join is used to combine two lists.
Here is the implementation of merge.

Chapter05.nb 25

In[97]:= merge@l1 : 8__Integer<, l2 : 8__Integer<D :=
Module@8L = 8<, L1 = l1, L2 = l2<,
While@HL1 =!= 8<L && HL2 =!= 8<L,
If@L1@@1DD < L2@@1DD,
AppendTo@L, L1@@1DDD;
L1 = Delete@L1, 1D,
H*else*L
AppendTo@L, L2@@1DDD;
L2 = Delete@L2, 1D

D;
Which@L1 === 8<,
L = Join@L, L2D; L2 = 8<,
L2 === 8<,
L = Join@L, L1D; L1 = 8<

D
D;
L

D

We apply mergeSort to a list as follows.
In[98]:= mergeSort@87, 4, 1, 5, 2, 3, 6<D

Out[98]= 81, 2, 3, 4, 5, 6, 7<

Tracing Merge Sort
To better understand how functions work, it is sometimes useful to create “verbose” versions of them.
That is, versions of the functions that use Print or other means to report on what it is that they are
doing. We provide a verbose version of mergeSort and apply it to the list 83, 1, 2<.

In[99]:= mergeSortVerbose@L : 8__Integer<D := Module@8m, L1, L2<,
Print@"mergeSort called on ", LD;
If@Length@LD > 1,
m = Floor@Length@LDê2D;
Print@"m=", mD;
L1 = L@@ ;; mDD;
Print@"L1=", L1D;
L2 = L@@m + 1 ;;DD;
Print@"L2=", L2D;
merge@mergeSortVerbose@L1D, mergeSortVerbose@L2DD,
H*else*L
Print@"length=1"D;
L

D
D

26 Chapter05.nb

In[100]:= mergeSortVerbose@83, 1, 2<D

mergeSort called on 83, 1, 2<

m=1

L1=83<

L2=81, 2<

mergeSort called on 83<

length=1

mergeSort called on 81, 2<

m=1

L1=81<

L2=82<

mergeSort called on 81<

length=1

mergeSort called on 82<

length=1

Out[100]= 81, 2, 3<

We recommend reading through the output. Then try it with a larger example, say with 7 elements, to
make sure that you understand how merge sort works. You can also create a verbose version of merge
to see the details of how that function works.

5.5 Program Correctness
In this section we will prove the correctness of the merge sort program that we implemented in the last
section. This will require that we prove the correctness of merge as well as mergeSort. We begin
with merge.

merge
For convenience, we will repeat the definition of merge. Also, we've added comments to indicate
where we've broken the procedure into three segments: S1, S2, and S3.

Chapter05.nb 27

In[101]:= merge@l1 : 8__Integer<, l2 : 8__Integer<D := Module@8L, L1, L2<,
H*begin S1*L
L = 8<;
L1 = l1;
L2 = l2;
H*end S1*L
While@HL1 =!= 8<L && HL2 =!= 8<L,
H*begin S2*L
If@L1@@1DD < L2@@1DD,
AppendTo@L, L1@@1DDD;
L1 = Delete@L1, 1D,
H*else*L
AppendTo@L, L2@@1DDD;
L2 = Delete@L2, 1D

D;
H*end S2*L
H*begin S3*L
Which@L1 === 8<,
L = Join@L, L2D; L2 = 8<,
L2 === 8<,
L = Join@L, L1D; L1 = 8<

D

H*end S3*L
D;
L

D

Let p be the assertion that l1 and l2 (the inputs to the function) are ordered, nonempty, and disjoint lists
of integers. Let q be the proposition that L (the output) is an ordered list and that L = l1‹ l2 as sets
(that is, the set of integers appearing in L is equal to the union of the set of integers appearing in l1 and
the set of integers in l2). We claim that p 8merge< q, i.e., that merge is partially correct with respect to
the initial condition p and the final assertion q.
Let q1 be the proposition that L1 = l1, L2 = l2, and L is the empty list. It is clear that p 8S1< pÏ q1.
Define the following propositional variables:

† r1 is the proposition that L1 is a sublist of l1; that is, the set of elements appearing in L1 is a subset
of the set of elements appearing in l1, and the order of the elements in L1 is the same as their order
in l1. Note that it immediately follows from p and r1 that L1 is ordered.

