
10 Graphs

Introduction
In this chapter we consider ways in which Mathematica  can help you explore and understand graphs.
In particular, we describe how to do computations on graphs using Mathematica and how Mathematica
can be used to visualize graphs.
Throughout the first half of this chapter, pseudographs are a recurring theme. Recall that pseudographs
are  graphs  that  may  contain  loops  and  may  contain  multiple  edges  between  vertices.  Mathematica
includes numerous and powerful commands for representing, manipulating, and calculating with sim-
ple  graphs,  both  undirected  and  directed.  Each  section  in  what  follows  will  introduce  you  to  these
useful  tools so that  you can more easily explore the concepts described in the textbook. But many of
these  functions  do  not  support  graphs  with  multiple  edges.  So  parts  of  this  chapter  are  devoted  to
extending Mathematica's existing functionality to pseudographs. This will give you tools that you can
use  to  explore  these  kinds  of  graphs.  More  than  that,  seeing  how to  create  the  functions  for  pseudo-
graphs will help you to better understand how the functions work for simple graphs.

10.1 Graphs and Graph Models
Recall that a simple graph, as defined in Section 10.1 of the text, is a set V  of vertices and a set E  of
unordered  pairs  of  elements  of  V ,  called  the  edges  of  the  graph,  and  where  each  edge  connects  two
different vertices and no two edges connect the same pair of vertices. That is, the edges are undirected,
there are no loops, and there are no multiple edges.
Mathematica  represents  a  simple  graph  as  a  special  raw  object  with  head  Graph.  You  should  think
about Graph not as a function, but as a way to describe and represent an object. To explain this distinc-
tion, consider a fraction, such as 5

9
. We think about this as a single number, and Mathematica treats it

as a simple object, but if you delve down using FullForm, you see that it’s a bit more complicated.
In[1]:= 5ê9 êê FullForm

Out[1]//FullForm=
Rational@5, 9D

FullForm  reveals  that,  for  Mathematica,  the  fraction  5
9

 is  actually  represented  by  Rational
applied to two integers. Rational is not a function, in the usual sense. Rather, it is a head that tells
Mathematica  what  the  contents  mean.  Graph  is  exactly  the  same,  if  a  bit  more  complicated.  It  is  a
head that tells Mathematica  that the contents represent a graph object. Also, just like a Rational  is
typically  displayed  in  the  usual  fraction  notation,  a  Graph  object  is  displayed  as  a  drawing  of  the
graph. 



FullForm  reveals  that,  for  Mathematica,  the  fraction  5
9

 is  actually  represented  by  Rational
applied to two integers. Rational is not a function, in the usual sense. Rather, it is a head that tells
Mathematica  what  the  contents  mean.  Graph  is  exactly  the  same,  if  a  bit  more  complicated.  It  is  a
head that tells Mathematica  that the contents represent a graph object. Also, just like a Rational  is
typically  displayed  in  the  usual  fraction  notation,  a  Graph  object  is  displayed  as  a  drawing  of  the
graph. 
The  simplest  way  to  specify  a  Graph  object  in  Mathematica  is  by  specifying  the  edges  as  a  list  of
rules. You typically use positive integers or strings for the vertices (although other expressions can be
used). An edge between the vertex represented by 1 and the vertex represented by “a” is given as the
rule 1 -> "a".
As an example,  the following defines  a  directed version of  the graph shown in Exercise  3 in  Section
10.1.

In[2]:= exercise3directed =
Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<D

Out[2]=

To produce an undirected simple graph, you can set the option DirectedEdges to False.
In[3]:= exercise3 = Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,

DirectedEdges Ø FalseD

Out[3]=

You can also create (undirected) simple graphs using the symbol ê in place of Rule (Ø). The undi-
rected edge symbol is entered by typing ÂueÂ. 
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In[4]:= Graph@8"a" ê "b", "a" ê "c", "b" ê "c", "b" ê "d"<D

Out[4]=

If you prefer, you can use the symbol ð, entered as ÂdeÂ in place of Rule (Ø) for a directed graph.
Note,  however,  that  Graph  does  not  allow mixed graphs,  that  is,  graphs with  both directed an undi-
rected  edges.  In  this  manual,  we  will  generally  use  Rule  (Ø)  to  specify  all  edges  together  with  the
DirectedEdges option, when needed. There are, however, certain functions that require the use of
ð or ê, and you should pay special attention to those situations.
If you wish, you may give an explicit  list  of vertices as an optional first  argument to Graph.  This is
only required in the situation when a graph has a  vertex not  adjacent  to  any other,  as  in  the example
below.

In[5]:= Graph@81, 2, 3, 4, 5<,
81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1<, DirectedEdges Ø FalseD

Out[5]=

The VertexList and EdgeList functions applied to a Graph object output the vertices and edges
of the graph.

In[6]:= VertexList@exercise3D

Out[6]= 8a, b, c, d<

In[7]:= EdgeList@exercise3D

Out[7]= 8a ê b, a ê c, b ê c, b ê d<

Observe that  the output of EdgeList  is  a list  of undirected edges,  using the symbol ê,  despite the
fact  that  we  defined  the  graph  using  rules.  This  is  because  the  true  effect  of  setting  the  Direct-
edEdges  option  to  False  is  for  Mathematica  to  transform  the  rules  into  undirected  edges.  Using
FullForm, you can see that these are stored using the head UndirectedEdge.
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Observe that  the output of EdgeList  is  a list  of undirected edges,  using the symbol ê,  despite the
fact  that  we  defined  the  graph  using  rules.  This  is  because  the  true  effect  of  setting  the  Direct-
edEdges  option  to  False  is  for  Mathematica  to  transform  the  rules  into  undirected  edges.  Using
FullForm, you can see that these are stored using the head UndirectedEdge.

In[8]:= EdgeList@exercise3D êê FullForm

Out[8]//FullForm=
List@UndirectedEdge@"a", "b"D, UndirectedEdge@"a", "c"D,
UndirectedEdge@"b", "c"D, UndirectedEdge@"b", "d"DD

Note  that  the  same  is  true  in  the  directed  case,  with  the  edges  represented  internally  as
DirectedEdge.

In[9]:= EdgeList@exercise3directedD

Out[9]= 8a ð b, a ð c, b ð c, b ð d<

In[10]:= EdgeList@exercise3directedD êê FullForm
Out[10]//FullForm=

List@DirectedEdge@"a", "b"D, DirectedEdge@"a", "c"D,
DirectedEdge@"b", "c"D, DirectedEdge@"b", "d"DD

Note  that  Graph  objects  may  contain  loops,  as  illustrated  below  with  a  replica  of  Exercise  7  from
Section 10.1. Loops are created simply by including an edge from a vertex to itself.

