
10 Graphs

Introduction
In this chapter we consider ways in which Mathematica can help you explore and understand graphs.
In particular, we describe how to do computations on graphs using Mathematica and how Mathematica
can be used to visualize graphs.
Throughout the first half of this chapter, pseudographs are a recurring theme. Recall that pseudographs
are graphs that may contain loops and may contain multiple edges between vertices. Mathematica
includes numerous and powerful commands for representing, manipulating, and calculating with sim-
ple graphs, both undirected and directed. Each section in what follows will introduce you to these
useful tools so that you can more easily explore the concepts described in the textbook. But many of
these functions do not support graphs with multiple edges. So parts of this chapter are devoted to
extending Mathematica's existing functionality to pseudographs. This will give you tools that you can
use to explore these kinds of graphs. More than that, seeing how to create the functions for pseudo-
graphs will help you to better understand how the functions work for simple graphs.

10.1 Graphs and Graph Models
Recall that a simple graph, as defined in Section 10.1 of the text, is a set V of vertices and a set E of
unordered pairs of elements of V , called the edges of the graph, and where each edge connects two
different vertices and no two edges connect the same pair of vertices. That is, the edges are undirected,
there are no loops, and there are no multiple edges.
Mathematica represents a simple graph as a special raw object with head Graph. You should think
about Graph not as a function, but as a way to describe and represent an object. To explain this distinc-
tion, consider a fraction, such as 5

9
. We think about this as a single number, and Mathematica treats it

as a simple object, but if you delve down using FullForm, you see that it’s a bit more complicated.
In[1]:= 5ê9 êê FullForm

Out[1]//FullForm=
Rational@5, 9D

FullForm reveals that, for Mathematica, the fraction 5
9

 is actually represented by Rational
applied to two integers. Rational is not a function, in the usual sense. Rather, it is a head that tells
Mathematica what the contents mean. Graph is exactly the same, if a bit more complicated. It is a
head that tells Mathematica that the contents represent a graph object. Also, just like a Rational is
typically displayed in the usual fraction notation, a Graph object is displayed as a drawing of the
graph.

FullForm reveals that, for Mathematica, the fraction 5
9

 is actually represented by Rational
applied to two integers. Rational is not a function, in the usual sense. Rather, it is a head that tells
Mathematica what the contents mean. Graph is exactly the same, if a bit more complicated. It is a
head that tells Mathematica that the contents represent a graph object. Also, just like a Rational is
typically displayed in the usual fraction notation, a Graph object is displayed as a drawing of the
graph.
The simplest way to specify a Graph object in Mathematica is by specifying the edges as a list of
rules. You typically use positive integers or strings for the vertices (although other expressions can be
used). An edge between the vertex represented by 1 and the vertex represented by “a” is given as the
rule 1 -> "a".
As an example, the following defines a directed version of the graph shown in Exercise 3 in Section
10.1.

In[2]:= exercise3directed =
Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<D

Out[2]=

To produce an undirected simple graph, you can set the option DirectedEdges to False.
In[3]:= exercise3 = Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,

DirectedEdges Ø FalseD

Out[3]=

You can also create (undirected) simple graphs using the symbol ê in place of Rule (Ø). The undi-
rected edge symbol is entered by typing ÂueÂ.

2 Chapter10.nb

In[4]:= Graph@8"a" ê "b", "a" ê "c", "b" ê "c", "b" ê "d"<D

Out[4]=

If you prefer, you can use the symbol ð, entered as ÂdeÂ in place of Rule (Ø) for a directed graph.
Note, however, that Graph does not allow mixed graphs, that is, graphs with both directed an undi-
rected edges. In this manual, we will generally use Rule (Ø) to specify all edges together with the
DirectedEdges option, when needed. There are, however, certain functions that require the use of
ð or ê, and you should pay special attention to those situations.
If you wish, you may give an explicit list of vertices as an optional first argument to Graph. This is
only required in the situation when a graph has a vertex not adjacent to any other, as in the example
below.

In[5]:= Graph@81, 2, 3, 4, 5<,
81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1<, DirectedEdges Ø FalseD

Out[5]=

The VertexList and EdgeList functions applied to a Graph object output the vertices and edges
of the graph.

In[6]:= VertexList@exercise3D

Out[6]= 8a, b, c, d<

In[7]:= EdgeList@exercise3D

Out[7]= 8a ê b, a ê c, b ê c, b ê d<

Observe that the output of EdgeList is a list of undirected edges, using the symbol ê, despite the
fact that we defined the graph using rules. This is because the true effect of setting the Direct-
edEdges option to False is for Mathematica to transform the rules into undirected edges. Using
FullForm, you can see that these are stored using the head UndirectedEdge.

Chapter10.nb 3

Observe that the output of EdgeList is a list of undirected edges, using the symbol ê, despite the
fact that we defined the graph using rules. This is because the true effect of setting the Direct-
edEdges option to False is for Mathematica to transform the rules into undirected edges. Using
FullForm, you can see that these are stored using the head UndirectedEdge.

In[8]:= EdgeList@exercise3D êê FullForm

Out[8]//FullForm=
List@UndirectedEdge@"a", "b"D, UndirectedEdge@"a", "c"D,
UndirectedEdge@"b", "c"D, UndirectedEdge@"b", "d"DD

Note that the same is true in the directed case, with the edges represented internally as
DirectedEdge.

In[9]:= EdgeList@exercise3directedD

Out[9]= 8a ð b, a ð c, b ð c, b ð d<

In[10]:= EdgeList@exercise3directedD êê FullForm
Out[10]//FullForm=

List@DirectedEdge@"a", "b"D, DirectedEdge@"a", "c"D,
DirectedEdge@"b", "c"D, DirectedEdge@"b", "d"DD

Note that Graph objects may contain loops, as illustrated below with a replica of Exercise 7 from
Section 10.1. Loops are created simply by including an edge from a vertex to itself.

In[11]:= exercise7 = Graph@8"a", "b", "c", "d", "e"<,
8"a" Ø "b", "b" Ø "e", "c" Ø "b", "c" Ø "c",
"c" Ø "d", "d" Ø "c", "e" Ø "a", "e" Ø "d", "e" Ø "e"<,

VertexLabels Ø "Name", ImagePadding Ø 5,
VertexCoordinates Ø 881, 1<, 82, 2<, 83, 2<, 83, 1<, 82, 1<<D

Out[11]=

Options Affecting the Visual Output of Graph
In this subsection, we will explain just a few of the options available when creating Graph objects to
change their visual appearance. Readers interested in greater control over the visual display of Graph
objects should refer to the help pages.
To have Mathematica display the names of vertices, you use the VertexLabels option. Probably
the most common value for this option is "Name", including the quotation marks, which causes each
vertex to be labeled with its name. As an example, we repeat the definition of the graph from Exercise
3 used above, with this option invoked.

4 Chapter10.nb

To have Mathematica display the names of vertices, you use the VertexLabels option. Probably
the most common value for this option is "Name", including the quotation marks, which causes each
vertex to be labeled with its name. As an example, we repeat the definition of the graph from Exercise
3 used above, with this option invoked.

In[12]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexLabels Ø "Name"D

Out[12]=

Observe that Mathematica has cut off part of the string “c” which labels the top vertex. This is because
it did not allocate room for the labels when it drew the graph. To correct for this, we apply the Image-
Padding option, which is available for all graphics objects. The valid values for ImagePadding
include: a single integer representing padding to be added to all sides of the image, measured in points;
a list of the form 88 left, right <, 8 bottom, top << indicating specific lengths for each
side; None, for no padding, or All, which ensures there is enough padding for all the objects in the
graphic. Below, we see that 5 points on all sides is sufficient in this example.

In[13]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexLabels Ø "Name", ImagePadding Ø 5D

Out[13]=

Another use of the VertexLabels option is to specify labels for specific vertices. You do this by
identifying the option with a list consisting of rules associating the name of the vertex with the desired
label. The following illustrates this by labeling two of the vertices in the Exercise 3 graph.

Chapter10.nb 5

In[14]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False,
VertexLabels Ø 8"a" Ø "A", "d" Ø 4<, ImagePadding Ø 5D

Out[14]=

Similarly, edges in a graph can be labeled using the EdgeLabels option. Once again, the value
“Name” will cause all edges to be labeled.

In[15]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, EdgeLabels Ø "Name", ImagePadding Ø 5D

Out[15]=

As with vertices, you can also choose to label specific edges with arbitrary labels by giving a list of
rules as the value to EdgeLabels. When doing this, the edges must be specified using either ê
(ÂueÂ) or ð (ÂdeÂ).

6 Chapter10.nb

In[16]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, EdgeLabels Ø 8"a" ê "b" Ø e1<D

Out[16]=

As an alternative to VertexLabels and EdgeLabels, you can use the wrapper Labeled around
an edge in the list of edges or, in conjuncion with the optional list of vertices, around a vertex. The first
element in Labeled is the name of the vertex or the edge definition. The second element is the label
to be used. Observe that, just as with the EdgeLabels option, edges within a Labeled wrapper
must be given using ê or ð.

In[17]:= Graph@8"a", Labeled@"b", "b"D, "c", Labeled@"d", 4D<,
8"a" Ø "b", "a" Ø "c", "b" Ø "c", Labeled@"b" ê "d", "edge"D<,
DirectedEdges Ø FalseD

Out[17]=

You can change the size of vertices with the VertexSize option. Valid values include Tiny,
Small, Medium, and Large, or a number between 0 and 1. A numerical value indicates that the size
of the vertex should be that proportion of the distance between the closest two vertices.

Chapter10.nb 7

In[18]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False,
VertexLabels Ø "Name", VertexSize Ø MediumD

Out[18]=

You can further control the appearance, such as the color, of vertices and edges with the Ver-
texStyle and EdgeStyle options. Multiple styles can be combined with the Directive wrap-
per. For example, the following illustrates how to create red vertices and thick green edges. Readers
interested in exploring the various options available should consult the Graphics Directives guide.

In[19]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexStyle Ø Red,
EdgeStyle Ø Directive@Green, ThickDD

Out[19]=

The VertexCoordinates option is used to specify the locations of vertices. The value for the
VertexCoordinates option is a list of pairs of the form 88x1, y1<, 8x2, y2<, ...<, with
the pairs specifying the coordinates of a vertex. The order of the locations must correspond to the order
of the vertices in the graph. When an explicit list of vertices is given as the optional first element of
Graph, that list specifies the order. Otherwise, the order is determined by when the vertex is first
encountered in the list of edges, and is the same as the output of VertexList. Below, we use Ver-
texCoordinates to redraw the Exercise 3 graph with the vertices in the same positions as in the
image in the textbook.

8 Chapter10.nb

In[20]:= Graph@8"a", "b", "c", "d"<,
8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexLabels Ø "Name",
VertexCoordinates Ø 881, 2<, 82, 2<, 81, 1<, 82, 1<<,
ImagePadding Ø 10D

Out[20]=

You can also exert control over the layout of the vertices of a graph, but without specifying each coordi-
nate, by using the GraphLayout option to specify the algorithm that Mathematica uses to choose the
vertex location. Common choices include: "SpringEmbedding", which treats edges as springs and
minimizes the mechanical energy of the system; "SpringElectricalEmbedding", which treats
edges as springs and vertices as electrical charges and minimizes mechanical and electrical energy;
"HighDimensionalEmbedding", which is like the spring-electrical method but computes in high
dimensions and then projects down to two; "CircularEmbedding", which places the vertices on a
circle; and "LayeredDrawing", which places vertices in layers and attempts to reduce the number
of edges between non-adjacent layers.

Modifying Graphs
You can modify existing graphs by adding and deleting edges and vertices using the functions Ver-
texAdd, VertexDelete, EdgeAdd, and EdgeDelete. Each of these functions requires a graph
as the first argument. The second argument is usually either a vertex, an edge, or a list of vertices or
edges. The deletion functions can, in place of a vertex, edge, or list, accept a pattern as the second
argument in order to delete all of the vertices or edges that match the pattern.
First, we create an example graph to illustrate the functions with.

Chapter10.nb 9

In[21]:= modifyExample =
Graph@8"a" Ø "b", "a" Ø "c", "a" Ø "d", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[21]=

Now we use VertexAdd to add two new vertices to the graph.
In[22]:= modifyExampleB = VertexAdd@modifyExample, 8"y", "z"<D

Out[22]=

Now we add edges to connect the new vertices with the rest of the graph. Note that Mathematica will
interpret rules as undirected edges since the original graph is not directed.

10 Chapter10.nb

In[23]:= modifyExampleB =
EdgeAdd@modifyExampleB, 8"a" Ø "z", "a" Ø "y", "y" Ø "z"<D

Out[23]=

Now we delete one of the old edges. Note that to delete an edge from an undirected graph, you must
use ê (ÂueÂ). Likewise, deleting an edge from a directed graph must use ð (ÂdeÂ).

In[24]:= modifyExampleB = EdgeDelete@modifyExampleB, "b" ê "c"D

Out[24]=

Finally, note that deleting a vertex also deletes all the edges incident with that vertex.
In[25]:= modifyExampleB = VertexDelete@modifyExampleB, "y"D

Out[25]=

Chapter10.nb 11

In[26]:= VertexList@modifyExampleBD

Out[26]= 8a, b, c, d, z<

In[27]:= EdgeList@modifyExampleBD

Out[27]= 8a ê b, a ê c, a ê d, b ê d, a ê z<

Multiple edges and GraphPlot
We saw that loops are allowed, but Graph objects may not contain multiple edges. The following is
the list of edges for Exercise 4 from Section 10.1.

In[28]:= exercise4edges = 8"a" Ø "b", "a" Ø "b",
"a" Ø "c", "b" Ø "d", "b" Ø "d", "b" Ø "d", "c" Ø "d"<;

This cannot be used to form a Graph.
In[29]:= Graph@exercise4edgesD

Graph::supp : Mixed graphs and multigraphs are not supported. à

Out[29]= Graph@8a Ø b, a Ø b, a Ø c, b Ø d, b Ø d, b Ø d, c Ø d<D

As mentioned above, Mathematica includes many functions that can be applied to Graph objects in
order to check graph properties and do other computations with them. In order to work with multi-
graphs, that is, graphs with multiple edges, we will build our own functions to do computations. Fortu-
nately, we do not need to develop a new function for drawing images of multigraphs.
The GraphPlot function, having been introduced in Mathematica version 6, is older than and par-
tially superceded by the Graph object. However, it has some benefits, in particular the ability to draw
multigraphs.
The basic input for GraphPlot is a list of rules representing the edges of the graph. In this regard,
GraphPlot and Graph are similar. However, GraphPlot does not allow the use of the symbols ê
or ð, nor does it allow a list of vertices as a first argument.
You can draw a plot of Exercise 4 by applying GraphPlot to exercise4edges.

In[30]:= GraphPlot@exercise4edgesD

Out[30]=

Right away, you can see another important difference between GraphPlot and Graph. Specifically,
where Graph’s default behavior is to interpret rules as directed edges, GraphPlot assumes that
rules are not directed. To draw a directed graph, you must use the DirectedEdges option.

12 Chapter10.nb

Right away, you can see another important difference between GraphPlot and Graph. Specifically,
where Graph’s default behavior is to interpret rules as directed edges, GraphPlot assumes that
rules are not directed. To draw a directed graph, you must use the DirectedEdges option.

In[31]:= GraphPlot@exercise4edges, DirectedEdges Ø TrueD

Out[31]=

The most important difference between GraphPlot and Graph is the fact that where Graph pro-
duces a graph object, which can be computed with and manipulated, GraphPlot only produces a
graphics object, just like Plot or Plot3D. For this reason, we can not assign a symbol to the result of
GraphPlot and use it to do computations on the graph. Instead, when dealing with multigraphs, we
will treat the list of rules representing the graph’s edges, such as exercise4edges, as the representa-
tion of the graph.
One final comment about the relationship between GraphPlot and Graph: GraphPlot can often
be given a Graph object as its argument in order to create a plot of the graph. For example, we can
apply GraphPlot to exercise7.