† r2 is the proposition that L2 is a sublist of l2 (and thus L2 is ordered).
† r3 is the assertion that L is ordered.
† r4 is the assertion that L‹ L1‹ L2 = l1‹ l2 as sets.
† r5 is the proposition that all members of L are smaller than all members of L1 and L2. That is,
H" x œ LL H" y œ L1‹ L2L Hx < yL.

† r is the proposition r1Ï r2Ï r3Ï r4Ï r5.
We claim that pÏ q1 Ø r. Assume pÏ q1. That is, l1 and l2 are ordered, nonempty, and disjoint lists of
integers. Also, L1 = l1, L2 = l2, and L is empty. Then r1 and r2 hold since a list is a sublist of itself.
Proposition r3 holds since L is empty and thus is ordered vacuously. That r4 is true follows from substi-
tuting l1, l2, and « for L1, L2, and L. And r5 is vacuous since L is empty. From p 8S1< pÏ q1 and
HpÏ q1L Ø r, we have p 8S1< r.

28 Chapter05.nb

We claim that pÏ q1 Ø r. Assume pÏ q1. That is, l1 and l2 are ordered, nonempty, and disjoint lists of
integers. Also, L1 = l1, L2 = l2, and L is empty. Then r1 and r2 hold since a list is a sublist of itself.
Proposition r3 holds since L is empty and thus is ordered vacuously. That r4 is true follows from substi-
tuting l1, l2, and « for L1, L2, and L. And r5 is vacuous since L is empty. From p 8S1< pÏ q1 and
HpÏ q1L Ø r, we have p 8S1< r.
Next, we will show that r is a loop invariant for the loop while HL1 ¹≠ 8< and L2 ¹≠ 8<L S2; S3. Denote by c
the condition L1 ¹≠ 8< fl L2 ¹≠ 8<. We must show that if r and c hold, then r is true after S2; S3 is executed.
First we will show rfl c 8S2< r and then that r 8S3< r.
To show that rfl c 8S2< r, assume rfl c. That is, L1 is a sublist of l1, L2 is a sublist of l2, L is ordered,
L‹ L1‹ L2 = l1‹ l2, and all members of L are smaller than every member of L1 and L2. Also, L1 and
L2 are nonempty. Then both L1 and L2 have first elements. Assume that the if condition of S2 holds.
That is, the first element of L1 is smaller than the first element of L2. Then the two commands in the
then clause of S2 are executed: the first element of L1 is added to the end of L and L1 has its first ele-
ment removed.
We need to show that r holds following the execution of the then clause of S2.

† r1: the new L1 is a sublist of the old L1 since an element was removed meaning that L1 new Õ L1 old
as sets and the order of the remaining elements was not modified. Since L1 new is a sublist of L1 old
which was a sublist of l1, the new L1 is a sublist of l1.

† r2: the new L2 is identical is the old L2 and thus remains a sublist of l2.
† r3: the old L was ordered, and, since we assume that r5 held before execution of S2, every element

of Lold was smaller than every element of L1 old‹ L2 old. In particular, the first element of L1 old
was larger than all elements of Lold. And so Lnew is ordered.

† r4: The smallest element of L1 was removed from L1 and added to L. Thus
Lnew‹ L1 new = Lold‹ L1 old and hence L‹ L1‹ L2 = l1‹ l2.

† r5: We must show that all members of Lnew are smaller than all members of both L1 new and
L2 new. Let x be an arbitrary element of Lnew. Either x was a member of Lold or x was the first
element of L1 old. If x was a member of Lold then the assumption that r5 held before execution of
S2 guarantees that x is smaller than all elements of L1 new‹ L2 new. On the other hand, assume x
was the first element of L1 old. Since L1 old is a sublist of l1, it is ordered and thus x was also the
smallest element of L1 old and hence is less than all elements of L1 new. Also, by the assumption
that the if condition of S2 evaluated true, x is smaller than the first (and smallest) element of
L2 old = L2 new as well. So x is smaller than all members of L1 new‹ L2 new.