In[11]:= exercise7 = Graph@8"a", "b", "c", "d", "e"<,
8"a" Ø "b", "b" Ø "e", "c" Ø "b", "c" Ø "c",
"c" Ø "d", "d" Ø "c", "e" Ø "a", "e" Ø "d", "e" Ø "e"<,

VertexLabels Ø "Name", ImagePadding Ø 5,
VertexCoordinates Ø 881, 1<, 82, 2<, 83, 2<, 83, 1<, 82, 1<<D

Out[11]=

Options Affecting the Visual Output of Graph
In this subsection, we will explain just a few of the options available when creating Graph objects to
change their visual appearance. Readers interested in greater control over the visual display of Graph
objects should refer to the help pages.
To  have  Mathematica  display  the  names  of  vertices,  you  use  the  VertexLabels  option.  Probably
the most common value for this option is "Name", including the quotation marks, which causes each
vertex to be labeled with its name. As an example, we repeat the definition of the graph from Exercise
3 used above, with this option invoked.
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To  have  Mathematica  display  the  names  of  vertices,  you  use  the  VertexLabels  option.  Probably
the most common value for this option is "Name", including the quotation marks, which causes each
vertex to be labeled with its name. As an example, we repeat the definition of the graph from Exercise
3 used above, with this option invoked.

In[12]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexLabels Ø "Name"D

Out[12]=

Observe that Mathematica has cut off part of the string “c” which labels the top vertex. This is because
it did not allocate room for the labels when it drew the graph. To correct for this, we apply the Image-
Padding  option,  which  is  available  for  all  graphics  objects.  The  valid  values  for  ImagePadding
include: a single integer representing padding to be added to all sides of the image, measured in points;
a  list  of  the  form  88 left, right <, 8 bottom, top <<  indicating  specific  lengths  for  each
side; None,  for no padding, or All,  which ensures there is  enough padding for all  the objects in the
graphic. Below, we see that 5 points on all sides is sufficient in this example.

In[13]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexLabels Ø "Name", ImagePadding Ø 5D

Out[13]=

Another  use  of  the  VertexLabels  option  is  to  specify  labels  for  specific  vertices.  You do  this  by
identifying the option with a list consisting of rules associating the name of the vertex with the desired
label. The following illustrates this by labeling two of the vertices in the Exercise 3 graph.
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In[14]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False,
VertexLabels Ø 8"a" Ø "A", "d" Ø 4<, ImagePadding Ø 5D

Out[14]=

Similarly,  edges  in  a  graph  can  be  labeled  using  the  EdgeLabels  option.  Once  again,  the  value
“Name” will cause all edges to be labeled.

In[15]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, EdgeLabels Ø "Name", ImagePadding Ø 5D

Out[15]=

As with  vertices,  you can  also  choose  to  label  specific  edges  with  arbitrary  labels  by  giving  a  list  of
rules  as  the  value  to  EdgeLabels.  When  doing  this,  the  edges  must  be  specified  using  either  ê
(ÂueÂ) or ð (ÂdeÂ).
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In[16]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, EdgeLabels Ø 8"a" ê "b" Ø e1<D

Out[16]=

As an alternative to VertexLabels and EdgeLabels, you can use the wrapper Labeled around
an edge in the list of edges or, in conjuncion with the optional list of vertices, around a vertex. The first
element in Labeled is the name of the vertex or the edge definition. The second element is the label
to  be  used.  Observe  that,  just  as  with  the  EdgeLabels  option,  edges  within  a  Labeled  wrapper
must be given using ê or ð.

In[17]:= Graph@8"a", Labeled@"b", "b"D, "c", Labeled@"d", 4D<,
8"a" Ø "b", "a" Ø "c", "b" Ø "c", Labeled@"b" ê "d", "edge"D<,
DirectedEdges Ø FalseD

Out[17]=

You  can  change  the  size  of  vertices  with  the  VertexSize  option.  Valid  values  include  Tiny,
Small, Medium, and Large, or a number between 0 and 1. A numerical value indicates that the size
of the vertex should be that proportion of the distance between the closest two vertices.
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In[18]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False,
VertexLabels Ø "Name", VertexSize Ø MediumD

Out[18]=

You  can  further  control  the  appearance,  such  as  the  color,  of  vertices  and  edges  with  the  Ver-
texStyle and EdgeStyle options. Multiple styles can be combined with the Directive wrap-
per.  For  example,  the  following  illustrates  how to  create  red  vertices  and  thick  green  edges.  Readers
interested in exploring the various options available should consult the Graphics Directives guide.

In[19]:= Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexStyle Ø Red,
EdgeStyle Ø Directive@Green, ThickDD

Out[19]=

The  VertexCoordinates  option  is  used  to  specify  the  locations  of  vertices.  The  value  for  the
VertexCoordinates  option  is  a  list  of  pairs  of  the  form 88x1, y1<, 8x2, y2<, ...<,  with
the pairs specifying the coordinates of a vertex. The order of the locations must correspond to the order
of  the vertices  in  the graph.  When an explicit  list  of  vertices  is  given as  the optional  first  element  of
Graph,  that  list  specifies  the  order.  Otherwise,  the  order  is  determined  by  when  the  vertex  is  first
encountered in the list of edges, and is the same as the output of VertexList. Below, we use Ver-
texCoordinates  to  redraw the  Exercise  3  graph with  the  vertices  in  the  same positions  as  in  the
image in the textbook.
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In[20]:= Graph@8"a", "b", "c", "d"<,
8"a" Ø "b", "a" Ø "c", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False, VertexLabels Ø "Name",
VertexCoordinates Ø 881, 2<, 82, 2<, 81, 1<, 82, 1<<,
ImagePadding Ø 10D

Out[20]=

You can also exert control over the layout of the vertices of a graph, but without specifying each coordi-
nate, by using the GraphLayout option to specify the algorithm that Mathematica uses to choose the
vertex location. Common choices include: "SpringEmbedding", which treats edges as springs and
minimizes the mechanical energy of the system; "SpringElectricalEmbedding", which treats
edges  as  springs  and  vertices  as  electrical  charges  and  minimizes  mechanical  and  electrical  energy;
"HighDimensionalEmbedding", which is like the spring-electrical method but computes in high
dimensions and then projects down to two; "CircularEmbedding", which places the vertices on a
circle; and "LayeredDrawing", which places vertices in layers and attempts to reduce the number
of edges between non-adjacent layers.