In[32]:= GraphPlot@exercise7D

Out[32]=

This preserves some of the options from the Graph object, such as the vertex positions, but discards
options that GraphPlot does not implement or are implemented differently, such as the vertex
labels. You may also observe that the GraphPlot version has removed the loops. These can be
displayed by explicitly setting the SelfLoopStyle option to All.

Chapter10.nb 13

In[33]:= GraphPlot@exercise7, SelfLoopStyle Ø AllD

Out[33]=

We now focus on some of the options you can use with GraphPlot to control the plot’s appearance.
Note that many of these are different from and incompatible with the corresponding option for Graph.
We will illustrate with Exercise 8 from Section 10.1, whose edge list we produce below.

In[34]:= exercise8edges = 8"a" Ø "b", "a" Ø "b", "a" Ø "e",
"b" Ø "c", "b" Ø "c", "c" Ø "d", "c" Ø "d", "c" Ø "d",
"c" Ø "e", "d" Ø "d", "e" Ø "a", "e" Ø "d", "e" Ø "e"<

Out[34]= 8a Ø b, a Ø b, a Ø e, b Ø c, b Ø c, c Ø d,
c Ø d, c Ø d, c Ø e, d Ø d, e Ø a, e Ø d, e Ø e<

We have already mentioned the DirectedEdges option. By default, GraphPlot draws edges as
undirected. We set DirectedEdges to True to draw the edges as arrows.

In[35]:= GraphPlot@exercise8edges, DirectedEdges Ø TrueD

Out[35]=

We have also already mentioned the SelfLoopStyle option. The value All ensures that all self-
loops are drawn, while None will cause the loops to not be drawn. You can also specify a value
between 0 and 1, which will scale the loops relative to the average length of edges in the graph.

14 Chapter10.nb

In[36]:= GraphPlot@exercise8edges,
DirectedEdges Ø True, SelfLoopStyle Ø 0.2D

Out[36]=

To display the names of vertices, you use the VertexLabeling option. The default behavior, pro-
vided the number of vertices is not too large, is for the names of vertices to appear in a tooltip when
you move the mouse pointer over the vertex. This option can be explicitly given with value Tooltip.
By setting the VertexLabeling option to True, the names will be displayed on the graph itself.

In[37]:= GraphPlot@exercise8edges, DirectedEdges Ø True,
SelfLoopStyle Ø 0.2, VertexLabeling Ø TrueD

Out[37]=

a

b

e

c

d

To display labels for edges, you must explicitly provide the labels. This is done by replacing the rule
defining an edge by a list consisting of the rule and an expression for the label. We illustrate with the
following simple example.

Chapter10.nb 15

In[38]:= GraphPlot@81 Ø 2, 82 Ø 3, "2-3"<, 3 Ø 4, 4 Ø 1<D

Out[38]= 2-3

The option EdgeLabeling can be set to Automatic to instead display the label only as a tooltip,
or to False to suppress display of the labels.
To explicitly control the placement of vertices, you use the VertexCoordinateRules option. The
value of this option is a list of rules identifying the name of a vertex with a pair representing x and y
coordinates. You can use the symbol Automatic in place of the coordinate pair to indicate that
Mathematica should determine the location for that vertex automatically. This is the default if vertices
are omitted from the rules. You can also use Automatic in place of either the x or y value within a
pair if you wish to specify one value but leave the other to Mathematica to determine. We use Vertex-
CoordinateRules to rearrange the vertices in the Exercise 8 example to match the locations in the
textbook.

In[39]:= GraphPlot@exercise8edges, DirectedEdges Ø True,
SelfLoopStyle Ø 0.2, VertexLabeling Ø True,
VertexCoordinateRules Ø 8"a" Ø 80, 1<, "b" Ø 80, 0<,

"c" Ø 81, 0<, "d" Ø 82, 0.5<, "e" Ø 81, 1<<D

Out[39]=

a

b

e

c

d

Finally, the Method option can be used to specify the algorithm used to lay out the vertices. The
values are very similar to GraphLayout including “SpringEmbedding”,
“SpringElectricalEmbedding”, “HighDimensionalEmbedding”, and
“CircularEmbedding”.

10.2 Graph Terminology and Special Types of Graphs

16 Chapter10.nb

10.2 Graph Terminology and Special Types of Graphs
In this section we will see how to use Mathematica to perform computations related to some of the
basic terminology of graphs, such as calculating degree. We will also look at some of the special fami-
lies of graphs that Mathematica has built-in support for. And we discuss subgraphs and unions of
graphs in Mathematica.

Degree
For a Graph object, Mathematica includes the function VertexDegree for determining the degree
of a vertex. Given a Graph object and one of the graph’s vertices, the function returns the number of
edges incident to that vertex. For example, we can check the degrees of vertices a and e of
exercise7 from the previous section.

In[40]:= exercise7

Out[40]=

In[41]:= VertexDegree@exercise7, "a"D

Out[41]= 2

In[42]:= VertexDegree@exercise7, "e"D

Out[42]= 5

Observe that the loop at the vertex e counts as 2 towards the degree of that vertex. Also note that with
this directed graph, VertexDegree calculates the number of edges incident to the given vertex
without regard for their direction. Mathematica provides VertexInDegree and VertexOutDe-
gree functions for calculating the directed values. As an example, consider vertex d from above.

In[43]:= VertexInDegree@exercise7, "d"D

Out[43]= 2

In[44]:= VertexOutDegree@exercise7, "d"D

Out[44]= 1

All three of these functions can be used without a second argument. If they are passed only the graph
as the sole argument, they will return a list of the degrees of the vertices. Note that the output is in the
same order as the output from VertexList.

Chapter10.nb 17

All three of these functions can be used without a second argument. If they are passed only the graph
as the sole argument, they will return a list of the degrees of the vertices. Note that the output is in the
same order as the output from VertexList.

In[45]:= VertexList@exercise7D

Out[45]= 8a, b, c, d, e<

In[46]:= VertexDegree@exercise7D

Out[46]= 82, 3, 5, 3, 5<

In[47]:= VertexInDegree@exercise7D

Out[47]= 81, 2, 2, 2, 2<

In[48]:= VertexOutDegree@exercise7D

Out[48]= 81, 1, 3, 1, 3<

Degree in Pseudographs
Mathematica's built-in functions for degree cannot take into account multiple edges. We will write a
function to rectify this, at least for the undirected degree. The in-degree and out-degree functions for
directed graphs are left to the reader.
We reproduce Exercise 2 from Section 10.2 to use as an example. Recall that the presence of multiple
edges means that we cannot create a Graph object. Instead, we model the graph as a list of edges, with
multiple edges repeated. We will use GraphPlot to display an image of the graph, but our function
for computing degree will take the list of edges as the input.

In[49]:= exercise2edges = 8"a" Ø "a", "a" Ø "b", "a" Ø "b",
"a" Ø "b", "a" Ø "e", "b" Ø "c", "b" Ø "d", "b" Ø "e",
"c" Ø "c", "c" Ø "d", "c" Ø "d", "c" Ø "d", "d" Ø "e"<;

In[50]:= GraphPlot@exercise2edges, VertexLabeling Ø True,
VertexCoordinateRules Ø 8"a" Ø 80, 1<,

"b" Ø 81, 1<, "c" Ø 82, 0<, "d" Ø 81, 0<, "e" Ø 80, 0<<D

Out[50]=

a b

e cd

Note that we use the VertexLabeling option to display the names of the vertices and the Vertex-
CoordinateRules option to ensure that the position of vertices corresponds to the image in the
textbook. Using the DirectedEdges option is unnecessary since GraphPlot defaults to undi-
rected edges.
To calculate the degree of a specified vertex, given the list of edges, we must count the number of
edges in which the vertex is an endpoint. Keep in mind that a loop contributes twice to the degree of
the vertex. This means that the degree of a vertex is the number of times that the vertex name appears
in the list of edges as either endpoint.

18 Chapter10.nb

To calculate the degree of a specified vertex, given the list of edges, we must count the number of
edges in which the vertex is an endpoint. Keep in mind that a loop contributes twice to the degree of
the vertex. This means that the degree of a vertex is the number of times that the vertex name appears
in the list of edges as either endpoint.
We will use the built-in function Count to count the number of times the vertex appears. Count
requires two arguments: a list (or other expression) within which to count and a pattern being sought. It
returns the number of times the pattern matches an element of the list. A third argument allows you to
specify the level at which to search. By default, Count will only count the elements of the list that
match the pattern. In this case, we want to count elements of Rules that are members of the list. That
is, we want Count to look at level 2. To specify this, we give Count the third argument {2}, indicat-
ing that it should only count expressions at the second level that match the pattern.
So to find the degree of a, we apply Count to the edge list, the name of the vertex "a", and {2}.

In[51]:= Count@exercise2edges, "a", 82<D

Out[51]= 6

We use this approach to create a function as shown below.
In[52]:= undirectedDegree@edgeList : 8___Rule<, vertex_D :=

Count@edgeList, vertex, 82<D

We check the function by applying it to the vertex d.
In[53]:= undirectedDegree@exercise2edges, "d"D

Out[53]= 5

Some Special Simple Graphs
The textbook discusses several families of graphs, including complete graphs, cycles, and wheels.
Mathematica provides functions for easily creating these and other special graphs.
We begin with complete graphs. Recall that a complete graph is a simple, undirected graph on a given
number of vertices that has all possible edges between those vertices. The complete graph on n vertices
is denoted Kn. The complete graph on n vertices can be obtained with the function CompleteGraph
applied to n. For example, we can generate and display K5, the complete graph on 5 vertices.

In[54]:= CompleteGraph@5D

Out[54]=

Chapter10.nb 19

Similarly, the cycle Cn is obtained with the function CycleGraph.
In[55]:= CycleGraph@9D

Out[55]=

A wheel Wn is obtained from the cycle graph Cn by adding one additional vertex adjacent to all n of
the original vertices. In Mathematica, wheel graphs are obtained by WheelGraph applied to the value
n+ 1, the total number of vertices in the wheel, not just the outside ring.

In[56]:= WheelGraph@6D

Out[56]=

Hypercubes
To construct the n-cube Qn, we use the HypercubeGraph function applied to the dimension n.
Recall the definition of the hypercube graph given in Example 8 of Section 10.2. There are 2n vertices
labeled with the binary representations of the numbers 0 through 2n - 1. Two vertices are adjacent if
their binary representations differ in only one digit. Here is the presentation of the three dimensional
cube.

20 Chapter10.nb

In[57]:= HypercubeGraph@3D

Out[57]=

By default, the vertices are not labeled. To have Mathematica label the vertices, we can use the Ver-
texLabels option. In fact, HypercubeGraph accepts all the options that Graph does.

In[58]:= HypercubeGraph@3, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[58]=

One more modification will allow us to see the connection between this image and the definition.
Instead of using “Name” as the argument to VertexLabels, we can specify the labels explicitly by
setting the option to a list of rules identifying the integers with the binary expression.
The definition of Qn tells us that the vertices should be considered to be the binary representations of
the integers from 0 to 7. So we will apply labels by subtracting 1 from the integer vertex names and
using the IntegerString function to obtain the binary representation. The IntegerString
function requires two arguments, an integer and a base, and produces a string representing the integer
in that base. A third optional argument allows you to specify a minimal length for the string.
The following Table produces the list of rules identifying the vertex names with the appropriate label.

In[59]:= Table@v Ø IntegerString@v - 1, 2, 3D, 8v, 8<D

Out[59]= 81 Ø 000, 2 Ø 001, 3 Ø 010,
4 Ø 011, 5 Ø 100, 6 Ø 101, 7 Ø 110, 8 Ø 111<

Using this as the value for VertexLabels produces a graph similar to the one shown in Figure 6 of
Section 10.2 of the textbook.

Chapter10.nb 21

In[60]:= HypercubeGraph@3,
VertexLabels Ø Table@v Ø IntegerString@v - 1, 2, 3D, 8v, 8<D,
ImagePadding Ø 10D

Out[60]=

Bipartite Graphs
Another important class of graphs is the bipartite graphs. A bipartite graph is one whose vertex set can
be partitioned into two disjoint sets such that every edge has one vertex in each of the partitioning sets.
In other words, no two vertices in the same partitioning set are adjacent. We write V = HA, BL to indi-
cate that the vertex set V is partitioned into the sets A and B.
The complete bipartite graph Km,n is a bipartite graph with bipartition V = HA, BL such that there are m
vertices in A and n in B and such that there is an edge for every pair of vertices a œ A and b œ B. The
CompleteGraph function can be used to create complete bipartite graphs. The argument is the list
consisting of the pair of m and n.

In[61]:= CompleteGraph@83, 4<D

Out[61]=

Notice that Mathematica draws the complete bipartite graph with the two partitioning sets along the
left and right to make the partition visually clear. As with the other functions in this section, the usual
options for Graph apply. We illustrate how to label the vertices in a meaningful way. To enter a
subscript in Mathematica, press ‚ and -.

22 Chapter10.nb

In[62]:= CompleteGraph@83, 4<, VertexLabels Ø Union@Table@i Ø ai, 8i, 3<D,
Table@i Ø bi-3, 8i, 4, 7<DD, ImagePadding Ø 10D

Out[62]=

Mathematica can also produce complete multipartite graphs. A k-partite graph is a graph in which the
vertices can be partitioned into k disjoint sets so that no two vertices in any one of the partitioning sets
are adjacent.

In[63]:= CompleteGraph@82, 3, 4<D

Out[63]=

Mathematica has a function for determining whether a given graph is bipartite: BipartiteGraphQ.
This function accepts a graph as its sole argument and returns True if the graph is bipartite.

In[64]:= BipartiteGraphQ@HypercubeGraph@3DD

Out[64]= True

Bipartite Pseudographs
It is worthwhile, however, to recreate a version of BipartiteGraphQ from scratch in order to better
understand the algorithm that determines whether the graph is bipartite and finds a bipartition. Our
function will apply to edge lists, so as to be applicable to pseudographs. Also, instead of just returning
true, our function will, if the graph is bipartite, display the graph with the vertices colored red and
green to represent the partitioning. Of course, if the graph is not bipartite, the function will return false.
For Graph objects, the color of vertices can be changed by setting the VertexStyle option to a
single style for global changes or to a list of rules to set options for individual vertices as is shown
below.

Chapter10.nb 23

For Graph objects, the color of vertices can be changed by setting the VertexStyle option to a
single style for global changes or to a list of rules to set options for individual vertices as is shown
below.

In[65]:= HypercubeGraph@2, VertexLabels Ø "Name",
VertexStyle Ø 81 Ø Red, 2 Ø Green, 3 Ø Blue, 4 Ø Black<,
ImagePadding Ø 10D

Out[65]=

The VertexStyle option is not a possibility for graphs not stored as a Graph object. Instead, the
VertexRenderingFunction allows us to take complete control of the appearance of vertices. It
is not quite so easy to use, however. The following shows how to display the vertices as blue circles
with the vertex label inside of the disk.

In[66]:= GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 4, 3 Ø 4<, VertexRenderingFunction Ø
H8Blue, EdgeForm@BlackD, Disk@Ò1, .1D, Green, Text@Ò2, Ò1D< &LD

Out[66]=

1 2

3 4

Notice that the VertexRenderingFunction is set to a pure Function (&). Each time a vertex
needs to be drawn, this function is called with two arguments: the location of the center of the vertex
(#1) and the name of the vertex (#2). The body of the function is a list of graphics directives. Blue
and EdgeForm[Black] cause the shape to be filled with blue and to have a black border. The shape
Disk[#1,.1] causes a disk to be drawn at the location of the vertex (#1) with radius .1. Then
Green changes the prevailing color and Text[#2,#1] causes the name of the vertex (#2) to be
displayed at the location (#1) of the vertex. The interested reader can explore the help page for Ver-
texRenderingFunction for more information.
Elements of the VertexRenderingFunction can be made dependent on particular vertices by
using expressions such as If or Switch. For example, the following will change the color for each
vertex.