The above shows that if the if condition of S2 holds, then r holds after executing the then clause. In
case the condition fails and the else clause executes, the proof is similar. We conclude that rfl c 8S2< r.
Next we will show that r 8S3< r. Assume r holds. Consider the case that L1 is empty. Then L2 is
appended onto the end of L and L2 is set to the empty list.

† r1: L1 is, since we assume the if condition, empty and thus a sublist of l1.
† r2: the second statement in the then clause sets L2 equal to the empty list, which is a sublist of l2.
† r3: we assume that Lold is ordered, that L2 old is a sublist of l2 and thus is ordered, and that all

members of Lold are smaller than all members of L2 old. Thus, adding L2 old to the end of Lold to
produce Lnew results in an ordered list.

† r4: as sets, Lnew = Lold‹ L2 old, so Lnew‹ L1 new‹ L2 new = HLold‹ L2 oldL‹ L1 old‹«. This is
equal to l1‹ l2 by the assumption that r4 held before execution.

† r5: after execution of S3, both L1 and L2 are empty and assertion r5 is true vacuously.

Chapter05.nb 29

The case that L2 is empty is similar. Thus, r 8S3< r.
We have shown rfl c 8S2< r and r 8S3< r, and thus rfl c 8S2; S3< r. Hence r is a loop invariant for the
while loop. By the inference rule for while loops, we have that r 8while c S2; S3< HŸ cfl rL.
Combining this result with the conclusion that p 8S1< r from the paragraph immediately following the
definition of r, we have that p 8merge< HŸ cfl rL.
We conclude by claiming Ÿ cfl r Ø q. Recall that q was the final assertion that L is ordered and
L = l1‹ l2 as sets. Assume Ÿ cfl r. That L is ordered is the claim of r3. By r4, we have that, as sets,
L‹ L1‹ L2 = l1‹ l2. But Ÿ c implies that L1 and L2 are empty. Hence, L = l1‹ l2. Thus q holds and
we have completed the proof that p 8merge< q and hence merge is partially correct.

mergeSort
Now we turn to the mergeSort function. We repeat its definition below.
In[102]:= mergeSort@L : 8__Integer<D := Module@8m, L1, L2<,

If@Length@LD > 1,
m = Floor@Length@LDê2D;
L1 = L@@ ;; mDD;
L2 = L@@m + 1 ;;DD;
merge@mergeSort@L1D, mergeSort@L2DD,
H*else*L
L

D
D

Let p be the assertion that L is a nonempty list of distinct integers, and let q be the assertion that the
function returns a list which has the same elements as L and is ordered. Our claim is that
p 8mergeSort< q. Since mergeSort is recursive, our proof will be by strong induction on the length
of the list L.
For the basis case, assume that L has only one element. Also assume p. Then the if condition of
mergeSort fails and the program terminates by returning L unmodified. But since L has only one
element, it is trivially ordered. Thus, under the basis assumption that L has only one element,
p 8mergeSort< q.
For the inductive case, we make the inductive assumption that for all k § n, if a list has length k then
mergeSort returns the list sorted. Assume L has n+ 1 elements. Also assume p. Under these assump-
tions, the if condition is satisfied.

The first command in the then clause assigns m = f
n+1
2
v. Note that m < n+ 1 and, since n > 1, m > 0.

All of the inequalities are strict.
The next two commands assign L1 to the list consisting of the first m elements in L and L2 to the remain-
der. Note that since 0 < m < n+ 1, both of these lists are nonempty with at most n elements.
In the final statement of the if clause, mergeSort is applied to L1 and to L2. Since these two lists
both have length at most n, the inductive assumption implies that the results of mergeSort on L1 and
L2 are lists with the same elements and ordered. Since merge is partially correct, as shown in the
previous subsection, the result of merge is an ordered list consisting of the elements of its input lists.
Hence, the result of mergeSort is an ordered list consisting of the same elements as L. That is, q
holds.