Modifying Graphs
You can modify  existing  graphs  by adding and deleting  edges  and vertices  using  the  functions  Ver-
texAdd,  VertexDelete,  EdgeAdd,  and EdgeDelete.  Each of these functions requires a graph
as the first  argument.  The second argument is  usually either a vertex,  an edge,  or a list  of vertices or
edges.  The  deletion  functions  can,  in  place  of  a  vertex,  edge,  or  list,  accept  a  pattern  as  the  second
argument in order to delete all of the vertices or edges that match the pattern.
First, we create an example graph to illustrate the functions with.
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In[21]:= modifyExample =
Graph@8"a" Ø "b", "a" Ø "c", "a" Ø "d", "b" Ø "c", "b" Ø "d"<,
DirectedEdges Ø False,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[21]=

Now we use VertexAdd to add two new vertices to the graph. 
In[22]:= modifyExampleB = VertexAdd@modifyExample, 8"y", "z"<D

Out[22]=

Now we add edges to connect the new vertices with the rest of the graph. Note that Mathematica will
interpret rules as undirected edges since the original graph is not directed.
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In[23]:= modifyExampleB =
EdgeAdd@modifyExampleB, 8"a" Ø "z", "a" Ø "y", "y" Ø "z"<D

Out[23]=

Now we delete one of the old edges. Note that to delete an edge from an undirected graph, you must
use ê (ÂueÂ). Likewise, deleting an edge from a directed graph must use ð (ÂdeÂ).

In[24]:= modifyExampleB = EdgeDelete@modifyExampleB, "b" ê "c"D

Out[24]=

Finally, note that deleting a vertex also deletes all the edges incident with that vertex. 
In[25]:= modifyExampleB = VertexDelete@modifyExampleB, "y"D

Out[25]=
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In[26]:= VertexList@modifyExampleBD

Out[26]= 8a, b, c, d, z<

In[27]:= EdgeList@modifyExampleBD

Out[27]= 8a ê b, a ê c, a ê d, b ê d, a ê z<

Multiple edges and GraphPlot
We saw that loops are allowed, but Graph  objects may not contain multiple edges. The following is
the list of edges for Exercise 4 from Section 10.1.

In[28]:= exercise4edges = 8"a" Ø "b", "a" Ø "b",
"a" Ø "c", "b" Ø "d", "b" Ø "d", "b" Ø "d", "c" Ø "d"<;

This cannot be used to form a Graph.
In[29]:= Graph@exercise4edgesD

Graph::supp : Mixed graphs and multigraphs are not supported. à

Out[29]= Graph@8a Ø b, a Ø b, a Ø c, b Ø d, b Ø d, b Ø d, c Ø d<D

As mentioned above,  Mathematica  includes  many functions  that  can  be  applied  to  Graph  objects  in
order  to  check  graph  properties  and  do  other  computations  with  them.  In  order  to  work  with  multi-
graphs, that is, graphs with multiple edges, we will build our own functions to do computations. Fortu-
nately, we do not need to develop a new function for drawing images of multigraphs.
The GraphPlot  function,  having been introduced in  Mathematica  version  6,  is  older  than  and par-
tially superceded by the Graph object. However, it has some benefits, in particular the ability to draw
multigraphs.
The basic input  for  GraphPlot  is  a  list  of  rules representing the edges of  the graph.  In this  regard,
GraphPlot and Graph are similar. However, GraphPlot does not allow the use of the symbols ê
or ð, nor does it allow a list of vertices as a first argument.
You can draw a plot of Exercise 4 by applying GraphPlot to exercise4edges.

In[30]:= GraphPlot@exercise4edgesD

Out[30]=

Right away, you can see another important difference between GraphPlot and Graph. Specifically,
where  Graph’s  default  behavior  is  to  interpret  rules  as  directed  edges,  GraphPlot  assumes  that
rules are not directed. To draw a directed graph, you must use the DirectedEdges option.

12   Chapter10.nb



Right away, you can see another important difference between GraphPlot and Graph. Specifically,
where  Graph’s  default  behavior  is  to  interpret  rules  as  directed  edges,  GraphPlot  assumes  that
rules are not directed. To draw a directed graph, you must use the DirectedEdges option.

In[31]:= GraphPlot@exercise4edges, DirectedEdges Ø TrueD

Out[31]=

The most  important  difference  between  GraphPlot  and  Graph  is  the  fact  that  where  Graph  pro-
duces  a  graph  object,  which  can  be  computed  with  and  manipulated,  GraphPlot  only  produces  a
graphics object, just like Plot or Plot3D. For this reason, we can not assign a symbol to the result of
GraphPlot and use it to do computations on the graph. Instead, when dealing with multigraphs, we
will treat the list of rules representing the graph’s edges, such as exercise4edges, as the representa-
tion of the graph.
One final comment about the relationship between GraphPlot  and Graph:  GraphPlot  can often
be given a Graph  object  as its  argument in order to create a plot  of the graph.  For example,  we can
apply GraphPlot to exercise7.

In[32]:= GraphPlot@exercise7D

Out[32]=

This preserves some of the options from the Graph  object,  such as the vertex positions, but discards
options  that  GraphPlot  does  not  implement  or  are  implemented  differently,  such  as  the  vertex
labels.  You  may  also  observe  that  the  GraphPlot  version  has  removed  the  loops.  These  can  be
displayed by explicitly setting the SelfLoopStyle option to All.
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In[33]:= GraphPlot@exercise7, SelfLoopStyle Ø AllD

Out[33]=

We now focus on some of the options you can use with GraphPlot to control the plot’s appearance.
Note that many of these are different from and incompatible with the corresponding option for Graph.
We will illustrate with Exercise 8 from Section 10.1, whose edge list we produce below.

In[34]:= exercise8edges = 8"a" Ø "b", "a" Ø "b", "a" Ø "e",
"b" Ø "c", "b" Ø "c", "c" Ø "d", "c" Ø "d", "c" Ø "d",
"c" Ø "e", "d" Ø "d", "e" Ø "a", "e" Ø "d", "e" Ø "e"<

Out[34]= 8a Ø b, a Ø b, a Ø e, b Ø c, b Ø c, c Ø d,
c Ø d, c Ø d, c Ø e, d Ø d, e Ø a, e Ø d, e Ø e<

We have  already mentioned  the  DirectedEdges  option.  By default,  GraphPlot  draws  edges  as
undirected. We set DirectedEdges to True to draw the edges as arrows.