24 Chapter10.nb

In[67]:= GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 4, 3 Ø 4<, VertexRenderingFunction Ø
H8Switch@Ò2, 1, Red, 2, Green, 3, Blue, 4, BlackD,

EdgeForm@BlackD, Disk@Ò1, .1D, White, Text@Ò2, Ò1D< &LD

Out[67]=

1 2

3 4

We now turn to our version of BipartiteGraphQ. The idea of the function is as follows. (Note that
this method is based on forming a spanning tree of the graph, a concept discussed in Section 11.4 of
the textbook).
1. Pick a vertex v from the vertex set and place it in the set A.
2. Place all of v's neighbors in set B.
3. For each vertex w in the set B that has not already been processed, place all of w's neighbors that

are not already in either set into the set A.
4. Repeat step 3, reversing A and B until no more vertices remain to be processed.
5. Once step 4 is complete, we have formed a disjoint partition of the vertices. We then examine

each edge of the graph and ensure that no edge has both ends in A or both ends in B. If some edge
fails that test, then the graph is not bipartite. If all of the edges do pass the test, then the graph is
bipartite and HA, BL is a bipartition.

First we will need a function to determine the list of neighbors of a given vertex. For a Graph object,
the built-in function AdjacencyList applied to a graph and a vertex will return the list of vertices
adjacent to it.
To find the neighbors of a vertex in a graph defined by a list of rules, rather than a Graph object, we
need to find all of the edges containing the given vertex and output the other vertex in the rule. The
Cases function can be used for this. The first argument to Cases is a list of expressions. The second
argument is a pattern expressing which elements of the first argument should be output. In our case, we
want to pick out those edges, that is, Rules, one of whose elements is the desired vertex. As an exam-
ple, suppose we’re looking for edges involving the vertex a. Those edges will either be of the form
Rule[“a”,_] or Rule[_,”a”]. In a pattern, we use the Alternatives (|) operator to com-
bined two or more possibilities in a single pattern. The following picks out all of the edges incident to
a in exercise2edges.

In[68]:= exercise2edges

Out[68]= 8a Ø a, a Ø b, a Ø b, a Ø b, a Ø e, b Ø c,
b Ø d, b Ø e, c Ø c, c Ø d, c Ø d, c Ø d, d Ø e<

Chapter10.nb 25

In[69]:= Cases@exercise2edges, Rule@"a", _D Rule@_, "a"DD

Out[69]= 8a Ø a, a Ø b, a Ø b, a Ø b, a Ø e<

Note that these edges form the neighborhood graph of “a”, that is, the subgraph consisting of “a” and
all of its neighbors. But our interest is the neighbors, not the subgraph. To obtain the neighbors, we’ll
take advantage of another feature of the Cases function: the second argument can be given as a rule.
The left hand side of the rule is the pattern expressing which elements of the original list should match
and the right hand side describes what to include in the output for that matching element. Since we
want the other vertex in the output, not the entire rule, we’ll name the blanks in the rule and output the
vertex.

In[70]:= Cases@exercise2edges, Rule@"a", x_D Rule@x_, "a"D Ø xD

Out[70]= 8a, b, b, b, e<

Applying Union will remove duplicates and sort the results. Replacing the example data with argu-
ments allows us to create a function.

In[71]:= neighbors@E : 8__Rule<, v_D :=
Module@8x<, Union@Cases@E, Rule@v, x_D Rule@x_, vD Ø xDDD

Here is the implementation of our function drawBipartite.
In[72]:= drawBipartite@E : 8__Rule<D := Module@8V, AB, i, T, w, e<,

V = Union@Flatten@E, 2, RuleDD;
w = V@@1DD;
AB@0D = 8w<;
AB@1D = 8<;
i = 0;
While@V ¹≠ 8<,
T = Intersection@V, AB@iDD;
i = Mod@i + 1, 2D;
Do@AB@iD = Union@AB@iD,

Complement@neighbors@E, wD, Union@AB@0D, AB@1DDDD
, 8w, T<D;

V = Complement@V, TD
D;
Catch@
Do@If@HMemberQ@AB@0D, e@@1DDD && MemberQ@AB@0D, e@@2DDDL »»

HMemberQ@AB@1D, e@@1DDD && MemberQ@AB@1D, e@@2DDDL,
Throw@FalseDD

, 8e, E<D;
GraphPlot@E, VertexRenderingFunction Ø

H8If@MemberQ@AB@0D, Ò2D, Red, GreenD, EdgeForm@BlackD,
Disk@Ò1, .1D, Black, Text@Ò2, Ò1D< &LD

D
D

26 Chapter10.nb

Note that if the graph is not bipartite, the function will output false.
In[73]:= drawBipartite@exercise2edgesD

Out[73]= False

But for bipartite graphs, such as Exercise 4 from Section 10.1, the function will draw the graph with
the vertices colored to illustrate the bipartition.

In[74]:= drawBipartite@exercise4edgesD

Out[74]=

a b

c d

Note also that our function can be applied to a Graph object by calling EdgeList. Then, since
EdgeList always returns a list whose elements have head UndirectedEdge or DirectedEdge,
we must transform those heads into Rule. For example, the following illustrates a bipartition for the
three dimensional hypercube.

In[75]:= drawBipartite@
EdgeList@HypercubeGraph@3DD ê. UndirectedEdge Ø RuleD

Out[75]= 1

2

3

5

4

6

7

8

For convenience, we can define a version of drawBipartite that accepts a Graph object argument
and applies the transformation automatically.

In[76]:= drawBipartite@G_GraphD := drawBipartite@
EdgeList@GD ê. 8DirectedEdge Ø Rule, UndirectedEdge Ø Rule<

D

Chapter10.nb 27

Bipartite Graphs and Matchings
Mathematica can help us find maximal matchings in a bipartite graph. We will use Figure 10a from
Section 10.2 of the text as an example. To improve readability, we have abbreviated the names to their
first letter and shortened the descriptions of the jobs.

In[77]:= figure10aEdges = 8"A" Ø "req", "A" Ø "test",
"B" Ø "arch", "B" Ø "imp", "B" Ø "test",
"C" Ø "req", "C" Ø "arch", "C" Ø "imp", "D" Ø "req"<

Out[77]= 8A Ø req, A Ø test, B Ø arch, B Ø imp,
B Ø test, C Ø req, C Ø arch, C Ø imp, D Ø req<

In order to draw the graph meaningfully, in the same fashion as in the text, we will specify the coordi-
nates of each vertex. This is done by setting the VertexCoordinates option to a list of coordi-
nates, with the order of the list matching the order of the vertices. To ensure that our order is correct,
we will specify a vertex list when we create the Graph.

In[78]:= figure10aVertices =
8"A", "B", "C", "D", "req", "test", "arch", "imp"<

Out[78]= 8A, B, C, D, req, test, arch, imp<

To create the list of coordinates, we use two Tables and specify that the names should have y-coordi-
nate 1 and the jobs should have y-coordinate 0. Join is used to combine the two lists.

In[79]:= figure10aCoordinates =
Join@Table@8i, 1<, 8i, 4<D, Table@8i, 0<, 8i, 4<DD

Out[79]= 881, 1<, 82, 1<, 83, 1<, 84, 1<, 81, 0<, 82, 0<, 83, 0<, 84, 0<<

We now create the graph.
In[80]:= figure10a = Graph@figure10aVertices,

figure10aEdges, VertexLabels Ø "Name",
VertexCoordinates Ø figure10aCoordinates, ImagePadding Ø 5D

Out[80]=

To find a maximal matching, we use the function FindIndependentEdgeSet. The term indepen-
dent edge set is synonymous with matching. The only allowed argument to this function is the graph. It
returns a list of edges in a matching.

28 Chapter10.nb

In[81]:= figure10aMatching = FindIndependentEdgeSet@figure10aD

Out[81]= 8A ð test, B ð imp, C ð arch, D ð req<

The output indicates that one maximal matching has Alvarez assigned to testing, Berkowitz to imple-
mentation, Chen to architecture, and Davis to requirements.
We can visualize this matching by having Mathematica highlight the edges that form the matching
using the function HighlightGraph. This function requires two arguments. The first is a graph.
The second is a list of the elements to highlight. In this case, the second argument will be the output
from FindIndependentEdgeSet.

In[82]:= HighlightGraph@figure10a, figure10aMatchingD

Out[82]=

Subgraphs and Induced Subgraphs
Mathematica provides the Subgraph function for producing a subgraph from an existing graph.
Given a graph and a list of edges, Subgraph produces the Graph consisting of the edges and all the
vertices that are an endpoint of one of the given edges.
For example, below we create the subgraph of the hypercube graph consisting of one of the faces of the
cube.

In[83]:= hyper =
HypercubeGraph@3, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[83]=

Chapter10.nb 29

In[84]:= subhyper = Subgraph@hyper, 81 Ø 3, 3 Ø 7, 7 Ø 5, 5 Ø 1<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[84]=

Alternately, you can give a list of vertices as the second argument to Subgraph. The result is the
graph induced by the given vertices, that is, the graph consisting of the vertices and all the edges from
the original graph with both endpoints in the set of vertices. Below we consider a prism graph and one
of its layers.

In[85]:= prism = Graph@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1, 7 Ø 8,
8 Ø 9, 9 Ø 10, 10 Ø 11, 11 Ø 12, 12 Ø 7, 1 Ø 7, 2 Ø 8,
3 Ø 9, 4 Ø 10, 5 Ø 11, 6 Ø 12<, DirectedEdges Ø False,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[85]=

30 Chapter10.nb

In[86]:= subprism = Subgraph@prism, 87, 8, 9, 10, 11, 12<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[86]=

The HighlightGraph function can be used to display a subgraph relative to the original by passing
the original graph as the first argument and the subgraph as the second.

In[87]:= HighlightGraph@hyper, subhyperD

Out[87]=

In[88]:= HighlightGraph@prism, subprismD

Out[88]=

Chapter10.nb 31

Deleting Vertices and Edges
Subgraphs can also be produced by deleting vertices or edges. The VertexDelete and
EdgeDelete functions were described in the previous section, but are worth revisiting. Ver-
texDelete takes two arguments: a graph and a vertex or list of vertices. The function returns a new
graph with the vertex or vertices and all incident edges removed. Here we highlight the subgraph of the
complete graph K4 that is obtained by deleting a vertex.

In[89]:= deleteVExStart = CompleteGraph@5D;

In[90]:= deleteVExEnd = VertexDelete@deleteVExStart, 1D;

In[91]:= HighlightGraph@deleteVExStart, deleteVExEnd,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[91]=

EdgeDelete also takes two arguments, a name of an undirected graph and an edge or a list of edges.
For example, we can remove the outer ring of K5 as follows.

In[92]:= deleteEexStart = CompleteGraph@5D;

In[93]:= deleteEexEdges = Join@Table@i Ø i + 1, 8i, 1, 4<D, 81 Ø 5<D;

In[94]:= deleteEexEnd = EdgeDelete@deleteEexStart, deleteEexEdgesD;

In[95]:= HighlightGraph@deleteEexStart, deleteEexEndD

Out[95]=

32 Chapter10.nb

Adding Vertices and Edges
The functions for adding vertices and edges are very similar. VertexAdd accepts a graph and either a
vertex or list of vertices to add to the graph.

In[96]:= VertexAdd@CompleteGraph@5,
VertexLabels Ø "Name", ImagePadding Ø 10D, "a"D

Out[96]=

EdgeAdd acts on a graph and adds an edge or a list of edges. Note that you can use rules to describe
the edges and Mathematica will interpret them as directed or not depending on whether the original
graph is directed.

In[97]:= EdgeAdd@CycleGraph@6D, 81 Ø 3, 2 Ø 4, 3 Ø 5, 4 Ø 6, 5 Ø 1, 6 Ø 2<D

Out[97]=

Edge Contraction
Recall that an edge contraction for an edge e with endpoints u and v consists of deleting the edge,
merging u and v into a new vertex w, and preserving all edges (other than e) which had u or v as an
endpoint by setting w as the new endpoint. As an illustration, consider the following graph.

Chapter10.nb 33

In[98]:= exampleContraction =
Graph@81, 2, 3, 4, 5, 6, 7<, 81 Ø 2, 1 Ø 3, 2 Ø 3,

Style@3 Ø 4, 8Thick, Red<D, 4 Ø 5, 4 Ø 7, 5 Ø 6, 6 Ø 7<,
DirectedEdges Ø False, VertexLabels Ø "Name",
ImagePadding Ø 5, VertexCoordinates Ø
880, 1<, 80, 0<, 81, 0<, 82, 0<, 83, 0<, 83, 1<, 82, 1<<D

Out[98]=

Observe the use of the Style wrapper on the edge between vertices 3 and 4 to highlight that edge.
Mathematica does not include a built-in function for performing an edge contraction, so we will create
one. Our function will take as arguments a Graph object and a rule or a directed edge or an undirected
edge representing the edge to be contracted. Since some of the Graph functions may cause an error if
given an undirected graph and a rule, we begin the function by ensuring that if the graph is undirected
then the edge is stored as an UndirectedEdge and a DirectedEdge if not.
After ensuring the edge is represented properly, we execute a Do loop over the vertices x of the origi-
nal graph. This loop sets values of an indexed variable vertLocs, which stores the locations of the
vertices from the display of the original graph. This will be used later to ensure that the vertex posi-
tions are preserved in the output. The positions are obtained using the function PropertyValue
which takes two arguments: a list consisting of the graph and an object (vertex or edge) of the graph,
and the name of a property, in this case, VertexCoordinates. Doing this is not necessary for
performing the contraction, but then Mathematica would choose new positions for the vertices in the
output graph, which may make the connection between the two graphs more difficult to see.
Next, the function deletes the edge being contracted.
We will need to create a new vertex. The function will automatically name this new vertex by combin-
ing the names of the original two vertices with a hyphen, as in 3-4. To do this, we use ToString on
each of the original vertex names to ensure that they are string, and then combine them with the
hyphen using the StringJoin (<>) operator. This vertex is then added to the graph and its position
is calculated as the average of the positions of the original vertices.
Once the new vertex has been established, it needs to be connected to the neighbors of the original
vertices. To do this, we use NeighborhoodGraph applied to the existing graph and the endpoints of
the removed edge. The result of this function is the graph consisting of those two vertices and all of
their neighbors. The edges of this graph are exactly the edges that need to be modified to create the
contraction. Specifically, for each edge in the neighborhood graph, we need to replace u or v with the
new vertex w.
To this end, we loop over all of the edges in the neighborhood graph, with loop variable modEdge.
First, the edge is deleted from the existing graph. Then we modify the edge by applying ReplaceAll
(/.) to replace whichever of the contracted vertices are present with the new vertex. Provided this
edge does not already exist, we add it to the graph.

34 Chapter10.nb

To this end, we loop over all of the edges in the neighborhood graph, with loop variable modEdge.
First, the edge is deleted from the existing graph. Then we modify the edge by applying ReplaceAll
(/.) to replace whichever of the contracted vertices are present with the new vertex. Provided this
edge does not already exist, we add it to the graph.
Once the edges have been modified, the two vertices are deleted from the graph. And finally, looping
over the vertices of the graph, we use PropertyValue, to assign the original positions, which were
stored in vertLocs.
Here is the function.