30 Chapter05.nb

In the final statement of the if clause, mergeSort is applied to L1 and to L2. Since these two lists
both have length at most n, the inductive assumption implies that the results of mergeSort on L1 and
L2 are lists with the same elements and ordered. Since merge is partially correct, as shown in the
previous subsection, the result of merge is an ordered list consisting of the elements of its input lists.
Hence, the result of mergeSort is an ordered list consisting of the same elements as L. That is, q
holds.
This concludes the inductive step and we conclude p 8mergeSort< q for all lengths of L. Hence,
mergeSort is partially correct.

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 2

Generate all well-formed formulae for expressions involving the variables x, y, and z and the
operators 	

 8+ , ÿ , ê , -< with n or fewer symbols.

Solution: This problem asks us to not only generate well-formed formulae, but to generate all such
formulae subject to a limitation on the number of symbols.
To begin, we present a recursive definition of the set of well-formed formulae on the symbols.

Basis step: x, y, and z are well-formed formulae.
Recursive step: If F and G are well-formed formulae, then so are: H-FL, HF+GL, HF-GL, HF ÿGL,
and HF êGL.

Note that we will fully parenthesize the well-formed formulae so as to avoid ambiguity, but parenthe-
ses will not be considered symbols for the purpose of counting symbols in the formula.
Also note that we will implement the well-formed formulae as strings, not as algebraic expressions.
The reason for this is that if we build algebraic expressions, Mathematica will perform unwanted
simplification. For example, -H-xL is a well-formed formula distinct from x, but if we enter -H-xL as a
Mathematica expression, it will be simplified to x.
We will approach this problem in two steps. First, we generate well-formed formulae using a function
with sufficiently many applications of the recursive step to guarantee that every well-formed formula
of length n or less is produced. Second, we will prune the well-formed formulae with greater than n
symbols. This will leave us with all well-formed formulae involving at most n symbols.
Generating Formulae
The first step is to generate well-formed formulae. For this, we will create a pair of functions, similar
to allStrings and buildStrings from Section 5.3 of this manual.
The function buildWFFs will accept a single argument, a list of well-formed formulae. It will apply
the recursive step to the existing set. The function first makes a copy of the input set, since arguments
cannot be modified. Second, using a Do loop over the input set, it applies unary negation. Then, with a
Do loop over the input set and over the binary operations, the function adds the rest of the well-formed
formulae.

Chapter05.nb 31

In[103]:= buildWFFs@S_ListD := Module@8T = S, f, g, o<,
Do@T = Union@T, 8"H-" <> f <> "L"<D, 8f, S<D;
Do@T = Union@T, 8"H" <> f <> o <> g <> "L"<D,
8f, S<, 8g, S<, 8o, 8"+", "-", "*", "ê"<<D;

T
D

Let's confirm that this works as expected by applying it to the basis set 8"x", "y", "z"<.
In[104]:= buildWFFs@8"x", "y", "z"<D

Out[104]= 8H-xL, x, Hx*xL, Hx-xL, Hx+xL, HxêxL, Hx*yL, Hx-yL,
Hx+yL, HxêyL, Hx*zL, Hx-zL, Hx+zL, HxêzL, H-yL, y, Hy*xL,
Hy-xL, Hy+xL, HyêxL, Hy*yL, Hy-yL, Hy+yL, HyêyL, Hy*zL,
Hy-zL, Hy+zL, HyêzL, H-zL, z, Hz*xL, Hz-xL, Hz+xL, HzêxL,
Hz*yL, Hz-yL, Hz+yL, HzêyL, Hz*zL, Hz-zL, Hz+zL, HzêzL<

Note that the order is not the order in which the well-formed formulae are added, it is the order that
Union imposes on the set.
The other component is the function that calls buildWFFs. This is nearly identical to allStrings.
allWFFs accepts a positive integer m representing the number of applications of the recursive step
that are to be performed. It initializes the set of formulae to the basis set and applies buildWFFs as
many times as is called for.
In[105]:= allWFFs@m_IntegerD := Module@8S, i<,