In[35]:= GraphPlot@exercise8edges, DirectedEdges Ø TrueD

Out[35]=

We have also  already mentioned the  SelfLoopStyle  option.  The value  All  ensures  that  all  self-
loops  are  drawn,  while  None  will  cause  the  loops  to  not  be  drawn.  You  can  also  specify  a  value
between 0 and 1, which will scale the loops relative to the average length of edges in the graph.
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In[36]:= GraphPlot@exercise8edges,
DirectedEdges Ø True, SelfLoopStyle Ø 0.2D

Out[36]=

To display the names of vertices, you use the VertexLabeling  option. The default behavior,  pro-
vided the number of vertices is not too large, is  for the names of vertices to appear in a tooltip when
you move the mouse pointer over the vertex. This option can be explicitly given with value Tooltip.
By setting the VertexLabeling option to True, the names will be displayed on the graph itself.

In[37]:= GraphPlot@exercise8edges, DirectedEdges Ø True,
SelfLoopStyle Ø 0.2, VertexLabeling Ø TrueD

Out[37]=

a

b

e

c

d

To display labels for edges, you must explicitly provide the labels. This is done by replacing the rule
defining an edge by a list consisting of the rule and an expression for the label. We illustrate with the
following simple example.
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In[38]:= GraphPlot@81 Ø 2, 82 Ø 3, "2-3"<, 3 Ø 4, 4 Ø 1<D

Out[38]= 2-3

The option EdgeLabeling can be set to Automatic to instead display the label only as a tooltip,
or to False to suppress display of the labels.
To explicitly control the placement of vertices, you use the VertexCoordinateRules option. The
value of this option is a list of rules identifying the name of a vertex with a pair representing x  and y
coordinates.  You  can  use  the  symbol  Automatic  in  place  of  the  coordinate  pair  to  indicate  that
Mathematica should determine the location for that vertex automatically. This is the default if vertices
are omitted from the rules. You can also use Automatic in place of either the x or y value within a
pair if you wish to specify one value but leave the other to Mathematica to determine. We use Vertex-
CoordinateRules to rearrange the vertices in the Exercise 8 example to match the locations in the
textbook.

In[39]:= GraphPlot@exercise8edges, DirectedEdges Ø True,
SelfLoopStyle Ø 0.2, VertexLabeling Ø True,
VertexCoordinateRules Ø 8"a" Ø 80, 1<, "b" Ø 80, 0<,

"c" Ø 81, 0<, "d" Ø 82, 0.5<, "e" Ø 81, 1<<D

Out[39]=

a

b

e

c

d

Finally,  the  Method  option  can  be  used  to  specify  the  algorithm  used  to  lay  out  the  vertices.  The
values  are  very  similar  to  GraphLayout  including  “SpringEmbedding”,
“SpringElectricalEmbedding”,  “HighDimensionalEmbedding”,  and
“CircularEmbedding”.

10.2 Graph Terminology and Special Types of Graphs

16   Chapter10.nb



10.2 Graph Terminology and Special Types of Graphs
In  this  section  we  will  see  how  to  use  Mathematica  to  perform  computations  related  to  some  of  the
basic terminology of graphs, such as calculating degree. We will also look at some of the special fami-
lies  of  graphs  that  Mathematica  has  built-in  support  for.  And  we  discuss  subgraphs  and  unions  of
graphs in Mathematica.

Degree
For a Graph object, Mathematica includes the function VertexDegree for determining the degree
of a vertex. Given a Graph object and one of the graph’s vertices, the function returns the number of
edges  incident  to  that  vertex.  For  example,  we  can  check  the  degrees  of  vertices  a  and  e  of
exercise7 from the previous section.

In[40]:= exercise7

Out[40]=

In[41]:= VertexDegree@exercise7, "a"D

Out[41]= 2

In[42]:= VertexDegree@exercise7, "e"D

Out[42]= 5

Observe that the loop at the vertex e counts as 2 towards the degree of that vertex. Also note that with
this  directed  graph,  VertexDegree  calculates  the  number  of  edges  incident  to  the  given  vertex
without  regard  for  their  direction.  Mathematica  provides  VertexInDegree  and  VertexOutDe-
gree functions for calculating the directed values. As an example, consider vertex d from above.

In[43]:= VertexInDegree@exercise7, "d"D

Out[43]= 2

In[44]:= VertexOutDegree@exercise7, "d"D

Out[44]= 1

All three of these functions can be used without a second argument. If they are passed only the graph
as the sole argument, they will return a list of the degrees of the vertices. Note that the output is in the
same order as the output from VertexList.
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All three of these functions can be used without a second argument. If they are passed only the graph
as the sole argument, they will return a list of the degrees of the vertices. Note that the output is in the
same order as the output from VertexList.

In[45]:= VertexList@exercise7D

Out[45]= 8a, b, c, d, e<

In[46]:= VertexDegree@exercise7D

Out[46]= 82, 3, 5, 3, 5<

In[47]:= VertexInDegree@exercise7D

Out[47]= 81, 2, 2, 2, 2<

In[48]:= VertexOutDegree@exercise7D

Out[48]= 81, 1, 3, 1, 3<

Degree in Pseudographs
Mathematica's  built-in  functions  for  degree  cannot  take  into  account  multiple  edges.  We will  write  a
function to  rectify  this,  at  least  for  the undirected degree.  The in-degree and out-degree functions for
directed graphs are left to the reader.
We reproduce Exercise 2 from Section 10.2 to use as an example. Recall that the presence of multiple
edges means that we cannot create a Graph object. Instead, we model the graph as a list of edges, with
multiple edges repeated. We will use GraphPlot to display an image of the graph, but our function
for computing degree will take the list of edges as the input.

In[49]:= exercise2edges = 8"a" Ø "a", "a" Ø "b", "a" Ø "b",
"a" Ø "b", "a" Ø "e", "b" Ø "c", "b" Ø "d", "b" Ø "e",
"c" Ø "c", "c" Ø "d", "c" Ø "d", "c" Ø "d", "d" Ø "e"<;

In[50]:= GraphPlot@exercise2edges, VertexLabeling Ø True,
VertexCoordinateRules Ø 8"a" Ø 80, 1<,

"b" Ø 81, 1<, "c" Ø 82, 0<, "d" Ø 81, 0<, "e" Ø 80, 0<<D

Out[50]=

a b

e cd

Note that we use the VertexLabeling option to display the names of the vertices and the Vertex-
CoordinateRules  option  to  ensure  that  the  position  of  vertices  corresponds  to  the  image  in  the
textbook.  Using  the  DirectedEdges  option  is  unnecessary  since  GraphPlot  defaults  to  undi-
rected edges.
To  calculate  the  degree  of  a  specified  vertex,  given  the  list  of  edges,  we  must  count  the  number  of
edges in which the vertex is an endpoint. Keep in mind that a loop contributes twice to the degree of
the vertex. This means that the degree of a vertex is the number of times that the vertex name appears
in the list of edges as either endpoint.