In[99]:= contractGraph@G_Graph,
e : _Rule _DirectedEdge _UndirectedEdgeD :=

Module@8u = e@@1DD, v = e@@2DD, contractE,
vertLocs, x, w, g = G, N, modEdge<,

H* ensure the edge is a DirectedEdge or UndirectedEdge *L
If@UndirectedGraphQ@GD, contractE = UndirectedEdge@u, vD,
contractE = DirectedEdge@u, vDD;

H* store vertex locations *L
Do@vertLocs@xD = PropertyValue@8G, x<, VertexCoordinatesD,
8x, VertexList@GD<D;

H* delete the edge and add the new vertex *L
g = EdgeDelete@g, contractED;
w = ToString@uD <> "-" <> ToString@vD;
g = VertexAdd@g, wD;
vertLocs@wD = HvertLocs@uD + vertLocs@vDLê2;
H* update old edges *L
N = NeighborhoodGraph@g, 8u, v<D;
Do@g = EdgeDelete@g, modEdgeD;
modEdge = modEdge ê. 8u Ø w, v Ø w<;
If@! EdgeQ@g, modEdgeD, g = EdgeAdd@g, modEdgeDD
, 8modEdge, EdgeList@ND<D;

H* delete the old vertices and reset vertex positions *L
g = VertexDelete@g, 8u, v<D;
Do@PropertyValue@8g, x<, VertexCoordinatesD = vertLocs@xD,
8x, VertexList@gD<D;

g
D

We apply contractGraph to the example.

Chapter10.nb 35

In[100]:= contractGraph@exampleContraction, 3 Ø 4D

Out[100]=

Unions and Complements of Graphs
Recall that the union of two graphs is the graph obtained by taking the union of the sets of vertices and
the sets of edges from the two graphs.
As an example, we will “fill in” a prism graph by computing the union of the prism with the complete
graph on the vertices in one ring. We begin with the prism we created above.
In[101]:= unionExampleA = prism

Out[101]=

We use the complete graph on 6 vertices as the second graph that will form part of the union. By
default, CompleteGraph with argument 6 will form the complete graph on the vertices from 1
through 6. Suppose instead that we want the complete graph on the vertices from 7 through 12. To do
this, apply the VertexReplace function. This function accepts two arguments: a graph and a list of
rules specifying how to modify the names of the vertices. In this instance, we will replace vertex 1 with
7, 2 with 8, and so on, so we need to use the list of rules 81 Ø 7, 2 Ø 6, …, 6 Ø 12<, which we will
create with a Table.

36 Chapter10.nb

In[102]:= unionExampleB =
VertexReplace@CompleteGraph@6, VertexLabels Ø "Name",

ImagePadding Ø 10D, Table@i Ø i + 6, 8i, 6<DD

Out[102]=

Note that the same effect can be obtained with the function IndexGraph, with first argument a graph
and second argument the smallest integer to be used (defaulting to 1 if the second argument is omit-
ted). VertexReplace is the more general function.
To obtain the union of the graphs, we apply the GraphUnion function, which simply takes the two
(or more) graphs as arguments, along with the usual options.
In[103]:= unionExample = GraphUnion@unionExampleA,

unionExampleB, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[103]=

Note that Mathematica has rearranged the locations of the vertices. If you prefer the three-dimensional
appearance of the prism, you can impose those locations as shown below. Note how the Property-
Value function is being used to both access the values from unionExampleA and assign those
locations to unionExample.
In[104]:= Do@PropertyValue@8unionExample, v<, VertexCoordinatesD =

PropertyValue@8unionExampleA, v<, VertexCoordinatesD,
8v, VertexList@unionExampleD<D

Chapter10.nb 37

In[105]:= unionExample

Out[105]=

Finally, we consider graph complements, described in Exercise 59 of Section 10.2. The complement,
G, of a graph G is the graph whose vertex set is the same as that of G, but whose edge set is the set of
all pairs of G that have no edge between them. In other words, if G has n vertices, then the edge set of
G is the complement of the edge set of G relative to Kn, the complete graph on n vertices. Mathematica
has a function to compute the complement of a graph: GraphComplement.
In[106]:= WheelGraph@8, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[106]=

38 Chapter10.nb

In[107]:= complementExample = GraphComplement@
WheelGraph@8D, VertexLabels Ø "Name", ImagePadding Ø 7D

Out[107]=

Again, Mathematica has rearranged the vertices. We can impose the original locations as follows.
In[108]:= Do@PropertyValue@8complementExample, v<, VertexCoordinatesD =

PropertyValue@8WheelGraph@8D, v<, VertexCoordinatesD,
8v, VertexList@complementExampleD<D

In[109]:= complementExample

Out[109]=

10.3 Representing Graphs and Graph Isomorphism
In this section we will see how to represent graphs in terms of adjacency matrices, adjacency lists, and
incidence matrices. We will then use the adjacency matrix representation to help determine whether
two graphs are isomorphic.

Adjacency Matrices
The adjacency matrix of a graph G with n vertices is the nµ n matrix whose Hi, jL entry is 1 if there is
an edge from vertex i to vertex j and 0 if not. You can define a graph by passing an adjacency matrix,
represented as a list of lists, to the function AdjacencyGraph.

Chapter10.nb 39

As an example, we reproduce Example 4 from Section 10.3.
In[110]:= exampleAdjM =

880, 1, 1, 0<, 81, 0, 0, 1<, 81, 0, 0, 1<, 80, 1, 1, 0<<;
exampleAdjM êê MatrixForm

Out[111]//MatrixForm=
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

Recall that we must invoke MatrixForm in an expression separate from the definition of the symbol
in order to avoid having the MatrixForm head permanently stored in the symbol.
We now invoke the AdjacencyGraph function with this matrix.
In[112]:= AdjacencyGraph@exampleAdjMD

Out[112]=

In the textbook, the vertices for this graph were labeled as letters rather than numbers. The Adjacen-
cyGraph function accepts a list of names for the vertices as an optional first argument. It also accepts
the usual graph options.
In[113]:= AdjacencyGraph@8"a", "b", "c", "d"<, exampleAdjM,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[113]=

Notice that this is the same graph as is produced in the textbook, with the exception of the locations of
the vertices.

40 Chapter10.nb

Notice that this is the same graph as is produced in the textbook, with the exception of the locations of
the vertices.
Mathematica also provides a function, AdjacencyMatrix, for computing the adjacency matrix of a
graph. The output of this function is always a SparseArray object, which is more efficient at stor-
ing large arrays with many entries 0. You can display a SparseArray with MatrixForm, as usual,
and you can convert it into the usual list of lists representation with the function Normal.
In[114]:= wheelAdjacency = AdjacencyMatrix@WheelGraph@7DD

Out[114]= SparseArray@<24>, 87, 7<D

In[115]:= wheelAdjacency êê MatrixForm
Out[115]//MatrixForm=

0 1 1 1 1 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 1 0 1 0
1 0 0 0 1 0 1
1 1 0 0 0 1 0

In[116]:= wheelAdjacency êê Normal

Out[116]= 880, 1, 1, 1, 1, 1, 1<, 81, 0, 1, 0, 0, 0, 1<,
81, 1, 0, 1, 0, 0, 0<, 81, 0, 1, 0, 1, 0, 0<,
81, 0, 0, 1, 0, 1, 0<, 81, 0, 0, 0, 1, 0, 1<, 81, 1, 0, 0, 0, 1, 0<<

Adjacency Lists
Recall that a representation of a graph as an adjacency list consists of the lists of neighbors of each
vertex.
Above, we saw the function AdjacencyList used to determine the list of vertices adjacent to a
given vertex. For example, the following determines the vertices adjacent to vertex 2 in the wheel
graph on 7 vertices.
In[117]:= AdjacencyList@WheelGraph@7D, 2D

Out[117]= 81, 3, 7<

To obtain the complete adjacency list representation of a graph, it is only a matter of looping through
the vertices of the graph.
In[118]:= adjacencyList@G_GraphD :=

Table@AdjacencyList@G, vD, 8v, VertexList@GD<D

In[119]:= adjacencyList@WheelGraph@7DD

Out[119]= 882, 3, 4, 5, 6, 7<, 81, 3, 7<, 81, 2, 4<,
81, 3, 5<, 81, 4, 6<, 81, 5, 7<, 81, 2, 6<<

Mathematica does not include a function to create a graph from an adjacency list. However, it is not
difficult to create a function that transforms an adjacency list into a graph object by using the adja-
cency matrix as an intermediate. We will create a function adjacencyListGraph that accepts as
its argument a list of lists. We will require that the vertices be represented by positive integers begin-
ning with 1. For example, 882, 3<, 81, 3, 4<, 81, 2<, 82, 5<, 84<< will be used to represent the adjacency
list for a graph in which vertex 1 is incident to vertices 2 and 3; vertex 2 is incident to vertices 1, 3, and
4; vertex 3 is incident to vertices 1 and 2; and so on.

Chapter10.nb 41

Mathematica does not include a function to create a graph from an adjacency list. However, it is not
difficult to create a function that transforms an adjacency list into a graph object by using the adja-
cency matrix as an intermediate. We will create a function adjacencyListGraph that accepts as
its argument a list of lists. We will require that the vertices be represented by positive integers begin-
ning with 1. For example, 882, 3<, 81, 3, 4<, 81, 2<, 82, 5<, 84<< will be used to represent the adjacency
list for a graph in which vertex 1 is incident to vertices 2 and 3; vertex 2 is incident to vertices 1, 3, and
4; vertex 3 is incident to vertices 1 and 2; and so on.
The main work of the function will be to transform the list into a matrix with 1s in the locations speci-
fied by the adjacency list. The first sublist in the adjacency list indicates the positions in the first row of
the adjacency matrix that should be set to 1. In the example, 82, 3< tells us that the first row should
have 1s in the second and third columns. The second sublist specifies the second row, and so on.
We mentioned above that a SparseArray is particularly suitable for matrices with few non-zero
entries. To further explore this type of object, we will have our adjacencyListGraph function
create a SparseArray as part of its operation. There are several different syntax options for creating
a SparseArray, but we will use the most descriptive: a list of rules identifying positions with val-
ues. For example, to create a 4µ 4 matrix is 1s in positions H1, 3L, H2, 4L, and H4, 1L, you enter the
following.
In[120]:= SparseArray@881, 3< Ø 1, 82, 4< Ø 1, 84, 1< Ø 1<, 84, 4<D êê

MatrixForm
Out[120]//MatrixForm=

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0

Observe that the first argument is a list of rules with the positions within the matrix given as lists on
the left hand of each rule, and the value that belongs in the position on the right. The second argument
to SparseArray is a list specifying the dimensions of the matrix. If the second argument is omitted,
Mathematica will attempt to deduce the size of the matrix from the given entries.
The adjacencyListGraph function will begin by determining the dimension of the matrix, which
must be equal to the length of the adjacency list. The function must then create the list of rules from the
adjacency list.
Recall that the Map function is used to apply a function to every member of a sequence. For example,
the following can be used to add "x" to each element of a list.
In[121]:= Map@Ò + x &, 81, 2, 3, 4<D

Out[121]= 81 + x, 2 + x, 3 + x, 4 + x<

As you can see above, the function is applied to each element of the list with the Slot (#) replaced by
the elements of the list. There is a related function, MapIndexed, whose first argument should be a
function on two arguments, which are taken as the element of the list together with a specification of
the location of that element within the list as the second. For example, the following applies the func-
tion “f” to a list of letters.
In[122]:= MapIndexed@f, 8"a", "b", "c"<D

Out[122]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D<

You see that “f” is applied to two arguments: the letter from the second argument and a list containing
the position of the letter in the list of letters. The position is given as a list in case of nested structures
requiring more complicated position specifications. The following makes use of MapIndexed to add
x raised to a power determined by the index of the list element. We use First to take the index out of
the enclosing list.

42 Chapter10.nb

You see that “f” is applied to two arguments: the letter from the second argument and a list containing
the position of the letter in the list of letters. The position is given as a list in case of nested structures
requiring more complicated position specifications. The following makes use of MapIndexed to add
x raised to a power determined by the index of the list element. We use First to take the index out of
the enclosing list.
In[123]:= MapIndexed@Ò1 + x^First@Ò2D &, 87, 3, 11, 4<D

Out[123]= 97 + x, 3 + x2, 11 + x3, 4 + x4=

For nested lists, MapIndexed requires a third argument specifying the level at which to apply the
function. For example, the following function applies the function “f” at the second level.
In[124]:= MapIndexed@f, 881, 2<, 83, 4, 5<<, 82<D

Out[124]= 88f@1, 81, 1<D, f@2, 81, 2<D<,
8f@3, 82, 1<D, f@4, 82, 2<D, f@5, 82, 3<D<<

Without the level {2}, which means that the function should be applied only to elements at the second
level in the nested lists, f would have been applied only to the two lists 81, 2< and 83, 4, 5< instead of
the five numbers 1 through 5. Note that the second arguments passed to f are lists consisting of two
integers: the first indicating which sublist it is and the second indicating the position within the sublist.
If 881, 2<, 83, 4, 5<< were an adjacency list, the first element from the index information tells us which
row in the adjacency matrix that sublist refers to. The values in the lists tell us which columns in that
row should be 1s. The following application of MapIndexed uses this observation to print out the
locations of 1s in the adjacency matrix.
In[125]:= MapIndexed@Print@8First@Ò2D, Ò1<D &, 881, 2<, 83, 4, 5<<, 82<D;

81, 1<

81, 2<

82, 3<

82, 4<

82, 5<

To form a SparseArray, we need to create a Rule (->) rather than printing the list. And we must
apply Flatten since MapIndexed preserves the list structure and we need a simple list of rules.
In[126]:= Flatten@

MapIndexed@8First@Ò2D, Ò1< Ø 1 &, 881, 2<, 83, 4, 5<<, 82<D
D

Out[126]= 881, 1< Ø 1, 81, 2< Ø 1, 82, 3< Ø 1, 82, 4< Ø 1, 82, 5< Ø 1<

We now build adjacencyListGraph. We also illustrate how to use a BlankNullSequence
(___), which matches any, including 0, number of arguments, to pass options from this function to
AdjacencyGraph.