S = 8"x", "y", "z"<;
For@i = 1, i § m, i++,
S = buildWFFs@SD

D;
S

D

Now the question is: how many applications of the recursive step are needed to be sure that the result
contains all well-formed formulae of length at most n? Clearly, 0 applications of buildWFFs are
needed to obtain all formulae consisting of 1 symbol, as this is the basis step. Also, the formulae pro-
duced by an application of buildWFFs contain at least one symbol more than was present in the
previous step (from the unary negation). So after n- 1 applications of buildWFFs, we are guaranteed
to have all well-formed formulae with n symbols or fewer.
To illustrate, we will find all well-formed formulae of length at most 3. Apply AllWFFs to 2.
In[106]:= allWFF3 = allWFFs@2D;

We suppressed the output since the output would be lengthy.
In[107]:= Length@allWFF3D

Out[107]= 7101

Here is the list of every 300th formula.

32 Chapter05.nb

In[108]:= Table@allWFF3@@iDD, 8i, 1, 7101, 300<D

Out[108]= 8H-H-xLL, HHx-xL-H-yLL, HHx*xL*Hz-xLL, HHx-yL+Hx-xLL,
HHx*yL-Hy-yLL, HHxêyL*Hz-yLL, HHx*zL+Hx-zLL, HHxêzL-Hy-zLL,
HH-yL+Hx+xLL, Hy-Hx+yLL, HHy+xL*Hz+xLL, HHyêyL+Hx+xLL,
HHy+yL-Hy+yLL, HHy-yL*Hz+zLL, HHy+zL+Hx+zLL, HHy-zL+H-zLL,
HHz+xLêxL, HHz-xL-HyêxLL, HHz*xL*HzêyLL, HHz-yL+HxêyLL,
HHz*yL-HyêzLL, HHzêyL*HzêzLL, HH-zL+HzêyLL, Hz-HzêzLL<

Note that these involve up to seven symbols. Since we want the formulae with at most three symbols,
we must remove from this set all the formulae with more than three. For this, we will need a function
that calculates the number of symbols in a formula.
Pruning the Set
To count the number of characters in a string, Mathematica provides the StringLength function. If
you apply StringLength to a string, the command returns the number of characters in the string.
In[109]:= StringLength@"abcde"D

Out[109]= 5

However, the number of symbols in a well-formed formula is not equal to its length, since parentheses
are not considered symbols. Fortunately, Mathematica also provides the function StringCount.
This function takes two arguments. The first is the string. The second is a substring or a list of sub-
strings that you wish to count within the first. For example, to determine the number of a’s and b’s
within the string “abcccbabbcab”, you enter the following.
In[110]:= StringCount@"abcccbabbcab", 8"a", "b"<D

Out[110]= 8

To count the number of symbols in a well-formed formula, we apply StringCount with second
argument the list of all symbols: 8"x", "y", "z", "+", "-", "*", "ê"<. For example, the number of sym-
bols in "HHz-xL-Hz*xLL" is:
In[111]:= StringCount@"HHz-xL-Hz*xLL",

8"x", "y", "z", "+", "-", "*", "ê"<D

Out[111]= 7

In order to prune the set allWFF3 so that it contains only the formulae with 3 or fewer symbols, we’ll
use the Select function. The Select function can be used to find the subset of a given set consist-
ing of those elements satisfying a given condition. Select requires two arguments. The first is the
original list. The second is a boolean-valued function of one argument that can be applied to the ele-
ments of the list and returns True for those elements that should be selected. The result is the list of
elements of the original list for which the function returned true.
In our case, the Boolean-valued function should return true if the well-formed formula has three or
fewer symbols. We will create a function to test the result of StringCount against 3.
In[112]:= testWFF3@s_StringD :=

StringCount@s, 8"x", "y", "z", "+", "-", "*", "ê"<D <= 3

We can now use the name of this function as the second argument to Select.