18   Chapter10.nb



To  calculate  the  degree  of  a  specified  vertex,  given  the  list  of  edges,  we  must  count  the  number  of
edges in which the vertex is an endpoint. Keep in mind that a loop contributes twice to the degree of
the vertex. This means that the degree of a vertex is the number of times that the vertex name appears
in the list of edges as either endpoint.
We  will  use  the  built-in  function  Count  to  count  the  number  of  times  the  vertex  appears.  Count
requires two arguments: a list (or other expression) within which to count and a pattern being sought. It
returns the number of times the pattern matches an element of the list. A third argument allows you to
specify  the  level  at  which  to  search.  By  default,  Count  will  only  count  the  elements  of  the  list  that
match the pattern. In this case, we want to count elements of Rules that are members of the list. That
is, we want Count to look at level 2. To specify this, we give Count the third argument {2}, indicat-
ing that it should only count expressions at the second level that match the pattern.
So to find the degree of a, we apply Count to the edge list, the name of the vertex "a", and {2}.

In[51]:= Count@exercise2edges, "a", 82<D

Out[51]= 6

We use this approach to create a function as shown below.
In[52]:= undirectedDegree@edgeList : 8___Rule<, vertex_D :=

Count@edgeList, vertex, 82<D

We check the function by applying it to the vertex d.
In[53]:= undirectedDegree@exercise2edges, "d"D

Out[53]= 5

Some Special Simple Graphs
The  textbook  discusses  several  families  of  graphs,  including  complete  graphs,  cycles,  and  wheels.
Mathematica provides functions for easily creating these and other special graphs. 
We begin with complete graphs. Recall that a complete graph is a simple, undirected graph on a given
number of vertices that has all possible edges between those vertices. The complete graph on n vertices
is denoted Kn. The complete graph on n vertices can be obtained with the function CompleteGraph
applied to n. For example, we can generate and display K5, the complete graph on 5 vertices.

In[54]:= CompleteGraph@5D

Out[54]=
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Similarly, the cycle Cn is obtained with the function CycleGraph.
In[55]:= CycleGraph@9D

Out[55]=

A wheel Wn  is  obtained from the cycle graph Cn  by adding one additional vertex adjacent to all  n  of
the original vertices. In Mathematica, wheel graphs are obtained by WheelGraph applied to the value
n+ 1, the total number of vertices in the wheel, not just the outside ring.

In[56]:= WheelGraph@6D

Out[56]=

Hypercubes
To  construct  the  n-cube  Qn,  we  use  the  HypercubeGraph  function  applied  to  the  dimension  n.
Recall the definition of the hypercube graph given in Example 8 of Section 10.2. There are 2n  vertices
labeled with  the  binary  representations  of  the  numbers  0  through 2n - 1.  Two vertices  are  adjacent  if
their  binary representations  differ  in  only one digit.  Here is  the  presentation of  the  three dimensional
cube.
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In[57]:= HypercubeGraph@3D

Out[57]=

By default, the vertices are not labeled. To have Mathematica label the vertices, we can use the Ver-
texLabels option. In fact, HypercubeGraph accepts all the options that Graph does.

In[58]:= HypercubeGraph@3, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[58]=

One  more  modification  will  allow  us  to  see  the  connection  between  this  image  and  the  definition.
Instead of using “Name” as the argument to VertexLabels, we can specify the labels explicitly by
setting the option to a list of rules identifying the integers with the binary expression.
The definition of Qn  tells us that the vertices should be considered to be the binary representations of
the integers  from 0 to 7.  So we will  apply labels  by subtracting 1 from the integer  vertex names and
using  the  IntegerString  function  to  obtain  the  binary  representation.  The  IntegerString
function requires two arguments, an integer and a base, and produces a string representing the integer
in that base. A third optional argument allows you to specify a minimal length for the string.
The following Table produces the list of rules identifying the vertex names with the appropriate label.

In[59]:= Table@v Ø IntegerString@v - 1, 2, 3D, 8v, 8<D

Out[59]= 81 Ø 000, 2 Ø 001, 3 Ø 010,
4 Ø 011, 5 Ø 100, 6 Ø 101, 7 Ø 110, 8 Ø 111<

Using this as the value for VertexLabels produces a graph similar to the one shown in Figure 6 of
Section 10.2 of the textbook.
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In[60]:= HypercubeGraph@3,
VertexLabels Ø Table@v Ø IntegerString@v - 1, 2, 3D, 8v, 8<D,
ImagePadding Ø 10D

Out[60]=

Bipartite Graphs
Another important class of graphs is the bipartite graphs. A bipartite graph is one whose vertex set can
be partitioned into two disjoint sets such that every edge has one vertex in each of the partitioning sets.
In other words, no two vertices in the same partitioning set are adjacent. We write V = HA, BL to indi-
cate that the vertex set V  is partitioned into the sets A and B.
The complete bipartite graph Km,n  is a bipartite graph with bipartition V = HA, BL such that there are m
vertices in A and n in B and such that there is an edge for every pair of vertices a œ A and b œ B. The
CompleteGraph  function can be used to create complete bipartite  graphs.  The argument is  the list
consisting of the pair of m and n. 

In[61]:= CompleteGraph@83, 4<D

Out[61]=

Notice  that  Mathematica  draws  the  complete  bipartite  graph  with  the  two  partitioning  sets  along  the
left and right to make the partition visually clear. As with the other functions in this section, the usual
options  for  Graph  apply.  We  illustrate  how  to  label  the  vertices  in  a  meaningful  way.  To  enter  a
subscript in Mathematica, press ‚ and -.
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In[62]:= CompleteGraph@83, 4<, VertexLabels Ø Union@Table@i Ø ai, 8i, 3<D,
Table@i Ø bi-3, 8i, 4, 7<DD, ImagePadding Ø 10D

Out[62]=

Mathematica can also produce complete multipartite graphs. A k-partite graph is a graph in which the
vertices can be partitioned into k disjoint sets so that no two vertices in any one of the partitioning sets
are adjacent.