Chapter10.nb 43

In[127]:= adjacencyListGraph@L_List, opts___D := Module@8n, rules<,
n = Length@LD;
rules =
Flatten@MapIndexed@Rule@8First@Ò2D, Ò1<, 1D &, L, 82<DD;

AdjacencyGraph@SparseArray@rules, 8n, n<D, optsD
D

We apply this to an example.
In[128]:= exampleAL =

adjacencyListGraph@882, 3<, 81, 3, 4<, 81, 2<, 82, 5<, 84<<,
VertexLabels Ø "Name", ImagePadding Ø 5D

Out[128]=

Incidence Matrices
The third representation of graphs that we are considering is incidence matrices. For a graph G with n
vertices and m edges, the associated incidence matrix is the nµm matrix whose Hi, jL entry is 1 if
vertex i is an endpoint of edge j.
Mathematica includes functions for working with incidence matrices. Given an incidence matrix M ,
the function IncidenceGraph will produce the associated graph. As an example, we reverse Exam-
ple 6 from Section 10.3 and use the incidence matrix given in the solution in order to reproduce the
graph.
In[129]:= exampleIncidenceM = 881, 1, 0, 0, 0, 0<, 80, 0, 1, 1, 0, 1<,

80, 0, 0, 0, 1, 1<, 81, 0, 1, 0, 0, 0<, 80, 1, 0, 1, 1, 0<<

Out[129]= 881, 1, 0, 0, 0, 0<, 80, 0, 1, 1, 0, 1<,
80, 0, 0, 0, 1, 1<, 81, 0, 1, 0, 0, 0<, 80, 1, 0, 1, 1, 0<<

44 Chapter10.nb

In[130]:= exampleIncidenceG = IncidenceGraph@exampleIncidenceM,
VertexLabels Ø "Name", ImagePadding Ø 10, VertexCoordinates Ø
880, 1<, 81, 1<, 82, 1<, 80.5, 0<, 81.5, 0<<D

Out[130]=

For the reverse, the IncidenceMatrix function will produce the incidence matrix for a Graph
object. We apply this function to the previous graph. Again, the output from this function is a
SparseArray object, so we apply MatrixForm to view it.
In[131]:= IncidenceMatrix@exampleIncidenceGD êê MatrixForm

Out[131]//MatrixForm=
1 1 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 1 0

For a directed graph, the IncidenceMatrix function returns a matrix with a 1 in position Hi, jL
indicating that the vertex i is the head of edge j and an entry of -1 indicating that the vertex is the tail
of the edge.
In[132]:= directedIncidenceG = Graph@81 Ø 2, 2 Ø 3, 3 Ø 1, 2 Ø 4, 4 Ø 1<,

DirectedEdges Ø True, VertexLabels Ø "Name", ImagePadding Ø 10,
VertexCoordinates Ø 880, 0<, 81, 1<, 80, 1<, 81, 0<<D

Out[132]=

Chapter10.nb 45

In[133]:= IncidenceMatrix@directedIncidenceGD êê MatrixForm
Out[133]//MatrixForm=

-1 0 1 0 1
1 -1 0 -1 0
0 1 -1 0 0
0 0 0 1 -1

Isomorphism of Graphs
We conclude this section with a brief discussion of isomorphism of graphs and graph invariants. Deter-
mining whether two graphs are isomorphic is a difficult problem. The naive approach (exhaustively
checking each possible mapping) can require exponential time.
Graph invariants are useful tools for confirming that two graphs are not isomorphic. While there is no
complete collection of graph invariants that will definitively conclude whether two graphs are or are
not isomorphic, they can, for many pairs of graphs, quickly demonstrate the impossibility of an isomor-
phism. We will create a function that will check some of the basic invariants: number of vertices,
number of edges, whether the graph is directed, and whether it is bipartite. We also introduce another
invariant: the degree sequence.
For a graph G, the degree sequence is the list of the degrees of the vertices of the graph sorted in ascend-
ing order. The Mathematica function VertexDegree applied to a graph and a vertex returns the
degree of the vertex. Applied to the graph with no second argument, it produces a list of the degrees of
the vertices of a graph, listed in order of the vertices. Since this depends on the order in which Mathe-
matica stores the vertices, it is not an invariant. However, applying the Sort function to the result of
VertexDegree returns the degree sequence for the graph, which is an invariant.
The function defined below checks, one at a time, the invariants we have mentioned. If any of the
invariants indicate that the graphs are not isomorphic, the procedure prints a statement to that effect.

46 Chapter10.nb

In[134]:= checkInvariants@G1_Graph, G2_GraphD :=
Module@8notIsomorphic = False<,
If@VertexCount@G1D ¹≠ VertexCount@G2D,
notIsomorphic = True;
Print@"Different numbers of vertices."D

D;
If@EdgeCount@G1D ¹≠ EdgeCount@G2D,

notIsomorphic = True;
Print@"Different numbers of edges."D

D'
If@! Equivalent@DirectedGraphQ@G1D, DirectedGraphQ@G2DD,
notIsomorphic = True;
Print@"One is directed, one is undirected."D

D;
If@! Equivalent@BipartiteGraphQ@G1D, BipartiteGraphQ@G2DD,
notIsomorphic = True;
Print@"One is bipartite, one is not."D

D;
If@Sort@VertexDegree@G1DD ¹≠ Sort@VertexDegree@G2DD,
notIsomorphic = True;
Print@"Degree sequences do not match."D

D;
If@notIsomorphic,
Print@"The graphs are not isomorphic."D,
Print@"The graphs MAY be isomorphic."D

D
D

In[135]:= checkInvariants@directedIncidenceG, exampleIncidenceGD

Different numbers of vertices.

Different numbers of edges.

One is directed, one is undirected.

Degree sequences do not match.

The graphs are not isomorphic.

In[136]:= checkInvariants@CompleteGraph@3D, CycleGraph@3DD

The graphs MAY be isomorphic.

Mathematica provides a function, IsomorphicGraphQ, for definitively determining whether or not
two graphs are isomorphic. This function applies to any Graph object. The IsomorphicGraphQ
function accepts two graphs as its arguments. It returns True if the graphs are isomorphic.

Chapter10.nb 47

In[137]:= IsomorphicGraphQ@CompleteGraph@3D, CycleGraph@3DD

Out[137]= True

The FindGraphIsomorphism function can be used to determine an explicit isomorphism for a pair
of graphs that are in fact isomorphic. Like IsomorphicGraphQ, the only arguments are the two
graphs. If the two graphs are in fact isomorphic, the output is a list of rules of the form v Ø w indicat-
ing that vertex v in the first graph is mapped to vertex w in the second graph. If the graphs are not
isomorphic, IsomorphicGraphQ returns an empty list.
We illustrate by reproducing the graphs in Figure 12 of Section 10.3 of the textbook.
In[138]:= figure12G = Graph@8u1, u2, u3, u4, u5, u6<,

8u1 Ø u2, u1 Ø u4, u2 Ø u3, u2 Ø u6, u3 Ø u4, u4 Ø u5, u5 Ø u6<,
DirectedEdges Ø False, VertexLabels Ø "Name",
ImagePadding Ø 10, VertexCoordinates Ø
880, 2<, 83, 2<, 83, 0<, 80, 0<, 81, 1<, 82, 1<<D

Out[138]=

In[139]:= figure12H = Graph@8v1, v2, v3, v4, v5, v6<,
8v1 Ø v2, v1 Ø v5, v2 Ø v3, v3 Ø v4, v3 Ø v6, v4 Ø v5, v5 Ø v6<,
DirectedEdges Ø False, VertexLabels Ø "Name",
ImagePadding Ø 10, VertexCoordinates Ø
880, 2<, 81, 1.3<, 83, 2<, 83, 0<, 80, 0<, 82, 1<<D

Out[139]=

48 Chapter10.nb

Applying IsomorphicGraphQ confirms that the graphs are isomorphic.
In[140]:= IsomorphicGraphQ@figure12G, figure12HD

Out[140]= True

FindGraphIsomorphism determines the isomorphism.
In[141]:= FindGraphIsomorphism@figure12G, figure12HD

Out[141]= 8u1 Ø v4, u2 Ø v3, u3 Ø v6, u4 Ø v5, u5 Ø v1, u6 Ø v2<

10.4 Connectivity
Mathematica provides a number of functions related to connectivity of graphs.
The first such function that we consider is ConnectedGraphQ. This function takes one argument,
the name of the graph, and returns true or false. As an example, consider the complete bipartite graph
K2,3 and its complement.

In[142]:= CompleteGraph@82, 3<D

Out[142]=

In[143]:= ConnectedGraphQ@CompleteGraph@82, 3<DD

Out[143]= True

Chapter10.nb 49

In[144]:= GraphComplement@CompleteGraph@82, 3<DD

Out[144]=

In[145]:= ConnectedGraphQ@GraphComplement@CompleteGraph@82, 3<DDD

Out[145]= False

When used with a directed graph, ConnectedGraphQ returns True if the directed graph is strongly
connected.
In[146]:= stronglyConnectedEx =

Graph@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 1 Ø 5, 5 Ø 2, 3 Ø 5, 5 Ø 4<D

Out[146]=

Applying ConnectedGraphQ reveals that the above graph is connected.
In[147]:= ConnectedGraphQ@stronglyConnectedExD

Out[147]= True

The following example, while weakly connected, is not strongly connected and thus Connected-
GraphQ will return False.

50 Chapter10.nb

In[148]:= weaklyConnectedEx = Graph@84 Ø 2, 2 Ø 1,
1 Ø 3, 3 Ø 4, 4 Ø 5, 6 Ø 8, 8 Ø 9, 9 Ø 7, 7 Ø 6, 6 Ø 5<D

Out[148]=

In[149]:= ConnectedGraphQ@weaklyConnectedExD

Out[149]= False

The WeaklyConnectedGraphQ function will determine whether a directed graph is weakly con-
nected. A graph is weakly connected if it is connected as an undirected graph.
In[150]:= WeaklyConnectedGraphQ@weaklyConnectedExD

Out[150]= True

Mathematica also has functions to extract the connected components of a graph that is not connected.
The ConnectedComponents function takes a graph as input and returns a list of lists of vertices.
For directed graphs, ConnectedComponents is used to determine the strongly connected compo-
nents of the graph.
As an example, consider the complement of the graph K2,3.

In[151]:= GraphComplement@CompleteGraph@82, 3<D,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[151]=

In[152]:= ConnectedComponents@GraphComplement@CompleteGraph@82, 3<DDD

Out[152]= 883, 4, 5<, 81, 2<<

This output indicates that the complement of K2,3 has two connected components, one with vertex set
81, 2< and the other with vertex set 83, 4, 5<.
For directed graphs, ConnectedComponents will produce the strongly connected components. The
WeaklyConnectedComponents function will output the weakly connected components.

Chapter10.nb 51

In[153]:= ConnectedComponents@weaklyConnectedExD

Out[153]= 885<, 84, 2, 1, 3<, 86, 8, 9, 7<<

In[154]:= WeaklyConnectedComponents@weaklyConnectedExD

Out[154]= 884, 2, 1, 3, 5, 6, 8, 9, 7<<

Coloring the Components
Now we present a function that will color code the connected components in a graph. (This function
will color up to 5 components before repeating colors.)
Note that Mathematica understands the symbols Red, Green, Blue, Brown, and Gray as Colors.
Also note the use of PropertyValue to set the VertexStyle property. We first saw Property-
Value in the subsection on edge contraction in Section 10.2 of this manual. Finally, note the use of
Mod with third argument 1, which causes the result of Mod to have minimum value 1. This allows us to
cycle through the list of colors.
In[155]:= highlightComponents@G_GraphD :=

Module@8colorList = 8Red, Green, Blue, Brown, Gray<,
components, c, i, v, H = G<,

components = ConnectedComponents@GD;
c = 0;
For@i = 1, i § Length@componentsD, i++,
c = Mod@c + 1, 5, 1D;
Do@PropertyValue@8H, v<, VertexStyleD = colorList@@cDD
, 8v, components@@iDD<D

D;
H

D

We apply this function to the weakly connected graph above.
In[156]:= highlightComponents@weaklyConnectedExD

Out[156]=

Counting Paths Between Vertices
The last topic that we consider in this section is determining the number of paths between two vertices
of a given length. As described in the textbook, if A is the adjacency matrix for a graph (which may be
undirected or directed and may include loops and multiple edges), then the Hi, jL entry of the matrix Ar
is the number of paths of length r from vertex i to vertex j.
As an example, consider the stronglyConnectedEx graph from above. We can obtain its adja-
cency matrix by applying the AdjacencyMatrix function to the name of the graph.

52 Chapter10.nb

In[157]:= aMatrix = AdjacencyMatrix@stronglyConnectedExD;
aMatrix êê MatrixForm

Out[158]//MatrixForm=
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0

You could use Normal to transform the SparseArray object into a usual list of lists representation
of the matrix. However, Mathematica can compute more efficiently with the SparseArray.
Next, compute some powers of the adjacency matrix.
In[159]:= Table@MatrixForm@MatrixPower@aMatrix, iDD, 8i, 2, 7<D

Out[159]= :

0 1 1 1 0
0 0 0 1 1
1 1 0 1 0
0 1 0 0 1
1 0 1 0 0

,

1 0 1 1 1
1 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 1 2

,

1 2 0 2 2
1 1 1 0 1
0 2 1 2 2
1 0 1 1 1
1 2 1 2 0

,

2 3 2 2 1
0 2 1 2 2
2 2 2 3 1
1 2 0 2 2
2 1 2 1 2

,

2 3 3 3 4
2 2 2 3 1
3 3 2 3 4
2 3 2 2 1
1 4 1 4 4

,

3 6 3 7 5
3 3 2 3 4
3 7 3 6 5
2 3 3 3 4
4 5 4 5 2

>

Note that the MatrixPower function is used to compute powers of matrices. Using the Power (^)
operator on a matrix computes element-wise.
We see that there are 4 paths of length 6 from vertex 3 to vertex 5, since the H3, 5L entry in the 6th
power of the adjacency matrix is 4. We also see that there are cycles of length 3 for every vertex and
there are no cycles of length less than 3. Finally, we know that the shortest path from vertex 2 to vertex
1 is of length 3, since the H2, 1L entry is 0 for the first and second powers of the matrix.

10.5 Euler and Hamilton Paths
In this section we will show how to use Mathematica to solve two problems that seem closely related,
but which are quite different in computational complexity. The two problems that will be analyzed are
the problem of finding a simple circuit that contains every edge exactly once (an Euler circuit) and the
problem of finding a simple circuit that contains every vertex exactly once (a Hamilton circuit). (Note
that the textbook uses the term circuit while Mathematica uses the word cycle. These two terms are
synonymous.)

Euler Circuits in Simple Graphs
Mathematica comes equipped with a function to determine if a given simple graph has an Euler circuit
or not. This function, EulerianGraphQ, takes one argument, a Graph object. As an example, we'll
have Mathematica check to see if K5 is Eulerian, i.e., has an Euler circuit.

Chapter10.nb 53

Mathematica comes equipped with a function to determine if a given simple graph has an Euler circuit
or not. This function, EulerianGraphQ, takes one argument, a Graph object. As an example, we'll
have Mathematica check to see if K5 is Eulerian, i.e., has an Euler circuit.
In[160]:= EulerianGraphQ@CompleteGraph@5DD

Out[160]= True

To explicitly find an Euler circuit, we use the function FindEulerianCycle. The function accepts
one or two arguments. The first argument must be a graph, and if this is the only argument, the func-
tion returns a list containing a single list of edges representing an Euler circuit. For example, the follow-
ing identifies an Euler circuit on the complete graph K5.
In[161]:= FindEulerianCycle@CompleteGraph@5DD

Out[161]= 881 ê 5, 5 ê 4, 4 ê 3, 3 ê 5,
5 ê 2, 2 ê 4, 4 ê 1, 1 ê 3, 3 ê 2, 2 ê 1<<

If you provide FindEulerianCycle with a positive integer as a second argument, Mathematica
will attempt to find more than one Euler circuit, with the integer serving as a maximum number of
cycles to return, provided they exist. In this case, the output will be a list of lists of edges, with each
sublist representing a distinct circuit.
In[162]:= FindEulerianCycle@CompleteGraph@5D, 3D

Out[162]= 881 ê 2, 2 ê 5, 5 ê 4, 4 ê 3, 3 ê 5, 5 ê 1, 1 ê 4,
4 ê 2, 2 ê 3, 3 ê 1<, 81 ê 2, 2 ê 5, 5 ê 4, 4 ê 3,
3 ê 5, 5 ê 1, 1 ê 3, 3 ê 2, 2 ê 4, 4 ê 1<, 81 ê 2, 2 ê 5,
5 ê 4, 4 ê 3, 3 ê 2, 2 ê 4, 4 ê 1, 1 ê 5, 5 ê 3, 3 ê 1<<

With the symbol All as the third argument, Mathematica will determine all of the Euler circuits. We
see below that the complete graph on 5 vertices has 132 Euler circuits.
In[163]:= Length@FindEulerianCycle@CompleteGraph@5D, AllDD

Out[163]= 132

Now we’ll have Mathematica help us to visualize this path by creating an animation that successively
highlights the edges in the path. To do this we will use the Animate function. The Animate func-
tion takes two arguments, similar to Table. The first argument is a Mathematica expression, typically
one that generates an image and which is dependent on a variable. The second argument is a list describ-
ing the range of the variable. The structure of this list is similar to the second argument in a Table.
We will also be making use of two options. Setting the AnimationRunning option to False will
prevent the animation from beginning until you explicitly click on the play button. Without this option,
the animation would run as soon as Mathematica has finished generating it. Setting the Anima-
tionRepetitions option to 1 will cause the animation to stop once it has played through. This
option defaults to Infinity, meaning it will automatically restart every time it reaches the end.
To create the animation, we need a graph and a circuit. We will use K5 as the graph and we store the
circuit as exampleCircuit. Note that we apply First since FindEulerianCycle returns a
list of circuits and we want to access the first element of that list.