Chapter05.nb 33

In[113]:= Select@allWFF3, testWFF3D

Out[113]= 8H-H-xLL, H-xL, x, Hx*xL, Hx-xL, Hx+xL, HxêxL, Hx*yL, Hx-yL,
Hx+yL, HxêyL, Hx*zL, Hx-zL, Hx+zL, HxêzL, H-H-yLL, H-yL, y,
Hy*xL, Hy-xL, Hy+xL, HyêxL, Hy*yL, Hy-yL, Hy+yL, HyêyL, Hy*zL,
Hy-zL, Hy+zL, HyêzL, H-H-zLL, H-zL, z, Hz*xL, Hz-xL, Hz+xL,
HzêxL, Hz*yL, Hz-yL, Hz+yL, HzêyL, Hz*zL, Hz-zL, Hz+zL, HzêzL<

It is left to the reader to generalize and combine these functions into a single function that accepts n as
an argument and returns the list of all well-formed formulae with n or fewer symbols.

Computations and Explorations 2

Determine which Fibonacci numbers are divisible by 5, which are divisible by 7, and which
are divisible by 11. Prove that your conjectures are correct.

Solution: We use the Fibonacci function to determine the Fibonacci numbers. This function applied
to an integer n returns the nth Fibonacci number.
To answer the first part of the question, we want to know which Fibonacci numbers are divisible by 5.
That is, we want to determine for which n is the nth Fibonacci divisible by 5. We will construct a list
consisting of those indices between 1 and 50 for which the corresponding Fibonacci number is divisi-
ble by 5.
In[114]:= Reap@For@n = 1, n § 50, n++,

If@Divisible@Fibonacci@nD, 5D, Sow@nDD
DD

Out[114]= 8Null, 885, 10, 15, 20, 25, 30, 35, 40, 45, 50<<<

This list suggests that the nth Fibonacci number is divisible by 5 when n is. To obtain more evidence,
we'll design a function to look for counterexamples to the assertion: Fn is divisible by 5 if and only if n
is divisible by 5.
We first create a function that accepts a positive integer n and checks whether or not n is a counterexam-
ple of the assertion that Fn is divisible by 5 if and only if n is divisible by 5. If either Fn is not divisible
by 5 when n is, or Fn is divisible by 5 when n is not, then this function will print a message to that
effect.
In[115]:= checkFib5@n_IntegerD := Module@8F<,

F = Fibonacci@nD;
If@Divisible@F, 5D && Not@Divisible@n, 5DD,
Print@"Fn=" F, " is not divisible by 5, but n=", n, " is"D

D;
If@Divisible@n, 5D && Not@Divisible@F, 5DD,
Print@"Fn=" F, " is divisible by 5, but n=", n, " is not"D

D;
D

In order to check as many Fibonacci numbers as possible, while not spending too much time on the
process, we will apply the TimeConstrained function. The first argument to TimeCon-
strained is an expression to be evaluated. In this case, the expression will be an infinite For loop
that applies checkFib5. We make the loop infinite by entering True for the test. The second argu-
ment to TimeConstrained is the time, in seconds, that the expression should be allowed to run.
TimeConstrained also accepts a third, optional, argument, that is evaluated if the first expression
fails to finish. If the third argument is not given, the output in case the time runs out will be
$Aborted. We will use a Print statement as the third argument to report the largest value of n for
which Fn was checked. Note that we subtract one from the value of the loop variable since we cannot
be certain whether the current value was in fact checked or if it was aborted.

34 Chapter05.nb

In order to check as many Fibonacci numbers as possible, while not spending too much time on the
process, we will apply the TimeConstrained function. The first argument to TimeCon-
strained is an expression to be evaluated. In this case, the expression will be an infinite For loop
that applies checkFib5. We make the loop infinite by entering True for the test. The second argu-
ment to TimeConstrained is the time, in seconds, that the expression should be allowed to run.
TimeConstrained also accepts a third, optional, argument, that is evaluated if the first expression
fails to finish. If the third argument is not given, the output in case the time runs out will be
$Aborted. We will use a Print statement as the third argument to report the largest value of n for
which Fn was checked. Note that we subtract one from the value of the loop variable since we cannot
be certain whether the current value was in fact checked or if it was aborted.
Below, we allow the test to run for 3 seconds.
In[116]:= TimeConstrained@For@n = 1, True, n++, checkFib5@nDD, 3,

Print@"Checked through n=", n - 1DD

Checked through n=58 273

How many Fibonacci numbers can be checked will depend on your computer. Proving the conjecture,
as well as forming and proving conjectures for 7 and 11, is left to the reader.