In[63]:= CompleteGraph@82, 3, 4<D

Out[63]=

Mathematica has a function for determining whether a given graph is bipartite: BipartiteGraphQ.
This function accepts a graph as its sole argument and returns True if the graph is bipartite.

In[64]:= BipartiteGraphQ@HypercubeGraph@3DD

Out[64]= True

Bipartite Pseudographs
It is worthwhile, however, to recreate a version of BipartiteGraphQ from scratch in order to better
understand  the  algorithm  that  determines  whether  the  graph  is  bipartite  and  finds  a  bipartition.  Our
function will apply to edge lists, so as to be applicable to pseudographs. Also, instead of just returning
true,  our  function  will,  if  the  graph  is  bipartite,  display  the  graph  with  the  vertices  colored  red  and
green to represent the partitioning. Of course, if the graph is not bipartite, the function will return false.
For  Graph  objects,  the  color  of  vertices  can  be  changed  by  setting  the  VertexStyle  option  to  a
single  style  for  global  changes  or  to  a  list  of  rules  to  set  options  for  individual  vertices  as  is  shown
below.
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For  Graph  objects,  the  color  of  vertices  can  be  changed  by  setting  the  VertexStyle  option  to  a
single  style  for  global  changes  or  to  a  list  of  rules  to  set  options  for  individual  vertices  as  is  shown
below.

In[65]:= HypercubeGraph@2, VertexLabels Ø "Name",
VertexStyle Ø 81 Ø Red, 2 Ø Green, 3 Ø Blue, 4 Ø Black<,
ImagePadding Ø 10D

Out[65]=

The VertexStyle  option is  not  a  possibility for  graphs not  stored as a Graph  object.  Instead,  the
VertexRenderingFunction  allows us to take complete control of the appearance of vertices.  It
is  not  quite so easy to use,  however.  The following shows how to display the vertices as blue circles
with the vertex label inside of the disk.

In[66]:= GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 4, 3 Ø 4<, VertexRenderingFunction Ø
H8Blue, EdgeForm@BlackD, Disk@Ò1, .1D, Green, Text@Ò2, Ò1D< &LD

Out[66]=

1 2

3 4

Notice that the VertexRenderingFunction is set to a pure Function (&). Each time a vertex
needs to be drawn, this function is called with two arguments: the location of the center of the vertex
(#1) and the name of the vertex (#2). The body of the function is a list of graphics directives. Blue
and EdgeForm[Black] cause the shape to be filled with blue and to have a black border. The shape
Disk[#1,.1]  causes  a  disk  to  be  drawn  at  the  location  of  the  vertex  (#1)  with  radius  .1.  Then
Green  changes  the  prevailing  color  and  Text[#2,#1]  causes  the  name  of  the  vertex  (#2)  to  be
displayed at the location (#1) of the vertex. The interested reader can explore the help page for Ver-
texRenderingFunction for more information.
Elements  of  the  VertexRenderingFunction  can  be  made  dependent  on  particular  vertices  by
using expressions such as If  or  Switch.  For example,  the following will  change the color for each
vertex.

24   Chapter10.nb



In[67]:= GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 4, 3 Ø 4<, VertexRenderingFunction Ø
H8Switch@Ò2, 1, Red, 2, Green, 3, Blue, 4, BlackD,

EdgeForm@BlackD, Disk@Ò1, .1D, White, Text@Ò2, Ò1D< &LD

Out[67]=

1 2

3 4

We now turn to our version of BipartiteGraphQ. The idea of the function is as follows. (Note that
this  method is  based on forming a spanning tree of the graph,  a concept discussed in Section 11.4 of
the textbook).
1. Pick a vertex v from the vertex set and place it in the set A.
2. Place all of v's neighbors in set B.
3. For each vertex w in the set B that has not already been processed, place all of w's neighbors that 

are not already in either set into the set A.
4. Repeat step 3, reversing A and B until no more vertices remain to be processed.
5. Once step 4 is complete, we have formed a disjoint partition of the vertices. We then examine 

each edge of the graph and ensure that no edge has both ends in A or both ends in B. If some edge 
fails that test, then the graph is not bipartite. If all of the edges do pass the test, then the graph is 
bipartite and HA, BL is a bipartition.

First we will need a function to determine the list of neighbors of a given vertex. For a Graph object,
the built-in function AdjacencyList  applied to a graph and a vertex will return the list of vertices
adjacent to it.
To find the neighbors of a vertex in a graph defined by a list of rules, rather than a Graph object, we
need to  find  all  of  the  edges  containing the  given vertex  and output  the  other  vertex  in  the  rule.  The
Cases function can be used for this. The first argument to Cases is a list of expressions. The second
argument is a pattern expressing which elements of the first argument should be output. In our case, we
want to pick out those edges, that is, Rules, one of whose elements is the desired vertex. As an exam-
ple,  suppose  we’re  looking  for  edges  involving  the  vertex  a.  Those  edges  will  either  be  of  the  form
Rule[“a”,_]  or  Rule[_,”a”].  In a pattern,  we use the Alternatives  (|)  operator to com-
bined two or more possibilities in a single pattern. The following picks out all of the edges incident to
a in exercise2edges.

In[68]:= exercise2edges

Out[68]= 8a Ø a, a Ø b, a Ø b, a Ø b, a Ø e, b Ø c,
b Ø d, b Ø e, c Ø c, c Ø d, c Ø d, c Ø d, d Ø e<
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In[69]:= Cases@exercise2edges, Rule@"a", _D Rule@_, "a"DD

Out[69]= 8a Ø a, a Ø b, a Ø b, a Ø b, a Ø e<

Note that these edges form the neighborhood graph of “a”, that is, the subgraph consisting of “a” and
all of its neighbors. But our interest is the neighbors, not the subgraph. To obtain the neighbors, we’ll
take advantage of another feature of the Cases function: the second argument can be given as a rule.
The left hand side of the rule is the pattern expressing which elements of the original list should match
and  the  right  hand  side  describes  what  to  include  in  the  output  for  that  matching  element.  Since  we
want the other vertex in the output, not the entire rule, we’ll name the blanks in the rule and output the
vertex.

In[70]:= Cases@exercise2edges, Rule@"a", x_D Rule@x_, "a"D Ø xD

Out[70]= 8a, b, b, b, e<

Applying  Union  will  remove  duplicates  and  sort  the  results.  Replacing  the  example  data  with  argu-
ments allows us to create a function.