54 Chapter10.nb

In[164]:= exampleCircuit = First@FindEulerianCycle@CompleteGraph@5DDD

Out[164]= 81 ê 5, 5 ê 4, 4 ê 3, 3 ê 5,
5 ê 2, 2 ê 4, 4 ê 1, 1 ê 3, 3 ê 2, 2 ê 1<

To display the path, we will apply the HighlightGraph function. This function was first described
in Section 10.2 in the subsection on bipartite graphs. It takes two arguments: a graph and a list of either
vertices or edges.
To draw the successive stages in the circuit, we will apply HighlightGraph to the graph and to a
sublist of exampleCircuit. We will obtain the sublist by applying Part ([[…]]) to a Span (;;)
from 1 to the current stage. For example, to display the path after three steps, we enter the following.
In[165]:= HighlightGraph@CompleteGraph@5D, exampleCircuit@@1 ;; 3DDD

Out[165]=

Also note that the span from 1 to 0 will result in the empty list and thus nothing highlighted.
In[166]:= exampleCircuit@@1 ;; 0DD

Out[166]= 8<

In[167]:= HighlightGraph@CompleteGraph@5D, exampleCircuit@@1 ;; 0DDD

Out[167]=

We produce the animation using HighlightGraph as above, with the second argument to the Span
(;;) as a variable. In the second argument of Animate, this variable will be set to run from 0 to the
Length of the path. Note that, unlike Table, the variables in an Animate are not assumed to be
restricted to integers, so we must specify a step value of 1 in the variable specification.

Chapter10.nb 55

In[168]:= Animate@HighlightGraph@CompleteGraph@5D,
exampleCircuit@@1 ;; iDDD, 8i, 0, Length@exampleCircuitD, 1<,

AnimationRunning Ø False, AnimationRepetitions Ø 1D

i

We now turn this into a function. The only difference between the animatePath function below and
the example from above is that we replace the variable in the loop specification with the list
{i,0,"step"}. This syntax gives the variable i the initial value 0 and labels it as “step” in the
animation controller. Also note that we use a BlankNullSequence (___) to allow the
animatePath function to take 0 or more arguments after the required graph and path arguments. We
use this to pass options to the HighlightGraph function.
In[169]:= animatePath@g_Graph, p_List, opts___D := Module@8i, len<,

len = Length@pD;
Animate@HighlightGraph@g, p@@1 ;; iDD, optsD,
88i, 0, "step"<, 0, len, 1<,
AnimationRunning Ø False, AnimationRepetitions Ø 1D

D

To use this function, we just pass it an Eulerian graph, a circuit, and any options for drawing the graph.

56 Chapter10.nb

In[170]:= animatePath@CompleteGraph@7D,
First@FindEulerianCycle@CompleteGraph@7DDD,
VertexLabels Ø "Name", ImagePadding Ø 10D

step

You can see the Euler circuit traced out by clicking on the play button.
Note that while our examples have all been undirected, the functions described here also apply to
directed graphs.

Euler Circuits in Multigraphs
As usual, Mathematica's built-in function does not apply to pseudographs. We will examine the prob-
lem of finding Euler circuits in undirected multigraphs. We know, from Theorem 1 of Section 10.5,
that a connected multigraph with at least two vertices has an Euler circuit if and only if the degree of
every vertex is even. It is easy to see that Theorem 1 extends to pseudographs as well. Using this fact,
we can write a simple function for determining whether or not an undirected pseudograph has an Euler
circuit. Note that, as we have done before, we input the undirected pseudograph as a list of rules, but
the function assumes that the graph being modeled is undirected.
In[171]:= eulerianPseudographQ@edgeList : 8___Rule<D := Module@8v, G<,

G = Graph@DeleteDuplicates@Sort êü edgeListD,
DirectedEdges Ø FalseD;

Catch@
If@! ConnectedGraphQ@GD »» Length@VertexList@GDD < 2,
Throw@FalseDD;

Do@If@OddQ@undirectedDegree@edgeList, vDD, Throw@FalseDD
, 8v, VertexList@GD<D;

Throw@TrueD
D

D

We begin the eulerianPseudographQ function by forming an undirected Graph object. The
purpose of this is to allow us to use some built-in functions rather than creating them from scratch. The
Graph object is obtained from the input pseudograph as follows. We Map (/@) the Sort function
over the edgeList of the input graph. The Map (/@) causes the Sort function to be applied to the
elements of edgeList, rather than the list itself. That is, Sort will be applied to the individual rules
that describe the edges of the graph, which causes the Rule (->) to point from lesser to greater, as
illustrated below. This forces a canonical representation of each edge. Since the graph is undirected,
this allows Mathematica to recognize 1 Ø 2 as the same as 2 Ø 1.

Chapter10.nb 57

We begin the eulerianPseudographQ function by forming an undirected Graph object. The
purpose of this is to allow us to use some built-in functions rather than creating them from scratch. The
Graph object is obtained from the input pseudograph as follows. We Map (/@) the Sort function
over the edgeList of the input graph. The Map (/@) causes the Sort function to be applied to the
elements of edgeList, rather than the list itself. That is, Sort will be applied to the individual rules
that describe the edges of the graph, which causes the Rule (->) to point from lesser to greater, as
illustrated below. This forces a canonical representation of each edge. Since the graph is undirected,
this allows Mathematica to recognize 1 Ø 2 as the same as 2 Ø 1.
In[172]:= Sort@2 Ø 1D

Out[172]= 1 Ø 2

After the edges are put in canonical form with Sort êü edgeList, we apply DeleteDupli-
cates. This results in the edge set of a simple graph but such that every pair of vertices that were
connected in the pseudograph are still connected. We then use the resulting list as the argument to
Graph, with the DirectedEdges option set to False. Note that if we had not mapped Sort onto
the original edge list, we would risk an error. For example, if the input had included both 1 Ø 2 and
2 Ø 1, when Mathematica applied Graph with DirectedEdges false, it would then identify those
as the same edge and identify the graph as having multiple edges. For a directed version of this func-
tion, DirectedEdges would be true, and you would not map Sort over the edge list.
All of the tests are contained in Catch. If any of the conditions fail, they will Throw False. Other-
wise, if the graph passes all of the hurdles, True will be thrown at the end of the block. The first test is
to ensure that the graph is connected and that it has at least 2 vertices, which are conditions required
for Theorem 1 to apply. This is where the creation of the Graph object is useful, as it allows us to
apply the built-in functions ConnectedGraphQ and VertexList rather than create such functions
for pseudographs. The second If is contained within a Do loop to test the degree of each vertex. We
apply the undirectedDegree function, written in Section 10.2, and the Boolean function OddQ.
We can use this function to solve the Bridges of Königsberg problem. First we create a representation
of the town and its bridges as a graph (this replicates Figure 2 in Section 10.5). Then we apply the test.
In[173]:= konigsbergEdges = 8"A" Ø "B", "A" Ø "B",

"A" Ø "C", "A" Ø "C", "A" Ø "D", "B" Ø "D", "C" Ø "D"<

Out[173]= 8A Ø B, A Ø B, A Ø C, A Ø C, A Ø D, B Ø D, C Ø D<

58 Chapter10.nb

In[174]:= GraphPlot@konigsbergEdges,
VertexLabeling Ø True, VertexCoordinateRules Ø
8"A" Ø 80, 1<, "B" Ø 80, 0<, "C" Ø 80, 2<, "D" Ø 81, 1<<D

Out[174]= A

B

C

D

In[175]:= eulerianPseudographQ@konigsbergEdgesD

Out[175]= False

Now that we have a test that tells us if a circuit exists, we will implement Algorithm 1 from Section
10.5 in order to find an Euler circuit, if it exists. The following algorithm will find an Euler circuit in a
multigraph. It could also be applied to a pseudograph without generating an error, but it will not
include loops in the circuit.

Chapter10.nb 59

In[176]:= findEulerianCycleMultigraph@edgeList : 8___Rule<D :=
Module@8H, circuit, subC, i, n,

v, insertPoint, w, buildingSub, oldC<,
If@! eulerianPseudographQ@edgeListD, Return@$FailedDD;
circuit = 8<;
H = edgeList;
While@H ¹≠ 8<,
H* find a starting point *L
If@circuit ã 8<,
subC = 8H@@1DD<;
H = Delete@H, 1D;
insertPoint = 0,
For@i = 1, i § Length@circuitD, i++,
v = circuit@@i, 2DD;
n = neighbors@H, vD;
If@n ¹≠ 8<,
w = n@@1DD;
subC = 8v Ø w<;
insertPoint = i;
H = DeleteCases@H, Rule@v, wD Rule@w, vD, 81<, 1D;
Break@D

D
D

D;
H* build a subcircuit *L
buildingSub = True;
While@buildingSub && H ¹≠ 8<,
v = subC@@-1, 2DD;
w = First@neighbors@H, vDD;
H = DeleteCases@H, Rule@v, wD Rule@w, vD, 81<, 1D;
AppendTo@subC, v Ø wD;
If@w ã subC@@1, 1DD, buildingSub = FalseD

D;
H* splice the subcircuit into the main circuit *L
If@circuit ã 8<,
circuit = subC,
circuit = Flatten@Insert@circuit, subC, insertPoint + 1DD

D
D;
circuit

D

The function begins with a use of eulerianPseudographQ in order to avoid searching for a
circuit that cannot exist. It then assigns to the symbol H a copy of the graph. It is this copy that is used
throughout the rest of the function, rather than the input that was passed to the algorithm. The benefit
of using a copy is that the function will be able to manipulate it as the algorithm proceeds, e.g., by
deleting edges of H once they are included in the circuit so that those edges are not reused.

60 Chapter10.nb

The function begins with a use of eulerianPseudographQ in order to avoid searching for a
circuit that cannot exist. It then assigns to the symbol H a copy of the graph. It is this copy that is used
throughout the rest of the function, rather than the input that was passed to the algorithm. The benefit
of using a copy is that the function will be able to manipulate it as the algorithm proceeds, e.g., by
deleting edges of H once they are included in the circuit so that those edges are not reused.
Recall the description of Algorithm 1 in Section 10.5. There are two key ideas at the heart of this
algorithm. The first is that, for a graph whose vertices all have even degree, if you pick any vertex to
start at and follow edges at random but without repetition, you will definitely return to the original
vertex and create a circuit. The second key idea is that (for a connected graph), if your circuit does not
include all of the edges of the graph, then some vertex used in the existing circuit can be made the
starting point for a new subcircuit. This subcircuit can then be spliced into the main circuit. This will
eventually use all the edges and the result will be a Euler circuit.
The symbol circuit will hold the main circuit that, at the end of the function, is output to the user.
The circuit will be stored as a list of the edges through which the circuit passes and is initialized to the
empty list. The main While loop consists of three parts: (1) determining the starting point for the
subcircuit (named subC); (2) building the subcircuit; and (3) splicing the subcircuit into the main
circuit.
The first step, finding the starting point for the subcircuit, depends on the state of the main circuit. If
circuit is the empty list (i.e., this is the first pass through the main loop), then the starting point is
the first edge in the graph. If the main circuit is not empty, then the else clause looks at the vertices in
the main circuit to find one that has neighbors (since edges are deleted from H as they are added to the
circuit, only vertices that are an endpoint of an unused edge have neighbors). The first vertex that has a
neighbor is used as the starting point for the subcircuit. The insertPoint variable is used to keep
track of the index, relative to circuit, of the starting vertex for the subcircuit. This is used when the
subcircuit is spliced into the main circuit.
The second step is to build subC. The buildingSub symbol is used to control the While loop. It is
initialized to true and is set to false once subC has returned to its starting vertex and is thus a circuit.
The variable v is set to the last vertex currently included as part of the subcircuit and w represents a
neighbor of v. To remove the edge between v and w from H, we use DeleteCases. The first argu-
ment is the list to delete from. The second argument is a pattern, in this case using Alternatives
(|) to allow for either order of the vertices in the edge being deleted. If this function were to apply to a
directed graph, the order would be important, but here we need to allow for the fact that the circuit may
follow edges in either direction. The third argument is an optional level specification, with {1} indicat-
ing that only the first level is to be matched, that is, only members of the list and not substructures are
considered. The final argument, which is also optional, places a limit on the number of matches to
delete. With 1 in the final position, the function will only delete the first edge it finds, rather than all of
them. Note that {1} is the default level specification for this function, but it must be included in order
to use the fourth argument.
After deleting the edge from H, the newest vertex is compared with the starting vertex to determine if
the circuit has been closed. If the new vertex closes the circuit, then the buildingSub variable is set
to false, which causes the loop to terminate. Otherwise, the While loop continues building the
subcircuit.
The third step, once the subcircuit has been built, is to splice it into the main circuit. If circuit is
empty, it is merely set to subC. Otherwise, Insert is used to add the subcircuit. Insert takes a list
as the first argument and adds the expression given as the second argument in the position specified by
the third argument. The elements previously in that position and later and pushed down to make room.
We give the third argument as insertPoint + 1 to insert the sublist between the edges at position
insertPoint and position insertPoint + 1.

Chapter10.nb 61

The third step, once the subcircuit has been built, is to splice it into the main circuit. If circuit is
empty, it is merely set to subC. Otherwise, Insert is used to add the subcircuit. Insert takes a list
as the first argument and adds the expression given as the second argument in the position specified by
the third argument. The elements previously in that position and later and pushed down to make room.
We give the third argument as insertPoint + 1 to insert the sublist between the edges at position
insertPoint and position insertPoint + 1.
The main While loop continues until all the edges of the graph have been included in the circuit,
making circuit an Euler circuit for the graph. As an example, consider Exercise 5 from Section 10.5.
In[177]:= exercise5Edges =

8"a" Ø "b", "a" Ø "e", "a" Ø "e", "a" Ø "e", "b" Ø "c", "b" Ø "d",
"b" Ø "e", "c" Ø "d", "c" Ø "d", "c" Ø "e", "d" Ø "e"<

Out[177]= 8a Ø b, a Ø e, a Ø e, a Ø e, b Ø c,
b Ø d, b Ø e, c Ø d, c Ø d, c Ø e, d Ø e<

In[178]:= GraphPlot@exercise5Edges, VertexLabeling Ø True,
VertexCoordinateRules Ø 8"a" Ø 80, 2<, "b" Ø 81, 2<,

"c" Ø 82, .5<, "d" Ø 81, 1<, "e" Ø 80, 1<<D

Out[178]=

a b

e

c

d

In[179]:= exercise5EulerPath =
findEulerianCycleMultigraph@exercise5EdgesD

Out[179]= 8a Ø b, b Ø c, c Ø d, d Ø e, e Ø a,
a Ø e, e Ø c, c Ø d, d Ø b, b Ø e, e Ø a<

Note that the edge between a and e is traversed three times: twice in about the middle of the circuit
immediately in succession, and once as the last edge in the cycle. This is consistent with there being
three edges between a and e.

Hamilton Circuits
Turning our attention to Hamilton circuits, Mathematica provides the function Hamiltonian-
GraphQ for determining whether or not the graph contains a Hamilton circuit. This command, like
EulerianGraphQ, accepts a graph as the sole argument. It returns true or false depending on
whether the graph has a Hamilton circuit.