Exercises
1. Use Mathematica to find and prove formulas for the sum of the first k nth powers of positive

integers for n = 4, 5, 6, 7, 8, 9, 10.

2. For what positive integers k is nk - n divisible by k for all positive integers n?
3. Use Mathematica to help you find and prove the formulas sought in Exercises 9, 10, and 11 of

Section 5.1 of the text. Do not use the symbolic capabilities of the Sum command to form
your conjectures.

4. Find integers a and d such that d divides an+1 + Ha+ 1L2 n-1 for all positive integers n.
(Exercises 36 and 37 in Section 5.1 indicate that a = 4, d = 21 and a = 11, d = 133 are two
such pairs.)

5. Supplementary Exercises 4 and 5 suggest a more general conjecture. Use Mathematica's Sum
function to produce evidence for this conjecture.

6. Use the postageBasis algorithm from Section 5.2 of this manual to find the smallest n
such that every amount of postage of n cents or more can be made from stamps worth 78 cents
and $5.95.

7. Write a function that accepts two stamp denominations as input and returns the smallest n
such that every amount of postage of n cents or more can be made from the given
denominations, or returns $Failed if it cannot find such an n. Use your function to make a
conjecture that describes for which pairs of denominations such an n exists and for which
there is no such n.

8. Write a function to recursively build a set from the following definition: basis step: 2 and 3
belong to the set; recursive step: if x and y are members, then x ÿ y is a member.

Chapter05.nb 35

9. Use the Timing function to compare the performance of gR and gF from Section 5.3. Graph
the time performance for the two functions. (Be sure to Clear gR prior to every execution so
that the comparison is fair.)

10. Write a function that accepts two stamp denominations and returns all amounts of postage that
can be paid with up to n stamps.

11. The solution provided for Computer Projects 2 is inefficient as a means of finding all well-
formed formulae involving at most n symbols. This is because formulae which already have
more symbols than the maximum are retained and used to produce even longer formulae. In
particular, after n iterations, the resulting set includes formulae of up to 2n+1 - 1 symbols (but
not all such formulae). Modify the approach taken in the solution to Computer Projects 2 so
that strings that include more than n symbols are pruned at each step of the recursion.

12. Write a function to compute the number of partitions of a positive integer (see Exercise 47 in
Section 5.3 of the text).

13. Write a function to compute Ackermann's function (see the prelude to Exercise 48 in Section
5.3).

14. Implement Algorithm 3 for computing gcdHa, bL from Section 5.4 of the text.
15. Implement Algorithm 5, the recursive linear search algorithm, from Section 5.4 of the text.
16. Implement Algorithm 6, the recursive binary search algorithm, from Section 5.4 of the text.
17. Compare the performance of your implementations of Algorithm 5 and Algorithm 6 as

follows: for a variety of values of n, let L be the list of integers from 1 to n. Randomly choose
one hundred integers between 1 and n and measure the average of the times taken for each
algorithm to find the randomly chosen integers. Graph n versus the average times.
(RandomInteger@8 min, max<, countD will output a list of count randomly chosen
integers between min and max.)

18. Create three functions to compute Fibonacci numbers: an iterative function, a recursive
function that stores values, and a recursive function that does not store values. Base your
functions on Algorithms 7 and 8 in Section 5.4 of the text. Create a graph illustrating the time
performance of the three functions.

19. Implement quick sort, described in the prelude to Exercise 50 in Section 5.4 of the text.
Compare the performance with the merge sort implemented in this manual.

20. Implement the algorithm described in Supplementary Exercise 44 for expressing a rational
number as a sum of Egyptian fractions.

21. Use Mathematica to study the McCarthy 91 function. (See the prelude to problem 45 in the
Supplementary Exercises of Chapter 5.)

36 Chapter05.nb