In[71]:= neighbors@E : 8__Rule<, v_D :=
Module@8x<, Union@Cases@E, Rule@v, x_D Rule@x_, vD Ø xDDD

Here is the implementation of our function drawBipartite.
In[72]:= drawBipartite@E : 8__Rule<D := Module@8V, AB, i, T, w, e<,

V = Union@Flatten@E, 2, RuleDD;
w = V@@1DD;
AB@0D = 8w<;
AB@1D = 8<;
i = 0;
While@V ¹≠ 8<,
T = Intersection@V, AB@iDD;
i = Mod@i + 1, 2D;
Do@AB@iD = Union@AB@iD,

Complement@neighbors@E, wD, Union@AB@0D, AB@1DDDD
, 8w, T<D;

V = Complement@V, TD
D;
Catch@
Do@If@HMemberQ@AB@0D, e@@1DDD && MemberQ@AB@0D, e@@2DDDL »»

HMemberQ@AB@1D, e@@1DDD && MemberQ@AB@1D, e@@2DDDL,
Throw@FalseDD

, 8e, E<D;
GraphPlot@E, VertexRenderingFunction Ø

H8If@MemberQ@AB@0D, Ò2D, Red, GreenD, EdgeForm@BlackD,
Disk@Ò1, .1D, Black, Text@Ò2, Ò1D< &LD

D
D
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Note that if the graph is not bipartite, the function will output false.
In[73]:= drawBipartite@exercise2edgesD

Out[73]= False

But for  bipartite  graphs,  such as Exercise 4 from Section 10.1,  the function will  draw the graph with
the vertices colored to illustrate the bipartition.

In[74]:= drawBipartite@exercise4edgesD

Out[74]=

a b

c d

Note  also  that  our  function  can  be  applied  to  a  Graph  object  by  calling  EdgeList.  Then,  since
EdgeList always returns a list whose elements have head UndirectedEdge or DirectedEdge,
we must transform those heads into Rule.  For example, the following illustrates a bipartition for the
three dimensional hypercube.

In[75]:= drawBipartite@
EdgeList@HypercubeGraph@3DD ê. UndirectedEdge Ø RuleD

Out[75]= 1

2

3

5

4

6

7

8

For convenience, we can define a version of drawBipartite that accepts a Graph object argument
and applies the transformation automatically.

In[76]:= drawBipartite@G_GraphD := drawBipartite@
EdgeList@GD ê. 8DirectedEdge Ø Rule, UndirectedEdge Ø Rule<

D
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Bipartite Graphs and Matchings
Mathematica  can  help  us  find  maximal  matchings  in  a  bipartite  graph.  We will  use  Figure  10a  from
Section 10.2 of the text as an example. To improve readability, we have abbreviated the names to their
first letter and shortened the descriptions of the jobs.

In[77]:= figure10aEdges = 8"A" Ø "req", "A" Ø "test",
"B" Ø "arch", "B" Ø "imp", "B" Ø "test",
"C" Ø "req", "C" Ø "arch", "C" Ø "imp", "D" Ø "req"<

Out[77]= 8A Ø req, A Ø test, B Ø arch, B Ø imp,
B Ø test, C Ø req, C Ø arch, C Ø imp, D Ø req<

In order to draw the graph meaningfully, in the same fashion as in the text, we will specify the coordi-
nates  of  each  vertex.  This  is  done  by  setting  the  VertexCoordinates  option  to  a  list  of  coordi-
nates, with the order of the list matching the order of the vertices. To ensure that our order is correct,
we will specify a vertex list when we create the Graph.

In[78]:= figure10aVertices =
8"A", "B", "C", "D", "req", "test", "arch", "imp"<

Out[78]= 8A, B, C, D, req, test, arch, imp<

To create the list of coordinates, we use two Tables and specify that the names should have y-coordi-
nate 1 and the jobs should have y-coordinate 0. Join is used to combine the two lists.

In[79]:= figure10aCoordinates =
Join@Table@8i, 1<, 8i, 4<D, Table@8i, 0<, 8i, 4<DD

Out[79]= 881, 1<, 82, 1<, 83, 1<, 84, 1<, 81, 0<, 82, 0<, 83, 0<, 84, 0<<

We now create the graph.
In[80]:= figure10a = Graph@figure10aVertices,

figure10aEdges, VertexLabels Ø "Name",
VertexCoordinates Ø figure10aCoordinates, ImagePadding Ø 5D

Out[80]=

To find a maximal matching, we use the function FindIndependentEdgeSet. The term indepen-
dent edge set is synonymous with matching. The only allowed argument to this function is the graph. It
returns a list of edges in a matching.
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In[81]:= figure10aMatching = FindIndependentEdgeSet@figure10aD

Out[81]= 8A ð test, B ð imp, C ð arch, D ð req<

The output indicates that one maximal matching has Alvarez assigned to testing, Berkowitz to imple-
mentation, Chen to architecture, and Davis to requirements.
We  can  visualize  this  matching  by  having  Mathematica  highlight  the  edges  that  form  the  matching
using  the  function  HighlightGraph.  This  function  requires  two  arguments.  The  first  is  a  graph.
The second is a list  of the elements to highlight.  In this case,  the second argument will  be the output
from FindIndependentEdgeSet.

In[82]:= HighlightGraph@figure10a, figure10aMatchingD

Out[82]=

Subgraphs and Induced Subgraphs
Mathematica  provides  the  Subgraph  function  for  producing  a  subgraph  from  an  existing  graph.
Given a graph and a list of edges, Subgraph produces the Graph consisting of the edges and all the
vertices that are an endpoint of one of the given edges.
For example, below we create the subgraph of the hypercube graph consisting of one of the faces of the
cube.

In[83]:= hyper =
HypercubeGraph@3, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[83]=
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In[84]:= subhyper = Subgraph@hyper, 81 Ø 3, 3 Ø 7, 7 Ø 5, 5 Ø 1<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[84]=

Alternately,  you  can  give  a  list  of  vertices  as  the  second  argument  to  Subgraph.  The  result  is  the
graph induced by the given vertices, that is, the graph consisting of the vertices and all the edges from
the original graph with both endpoints in the set of vertices. Below we consider a prism graph and one
of its layers.

In[85]:= prism = Graph@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 5, 5 Ø 6, 6 Ø 1, 7 Ø 8,
8 Ø 9, 9 Ø 10, 10 Ø 11, 11 Ø 12, 12 Ø 7, 1 Ø 7, 2 Ø 8,
3 Ø 9, 4 Ø 10, 5 Ø 11, 6 Ø 12<, DirectedEdges Ø False,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[85]=

30   Chapter10.nb



In[86]:= subprism = Subgraph@prism, 87, 8, 9, 10, 11, 12<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[86]=

The HighlightGraph function can be used to display a subgraph relative to the original by passing
the original graph as the first argument and the subgraph as the second. 