62 Chapter10.nb

In[180]:= hcGraphExample = HypercubeGraph@3D

Out[180]=

In[181]:= HamiltonianGraphQ@hcGraphExampleD

Out[181]= True

The FindHamiltonianCycle function, similar to FindEulerianCycle, accepts a graph as the
argument and returns a list containing a list containing a Hamiltonian circuit. The optional second
argument can be used to find more than one cycle.
In[182]:= FindHamiltonianCycle@hcGraphExampleD

Out[182]= 881 ê 2, 2 ê 4, 4 ê 8, 8 ê 6, 6 ê 5, 5 ê 7, 7 ê 3, 3 ê 1<<

In[183]:= FindHamiltonianCycle@hcGraphExample, AllD

Out[183]= 881 ê 3, 3 ê 7, 7 ê 8, 8 ê 4, 4 ê 2, 2 ê 6, 6 ê 5, 5 ê 1<,
81 ê 3, 3 ê 4, 4 ê 2, 2 ê 6, 6 ê 8, 8 ê 7, 7 ê 5, 5 ê 1<,
81 ê 2, 2 ê 6, 6 ê 8, 8 ê 4, 4 ê 3, 3 ê 7, 7 ê 5, 5 ê 1<,
81 ê 2, 2 ê 4, 4 ê 3, 3 ê 7, 7 ê 8, 8 ê 6, 6 ê 5, 5 ê 1<,
81 ê 2, 2 ê 6, 6 ê 5, 5 ê 7, 7 ê 8, 8 ê 4, 4 ê 3, 3 ê 1<,
81 ê 2, 2 ê 4, 4 ê 8, 8 ê 6, 6 ê 5, 5 ê 7, 7 ê 3, 3 ê 1<<

In[184]:= hcGraphExampleCircuit =
First@FindHamiltonianCycle@hcGraphExampleDD

Out[184]= 81 ê 2, 2 ê 4, 4 ê 8, 8 ê 6, 6 ê 5, 5 ê 7, 7 ê 3, 3 ê 1<

We can use HighlightGraph to illustrate the path statically.

Chapter10.nb 63

In[185]:= HighlightGraph@hcGraphExample, hcGraphExampleCircuitD

Out[185]=

Also, our animation function animatePath, created above, works equally well here.
In[186]:= animatePath@hcGraphExample, hcGraphExampleCircuitD

step

Note that a pseudograph is Hamiltonian if and only if its underlying simple graph is Hamiltonian, so
there is no need for us to extend the built-in functions to pseudographs.

10.6 Shortest-Path Problems
Among the most common problems in graph theory are shortest path problems. Generally, in shortest
path problems, we wish to determine a path between two vertices of a weighted graph that is minimal
in terms of the total weight of the edges in the path.
To define a Graph object with weighted edges, you use the EdgeWeight option. The value associ-
ated with the option is the list of the weights of each edge. The weights must appear in the same order
as they are displayed in the output by EdgeList. For graphs you define by listing the edges, this is
identical to the order you give in the definition.

64 Chapter10.nb

To define a Graph object with weighted edges, you use the EdgeWeight option. The value associ-
ated with the option is the list of the weights of each edge. The weights must appear in the same order
as they are displayed in the output by EdgeList. For graphs you define by listing the edges, this is
identical to the order you give in the definition.
We reproduce Exercise 2 from Section 10.6 of the textbook to use as an example.
In[187]:= exercise2 = Graph@8"a", "b", "c", "d", "e", "z"<,

8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e", "c" Ø "e",
"d" Ø "e", "d" Ø "z", "e" Ø "z"<, DirectedEdges Ø False,

EdgeWeight -> 82, 3, 5, 2, 5, 1, 2, 4<, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[187]=

A second approach to setting edge weights is by using the EdgeWeight property. Rather than listing
all of the edges and then listing the weights separately using the option as shown above, we can wrap
the edge definitions in the Property wrapper, setting the edge weights at the same time the edges are
described.

Chapter10.nb 65

In[188]:= Graph@8"a", "b", "c", "d", "e", "z"<,
8Property@"a" Ø "b", EdgeWeight Ø 2D,
Property@"a" Ø "c", EdgeWeight Ø 3D,
Property@"b" Ø "d", EdgeWeight Ø 5D,
Property@"b" Ø "e", EdgeWeight Ø 2D,
Property@"c" Ø "e", EdgeWeight Ø 5D,
Property@"d" Ø "e", EdgeWeight Ø 1D,
Property@"d" Ø "z", EdgeWeight Ø 2D,
Property@"e" Ø "z", EdgeWeight Ø 4D<,

DirectedEdges Ø False, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[188]=

You can also define a weighted graph using the WeightedAdjacencyGraph function and an
adjacency matrix. Unlike with AdjacencyGraph, the adjacency matrix must use Infinity, or ¶
(ÂinfÂ) to indicate that there is no edge between the corresponding vertices. In the example below,
we give the list of vertices as the first argument, otherwise Mathematica will automatically use positive
integers to name the vertices. Note that WeightedAdjacencyMatrix applied to a weighted graph
returns the adjacency matrix with weights.
In[189]:= exercise2matrix =

88¶, 2, 3, ¶, ¶, ¶<, 82, ¶, ¶, 5, 2, ¶<, 83, ¶, ¶, ¶, 5, ¶<,
8¶, 5, ¶, ¶, 1, 2<, 8¶, 2, 5, 1, ¶, 4<, 8¶, ¶, ¶, 2, 4, ¶<<;

exercise2matrix êê MatrixForm
Out[190]//MatrixForm=

¶ 2 3 ¶ ¶ ¶

2 ¶ ¶ 5 2 ¶

3 ¶ ¶ ¶ 5 ¶

¶ 5 ¶ ¶ 1 2
¶ 2 5 1 ¶ 4
¶ ¶ ¶ 2 4 ¶

66 Chapter10.nb

In[191]:= WeightedAdjacencyGraph@8"a", "b", "c", "d", "e", "z"<,
exercise2matrix, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[191]=

Observe that the edge weights are not automatically displayed. We can display them with EdgeLa-
bels, but unlike VertexLabels, there is no simple value, like “Name”, that will cause the weights
to appear. Rather, we must set each edge’s label individually. This is illustrated below.
In[192]:= Graph@8"a", "b", "c"<,

8"a" Ø "b", "b" Ø "c", "c" Ø "a"<, EdgeWeight Ø 81, 2, 3<,
VertexLabels Ø "Name", ImagePadding Ø 10,
EdgeLabels Ø 8"a" ð "b" Ø 1, "b" ð "c" Ø 2, "c" ð "a" Ø 3<D

Out[192]=

Note that, even in a directed graph, rules cannot be used to describe edges within the EdgeLabels
value. Rather the symbols ð (ÂdeÂ) or ê (ÂueÂ) must be used.
For graphs of any size, needing to assign the edge weights for the EdgeWeight option can be cumber-
some. For convenience, we create the following function, which modifies a given graph by setting the
EdgeWeight property to be the edge weight.

Chapter10.nb 67

In[193]:= addWeightLabels@G_GraphD := Module@8E, W, H, i<,
H = G;
Do@
PropertyValue@8H, e<, EdgeLabelsD =
PropertyValue@8H, e<, EdgeWeightD

, 8e, EdgeList@HD<D;
H

D

This can be applied to an existing graph to display the labels once.
In[194]:= addWeightLabels@exercise2D

Out[194]=

Or it can be applied at the time the graph is created to make the labels permanent.
In[195]:= exercise2 = Graph@8"a", "b", "c", "d", "e", "z"<,

8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e", "c" Ø "e",
"d" Ø "e", "d" Ø "z", "e" Ø "z"<, DirectedEdges Ø False,

EdgeWeight -> 82, 3, 5, 2, 5, 1, 2, 4<, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D êê addWeightLabels

Out[195]=

Now we will make use of Mathematica's implementation of Dijkstra's algorithm to compute the short-
est path between a and z. To do this, we simply call the FindShortestPath function with three
arguments: the graph and the names of the starting and ending vertices. The output will be a list of
vertices beginning with the starting vertex and ending with the final vertex through which the path runs.

68 Chapter10.nb

In[196]:= FindShortestPath@exercise2, "a", "z"D

Out[196]= 8a, b, e, d, z<

The PathGraph function can be use to help visualize this path. PathGraph accepts a list of vertices
as input and produces the graph obtained by connecting successive vertices with an edge. By default,
the graph produced is undirected. To obtain a directed path, assign the DirectedEdges option to
True. Here, we will display the path in the graph by applying HighlightGraph, using Path-
Graph in the second argument.
In[197]:= HighlightGraph@exercise2,

PathGraphüFindShortestPath@exercise2, "a", "z"DD

Out[197]=

The length of the shortest path can be determined with the GraphDistance function and the same
arguments.
In[198]:= GraphDistance@exercise2, "a", "z"D

Out[198]= 7.

If the final argument, the destination vertex, is omitted from GraphDistance, the result will be a
list of the lengths of the shortest paths to each vertex of the graph.
In[199]:= GraphDistance@exercise2, "a"D

Out[199]= 80, 2., 3., 5., 4., 7.<

To determine the shortest path from every vertex to every other vertex, use the GraphDistanceMa-
trix function. Algorithm 2 in the Exercises of Section 10.6 describes the Floyd-Warshall algorithm
(also known as simply the Floyd algorithm), which is one method for computing this matrix.
In[200]:= GraphDistanceMatrix@exercise2D êê MatrixForm

Out[200]//MatrixForm=
0. 2. 3. 5. 4. 7.
2. 0. 5. 3. 2. 5.
3. 5. 0. 6. 5. 8.
5. 3. 6. 0. 1. 2.
4. 2. 5. 1. 0. 3.
7. 5. 8. 2. 3. 0.

10.7 Planar Graphs

Chapter10.nb 69

10.7 Planar Graphs
This section explains how Mathematica can be used to explore the question of whether a graph is
planar by manipulating graphs in order to produce homeomorphic graphs and applying Kuratowski's
Theorem. We consider only undirected simple graphs in this section. The question of planarity for a
directed graph can be answered by considering the underlying undirected graph, which can be obtained
by applying the function UndirectedGraph.
Before looking at how Mathematica can help you manipulate graphs to apply Kuratowski’s Theorem
manually, note that the function PlanarGraphQ, applied to a Graph object, will determine whether
or not the graph is planar.
In[201]:= PlanarGraphQ@HypercubeGraph@3DD

Out[201]= True

In[202]:= PlanarGraphQ@CompleteGraph@5DD

Out[202]= False

Elementary Subdivisions, Smoothing, and Homeomorphic Graphs
Recall that an elementary subdivision refers to the process of modifying a graph by removing an edge
8u, v< and replacing it with a vertex w and new edges 8u, w< and 8w, v<. Effectively, this splits the
original edge into two by inserting a vertex in the middle of it. It is not difficult to use Mathematica to
perform an elementary subdivision. We will use a cycle graph as an example.
In[203]:= subdivideExample =

CycleGraph@5, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[203]=

We will subdivide the edge 81, 2<. To do this, we first need to introduce a vertex. We will give this
vertex the name “1-2”. We apply ToString to the integers to create strings and combine them and
the hyphen with the StringJoin (<>) operator. We use the VertexAdd function to add the vertex
to the graph.

70 Chapter10.nb

In[204]:= subdivideExampleB =
VertexAdd@subdivideExample, ToString@1D <> "-" <> ToString@2DD

Out[204]=

Note that Mathematica has moved the original vertices. We can put them back in place by using Prop-
ertyValue to assign the VertexCoordinates property in the new graph to the position in the
old.
In[205]:= Do@PropertyValue@8subdivideExampleB, v<, VertexCoordinatesD =

PropertyValue@8subdivideExample, v<, VertexCoordinatesD,
8v, VertexList@subdivideExampleD<D

In[206]:= subdivideExampleB

Out[206]=

Now we place the new vertex along the edge which is to be deleted. This is done by using Property-
Value and averaging the positions of the existing vertices.
In[207]:= PropertyValue@8subdivideExampleB, "1-2"<, VertexCoordinatesD =

HPropertyValue@8subdivideExample, 1<, VertexCoordinatesD +
PropertyValue@8subdivideExample, 2<, VertexCoordinatesDLê2

Out[207]= 8-0.769421, -0.25<

Chapter10.nb 71

In[208]:= subdivideExampleB

Out[208]=

Now we simply remove the original edge with EdgeDelete and add the new ones with EdgeAdd.
Recall that the second argument of EdgeDelete must be given using the special symbols ê
(ÂueÂ) or ð (ÂdeÂ), not as a Rule (->).
In[209]:= subdivideExampleB = EdgeDelete@subdivideExampleB, 1 ê 2D;

subdivideExampleB = EdgeAdd@subdivideExampleB, 1 Ø "1-2"D;
subdivideExampleB = EdgeAdd@subdivideExampleB, 2 Ø "1-2"D

Out[211]=

Based on this example, we create the following function.

72 Chapter10.nb

In[212]:= subdivideGraph::nonedge =
"Second argument must be an edge in the graph.";

subdivideGraph@G_Graph, E_Rule E_UndirectedEdgeD ê;
UndirectedGraphQ@GD := Module@8H, e, newV, v<,
If@Head@ED === Rule,
e = UndirectedEdge üü E,
e = E

D;
If@! EdgeQ@G, eD,
Message@subdivideGraph::nonedgeD; Return@$FailedDD;

newV = ToString@e@@1DDD <> "-" <> ToString@e@@2DDD;
H = VertexAdd@G, newVD;
Do@PropertyValue@8H, v<, VertexCoordinatesD =

PropertyValue@8G, v<, VertexCoordinatesD,
8v, VertexList@GD<D;

PropertyValue@8H, newV<, VertexCoordinatesD =
HPropertyValue@8H, e@@1DD<, VertexCoordinatesD +

PropertyValue@8H, e@@2DD<, VertexCoordinatesDLê2;
H = EdgeDelete@H, eD;
H = EdgeAdd@H, e@@1DD Ø newVD;
H = EdgeAdd@H, newV Ø e@@2DDD;
H

D

The inverse operation of elementary subdivision is referred to as smoothing. To be precise, let v be a
vertex of degree 2 with neighbors u and w and such that u and w are not adjacent. We smooth the
vertex v by deleting v and the edges incident to it and adding the edge 8u, w<. Below we have created a
function to implement smoothing.
In[214]:= smoothGraph::vertx = "Cannot smooth this vertex.";

smoothGraph@G_Graph, v_D ê; UndirectedGraphQ@GD :=
Module@8N, H, e<,
N = AdjacencyList@G, vD;
If@Length@ND ¹≠ 2 »» EdgeQ@G, UndirectedEdge@N@@1DD, N@@2DDDD,
Message@smoothGraph::vertxD; Return@$FailedDD;

H = VertexDelete@G, vD;
e = UndirectedEdge@N@@1DD, N@@2DDD;
H = EdgeAdd@H, eD;
H

D

As an example, we can smooth the vertex “1-2” added above.

Chapter10.nb 73

In[216]:= smoothGraph@subdivideExampleB, "1-2"D

Out[216]=

The textbook defines graphs to be homeomorphic if they can be obtained from the same graph from a
sequence of elementary subdivisions. It is clear that if G1, G2, G3, …, Gn is a sequence of graphs,
each of which can be obtained from the previous by an elementary subdivision, then
Gn, …, G3, G2, G1 is a sequence of graphs, each of which can be obtained from the previous by a
smoothing. So we can say that two graphs are homeomorphic if one can be transformed into the other
by a sequence of elementary subdivisions and smoothings.

Applying Kuratowski’s Theorem
Recall that Kuratowski's Theorem asserts that a graph is nonplanar if and only if it contains a subgraph
homeomorphic to either K3,3 or K5. Using the functions above and those for creating subgraphs, we
can use Mathematica to manipulate a graph and confirm that it is nonplanar using Kuratowski's Theo-
rem. We will illustrate this with the Petersen graph.
In[217]:= petersen =

PetersenGraph@5, 2, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[217]=

First, we form the subgraph of the Petersen graph obtained by removing vertex 2 and the three edges
incident to it.

74 Chapter10.nb

In[218]:= petersen1 = VertexDelete@petersen, 6D

Out[218]=

Now we notice that there are three vertices that are smoothable: 1, 7, and 10. That is to say, those three
vertices have degree 2 and their neighbors are not adjacent.
In[219]:= petersen2 = smoothGraph@petersen1, 1D;

petersen3 = smoothGraph@petersen2, 7D;
petersen4 = smoothGraph@petersen3, 10D

Out[220]=

We now observe that this graph has 6 vertices, each of which has degree 3, just like K3,3. So there is a
definite possibility that this graph is K3,3. We have Mathematica confirm that is K3,3 with Isomor-
phicGraphQ.
In[221]:= IsomorphicGraphQ@petersen4, CompleteGraph@83, 3<DD

Out[221]= True

This demonstrates that the Petersen graph has a subgraph that is homeomorphic to K3,3 and hence is
nonplanar.

10.8 Graph Coloring
In this section we consider the problem of how to properly color a graph; that is, how to assign to each
vertex of a graph a color such that no vertex has the same color as any of its neighbors.
It is worth noting that, in terms of computational complexity, Hamilton circuits and graph coloring are
equivalently difficult problems.

Chapter10.nb 75

It is worth noting that, in terms of computational complexity, Hamilton circuits and graph coloring are
equivalently difficult problems.

A Greedy Coloring Algorithm
We will create a function based on the algorithm described in the preface to Exercise 29 in Section
10.8 of the text. It can be shown that this algorithm will color a graph using at most one more color
than the maximal degree of the graph. It is considered a greedy algorithm because it makes optimal
choices at each step but never reconsiders its choices. That is to say, it does the best it can at every step
but never backtracks to make improvements. Greedy algorithms often lead to good, but non-optimal,
solutions.
The algorithm proceeds as follows. First, the vertices are sorted in order of descending degree. The
first color is assigned to the first vertex in the list. Also assign color 1 to the first vertex in the list not
adjacent to vertex 1, to the next vertex not adjacent to those already colored, etc. Then move on to the
second color. The first uncolored vertex in the list is assigned color 2, as are vertices further down the
list not adjacent to ones previously assigned the second color. This continues until all of the vertices
have been given a color.
Our first step in implementing this function will be to sort the list of vertices in decreasing order of
degree. For this, we will make use of Mathematica's very flexible Sort function. With no additional
instructions, Mathematica will sort a list of numbers in increasing numerical order and a list of strings
in lexicographical order. But the Sort function takes an optional argument that allows us to specify
the way in which the list is sorted. Specifically, Sort takes as an argument a Boolean-valued function
on two arguments and returns true if the first argument precedes the second.
For our graph coloring procedure, we will create a helper function that takes a Graph object and
returns the sorted list of vertices.
In[222]:= sortVertices@G_GraphD := Sort@VertexList@GD,

VertexDegree@G, Ò1D ¥ VertexDegree@G, Ò2D &D

In order for our algorithm to color the vertices of a graph, we need to decide on what colors to use. We
define a list of colors globally.
In[223]:= colorList = 8Red, Green, Blue, Magenta,

Orange, Pink, Purple, Cyan, Brown, Black<

Out[223]= 8RGBColor@1, 0, 0D, RGBColor@0, 1, 0D,
RGBColor@0, 0, 1D, RGBColor@1, 0, 1D, RGBColor@1, 0.5, 0D,
RGBColor@1, 0.5, 0.5D, RGBColor@0.5, 0, 0.5D,
RGBColor@0, 1, 1D, RGBColor@0.6, 0.4, 0.2D, GrayLevel@0D<

Now we will implement the greedy coloring algorithm.

76 Chapter10.nb

In[224]:= greedyColorer::colorx = "Insufficiently many colors.";
greedyColorer@G_GraphD :=
Module@8H = G, V, currentColor, excludeSet, i<,
V = sortVertices@HD;
For@currentColor = 1,
currentColor § Length@colorListD, currentColor++,
PropertyValue@8H, V@@1DD<, VertexStyleD =
colorList@@currentColorDD;

excludeSet = VertexList@NeighborhoodGraph@H, V@@1DDDD;
V = Delete@V, 1D;
i = 1;
While@i § Length@VD,
If@! MemberQ@excludeSet, V@@iDDD,
PropertyValue@8H, V@@iDD<, VertexStyleD =
colorList@@currentColorDD;

excludeSet = Union@excludeSet,
VertexList@NeighborhoodGraph@H, V@@iDDDDD;

V = Delete@V, iD,
i++

D
D;
If@V ã 8<, Break@DD

D;
If@V ¹≠ 8<,
Message@greedyColorer::colorxD; Return@$FailedD,
HD

D

Note that the list V, which is initialized to the list of vertices, sorted in decreasing order of degree, is
used to track which vertices still need to be assigned a color. When a vertex has been assigned a color,
it is deleted from the list V using Delete. The Delete function removes from the list in the first
argument the element at the position specified by the second argument.
The excludeSet variable is used to store all vertices which cannot be assigned the current color.
Each time a vertex is assigned a color, it and all of its neighbors are added to the excludeSet. As
the function looks down the list of vertices that still need to have a color assigned, it checks to see if
they are in this set.
The index i, which controls the While loop, is incremented in the else clause of the If statement that
tests to see if a vertex can be assigned the color. If the vertex at index i is assigned the color, then it is
removed from the list V, and thus the index i refers to a different vertex (the vertex previously in
position i+ 1).
As an example, we solve Exercise 29 of Section 10.8.

Chapter10.nb 77

In[226]:= exercise29 =
Graph@8"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"<,
8"a" Ø "b", "a" Ø "d", "a" Ø "e", "a" Ø "h", "b" Ø "c",
"b" Ø "e", "b" Ø "f", "c" Ø "e", "c" Ø "f", "c" Ø "h",
"d" Ø "g", "e" Ø "g", "e" Ø "h", "e" Ø "i", "f" Ø "i",
"f" Ø "j", "h" Ø "i", "i" Ø "j"<, DirectedEdges Ø False,

VertexCoordinates Ø 880, 2<, 81, 2<, 82, 2<, 80, 1<,
81, 1<, 82, 1<, 80, 0<, 81, 0<, 82, 0<, 83, 0<<,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[226]=

In[227]:= greedyColorer@exercise29D

Out[227]=

Solutions to Computer Projects and Computations and
Explorations

Computations and Explorations 1

Display all simple graphs with four vertices.

Solution: To solve this problem, we will generate all possible edge sets and then construct the graphs
based on these edge sets. The possible edge sets are all of the subsets of the set of all possible edges,
which we obtain from the complete graph on the vertices. We will generalize the question and have our
function create all the simple graphs on n vertices.

78 Chapter10.nb

Solution: To solve this problem, we will generate all possible edge sets and then construct the graphs
based on these edge sets. The possible edge sets are all of the subsets of the set of all possible edges,
which we obtain from the complete graph on the vertices. We will generalize the question and have our
function create all the simple graphs on n vertices.
In[228]:= allGraphs@n_IntegerD ê; n > 0 :=

Module@8cg, v, A = 8<, V = Range@nD, powerE, vCoords, E<,
cg = CompleteGraph@nD;
powerE = Subsets@EdgeList@cgDD;
vCoords = Table@

PropertyValue@8cg, v<, VertexCoordinatesD, 8v, Range@nD<D;
Do@AppendTo@A, Graph@V, E, VertexLabels Ø "Name",

ImagePadding Ø 10, VertexCoordinates Ø vCoordsDD
, 8E, powerE<D;

A
D

Recall that the complete graph on n vertices has CHn, 2L edges, so there are 2CHn,2L graphs on n vertices.
So on 4 vertices, there are 64 graphs. For n = 3, there are only 8 graphs, which is more manageable.
We use the Partition function to break the list of all graphs into triples and then apply Grid with
the Frame option in order to display the results in a useful way.
In[229]:= Grid@Partition@allGraphs@3D, 3D, Frame Ø AllD

Computations and Explorations 2

Display a full set of nonisomorphic simple graphs with six vertices.

Solution: The solution to this exercise is very similar to the previous question. The only difference is
that, once the list of graphs is generated, we remove those that are isomorphic to others by applying
DeleteDuplicates with second argument IsomorphicGraphQ. This uses Isomorphic-
GraphQ to determine whether two elements are to be considered duplicates or not.

Chapter10.nb 79

Solution: The solution to this exercise is very similar to the previous question. The only difference is
that, once the list of graphs is generated, we remove those that are isomorphic to others by applying
DeleteDuplicates with second argument IsomorphicGraphQ. This uses Isomorphic-
GraphQ to determine whether two elements are to be considered duplicates or not.
In[230]:= nonIsoGraphs@n_IntegerD ê; n > 0 := Module@

8A = 8<, cg, v, V = Range@nD, powerE, vCoords, E, i, G, j<,
cg = CompleteGraph@nD;
powerE = Subsets@EdgeList@cgDD;
vCoords = Table@

PropertyValue@8cg, v<, VertexCoordinatesD, 8v, Range@nD<D;
Do@AppendTo@A, Graph@V, E, ImagePadding Ø 10,

VertexCoordinates Ø vCoordsDD
, 8E, powerE<D;

DeleteDuplicates@A, IsomorphicGraphQD
D

We apply this to five vertices, since six takes a bit more time to compute.
In[231]:= nonIso5 = nonIsoGraphs@5D;

In[232]:= Length@nonIso5D

Out[232]= 34

We see that there are 34 nonisomorphic graphs on 5 vertices. Here are the first eight.
In[233]:= Grid@Partition@nonIso5@@1 ;; 8DD, 3D, Frame Ø AllD

Computations and Explorations 9

Generate at random simple graphs with 10 vertices. Stop when you have constructed one
with an Euler circuit. Display an Euler circuit in this graph.

Solution: To generate the random graphs, we will use the RandomGraph function. By passing this
function a list containing a number of vertices and a number of edges, it produces a graph with that
number of vertices and edges. To display a random graph on 10 vertices and 15 edges, we enter the
following.

80 Chapter10.nb

Solution: To generate the random graphs, we will use the RandomGraph function. By passing this
function a list containing a number of vertices and a number of edges, it produces a graph with that
number of vertices and edges. To display a random graph on 10 vertices and 15 edges, we enter the
following.
In[234]:= RandomGraph@810, 15<D

Out[234]=

Alternately, the argument to RandomGraph can be a graph distribution, which is a probability distribu-
tion on the sample space consisting of graphs. There are six built-in graph distributions. We will use
the BernoulliGraphDistribution, which allows you to specify a number of vertices and a
probability. The probability indicates the independent probability that an edge will appear between any
two vertices. It accepts two arguments, the number of vertices and the probability. The following
constructs a random graph with 10 vertices and with each edge as likely to appear as not.
In[242]:= RandomGraph@BernoulliGraphDistribution@10, .5DD

Out[242]=

RandomGraph also accepts an optional second argument, a positive integer, causing it to produce a
list of that many random graphs.
Recall the description of the EulerianGraphQ function. When this function is given a graph, it
returns true or false depending on the existence of an Euler circuit.
To satisfy the requirements of this problem, we use RandomGraph to generate a random graph G.
Then we test it for an Euler circuit using EulerianGraphQ. As long as the randomly generated
graph does not have an Euler circuit, we continue generating new random graphs. We display the path
using FindEulerianCycle and the animatePath function we created in Section 10.5.

Chapter10.nb 81

In[236]:= generateEulerian@n_IntegerD ê; n > 0 := Module@8G, path<,
While@! EulerianGraphQ@GD,
G = RandomGraph@BernoulliGraphDistribution@n, .5DDD;

animatePath@G, First@FindEulerianCycle@GDDD
D

In[237]:= generateEulerian@10D

step

Computations and Explorations 13

Estimate the probability that a randomly generated simple graph with n vertices is connected
for each possible integer n not exceeding ten by generating a set of random simple graphs
and determining whether each is connected.

Solution: To solve this problem we will create a function that generates a number of random graphs of
the specified size and counts the number that are connected. We use the RandomGraph function to
create the random graphs and the ConnectedGraphQ function to test them for connectivity.
In[238]:= connectedProbability@n_Integer, max_IntegerD ê;

n > 0 && max > 0 := Module@8G, i, count = 0<,
For@i = 1, i § max, i++,
G = RandomGraph@BernoulliGraphDistribution@n, .5DD;
If@ConnectedGraphQ@GD, count++D

D;
countêmax

D

82 Chapter10.nb

In[239]:= Table@connectedProbability@i, 100D, 8i, 10<D

Out[239]= :1,
12

25
,
14

25
,
31

50
,

69

100
,

77

100
,
22

25
,

97

100
,
19

20
, 1>

Exercises
1. Write a Mathematica function to find all maximal matchings for a bipartite graph.
2. Write Mathematica functions for calculating the adjacency and incidence matrices for a
	

pseudograph.

3. Write a Mathematica function for creating a pseudograph from an incidence matrix.
4. Write a Mathematica function to find all of the minimal edge cuts of a given graph.
5. Write a Mathematica function to count the number of Hamilton circuits in a simple graph.
6. Write a Mathematica function to determine whether a mixed graph (with directed edges,

multiple edges, and loops) has an Euler circuit and, if so, to find such a circuit.
7. Use Mathematica to construct all regular graphs of degree n, given a positive integer n.

(Regular is defined in the Exercises for Section 10.2.)
8. For vertices u and v in a simple, undirected and connected graph G, the local vertex

connectivity kHu, vL is defined to be the minimum number of vertices that must be removed so
that there is no path between vertex u and vertex v. Write a Mathematica function that
calculates the local vertex connectivity of a graph and a pair of its vertices.

9. For vertices u and v in a simple, undirected and connected graph G, the local edge
connectivity lHu, vL is defined to be the minimum number of edges that must be removed so
that there is no path between vertex u and vertex v. Write a Mathematica function that
calculates the local edge connectivity of a graph and a pair of its vertices.

10. Write a Mathematica function that computes the thickness of a nonplanar simple graph (see
the Exercises in Section 10.7 for a definition of thickness).

11. Write a Mathematica function for finding an orientation of a simple graph. (An orientation of
a graph is defined in the Supplementary Exercises of Chapter 10.)

12. Write a Mathematica function for finding the bandwidth of a simple graph. (The bandwidth of
a graph is defined in the Supplementary Exercises of Chapter 10.)

13. Write a Mathematica function for finding the radius and diameter of a simple graph. (The
radius and diameter of a graph are defined in the Supplementary Exercises of Chapter 10.)

14. Use Mathematica to find the minimum number of queens controlling an nµ n chessboard for
as many values of n as you can. Make use of the concept of a dominating set, described in the
Supplementary Exercises of Chapter 10.

15. Write a Mathematica function for finding all self-complementary graphs on n vertices. (A self-
complementary graph is a graph which is isomorphic to its own complement.) Use your
function to display the self-complementary graphs for as large a n as possible.

Chapter10.nb 83

16. Write a Mathematica function that finds a total coloring for a graph. A total coloring of a
graph is an assignment of a color to each vertex and each edge such that: (a) no pair of
adjacent vertices have the same color; (b) no two edges with a common endpoint have the
same color; and (c) no edge has the same color as either of its endpoints.

17. A sequence of positive integers is called graphic if there is a simple graph that has this
sequence as its degree sequence. In this context, the degree sequence of a graph is the
nondecreasing sequence made up of the degrees of the vertices of the graph. Develop a
Mathematica function for determining whether a sequence of positive integers is graphic and,
if it is, to construct a graph with this degree sequence.

84 Chapter10.nb