In[87]:= HighlightGraph@hyper, subhyperD

Out[87]=

In[88]:= HighlightGraph@prism, subprismD

Out[88]=
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Deleting Vertices and Edges
Subgraphs  can  also  be  produced  by  deleting  vertices  or  edges.  The  VertexDelete  and
EdgeDelete  functions  were  described  in  the  previous  section,  but  are  worth  revisiting.  Ver-
texDelete takes two arguments: a graph and a vertex or list of vertices. The function returns a new
graph with the vertex or vertices and all incident edges removed. Here we highlight the subgraph of the
complete graph K4 that is obtained by deleting a vertex.

In[89]:= deleteVExStart = CompleteGraph@5D;

In[90]:= deleteVExEnd = VertexDelete@deleteVExStart, 1D;

In[91]:= HighlightGraph@deleteVExStart, deleteVExEnd,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[91]=

EdgeDelete also takes two arguments, a name of an undirected graph and an edge or a list of edges.
For example, we can remove the outer ring of K5 as follows.

In[92]:= deleteEexStart = CompleteGraph@5D;

In[93]:= deleteEexEdges = Join@Table@i Ø i + 1, 8i, 1, 4<D, 81 Ø 5<D;

In[94]:= deleteEexEnd = EdgeDelete@deleteEexStart, deleteEexEdgesD;

In[95]:= HighlightGraph@deleteEexStart, deleteEexEndD

Out[95]=

32   Chapter10.nb



Adding Vertices and Edges
The functions for adding vertices and edges are very similar. VertexAdd accepts a graph and either a
vertex or list of vertices to add to the graph.

In[96]:= VertexAdd@CompleteGraph@5,
VertexLabels Ø "Name", ImagePadding Ø 10D, "a"D

Out[96]=

EdgeAdd acts on a graph and adds an edge or a list of edges. Note that you can use rules to describe
the  edges  and  Mathematica  will  interpret  them as  directed  or  not  depending  on  whether  the  original
graph is directed.

In[97]:= EdgeAdd@CycleGraph@6D, 81 Ø 3, 2 Ø 4, 3 Ø 5, 4 Ø 6, 5 Ø 1, 6 Ø 2<D

Out[97]=

Edge Contraction
Recall  that  an  edge  contraction  for  an  edge  e  with  endpoints  u  and  v  consists  of  deleting  the  edge,
merging u  and v  into a new vertex w,  and preserving all  edges (other  than e)  which had u  or  v  as  an
endpoint by setting w as the new endpoint. As an illustration, consider the following graph.
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In[98]:= exampleContraction =
Graph@81, 2, 3, 4, 5, 6, 7<, 81 Ø 2, 1 Ø 3, 2 Ø 3,

Style@3 Ø 4, 8Thick, Red<D, 4 Ø 5, 4 Ø 7, 5 Ø 6, 6 Ø 7<,
DirectedEdges Ø False, VertexLabels Ø "Name",
ImagePadding Ø 5, VertexCoordinates Ø
880, 1<, 80, 0<, 81, 0<, 82, 0<, 83, 0<, 83, 1<, 82, 1<<D

Out[98]=

Observe the use of the Style wrapper on the edge between vertices 3 and 4 to highlight that edge.
Mathematica does not include a built-in function for performing an edge contraction, so we will create
one. Our function will take as arguments a Graph object and a rule or a directed edge or an undirected
edge representing the edge to be contracted. Since some of the Graph functions may cause an error if
given an undirected graph and a rule, we begin the function by ensuring that if the graph is undirected
then the edge is stored as an UndirectedEdge and a DirectedEdge if not.
After ensuring the edge is represented properly, we execute a Do loop over the vertices x of the origi-
nal graph. This loop sets values of an indexed variable vertLocs,  which stores the locations of the
vertices  from the display of  the  original  graph.  This  will  be  used later  to  ensure  that  the  vertex posi-
tions  are  preserved  in  the  output.  The  positions  are  obtained  using  the  function  PropertyValue
which takes two arguments: a list consisting of the graph and an object (vertex or edge) of the graph,
and  the  name  of  a  property,  in  this  case,  VertexCoordinates.  Doing  this  is  not  necessary  for
performing the contraction,  but  then Mathematica  would choose new positions for  the vertices  in  the
output graph, which may make the connection between the two graphs more difficult to see.
Next, the function deletes the edge being contracted.
We will need to create a new vertex. The function will automatically name this new vertex by combin-
ing the names of the original two vertices with a hyphen, as in 3-4. To do this, we use ToString on
each  of  the  original  vertex  names  to  ensure  that  they  are  string,  and  then  combine  them  with  the
hyphen using the StringJoin (<>) operator. This vertex is then added to the graph and its position
is calculated as the average of the positions of the original vertices.
Once  the  new  vertex  has  been  established,  it  needs  to  be  connected  to  the  neighbors  of  the  original
vertices. To do this, we use NeighborhoodGraph applied to the existing graph and the endpoints of
the  removed edge.  The result  of  this  function is  the  graph consisting of  those  two vertices  and all  of
their  neighbors.  The  edges  of  this  graph  are  exactly  the  edges  that  need  to  be  modified  to  create  the
contraction. Specifically, for each edge in the neighborhood graph, we need to replace u or v with the
new vertex w.
To this  end,  we loop over  all  of  the  edges  in  the  neighborhood graph,  with  loop variable  modEdge.
First, the edge is deleted from the existing graph. Then we modify the edge by applying ReplaceAll
(/.)  to  replace  whichever  of  the  contracted  vertices  are  present  with  the  new  vertex.  Provided  this
edge does not already exist, we add it to the graph.
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To this  end,  we loop over  all  of  the  edges  in  the  neighborhood graph,  with  loop variable  modEdge.
First, the edge is deleted from the existing graph. Then we modify the edge by applying ReplaceAll
(/.)  to  replace  whichever  of  the  contracted  vertices  are  present  with  the  new  vertex.  Provided  this
edge does not already exist, we add it to the graph.
Once the edges have been modified, the two vertices are deleted from the graph. And finally, looping
over the vertices of the graph, we use PropertyValue, to assign the original positions, which were
stored in vertLocs.
Here is the function.

In[99]:= contractGraph@G_Graph,
e : _Rule _DirectedEdge _UndirectedEdgeD :=

Module@8u = e@@1DD, v = e@@2DD, contractE,
vertLocs, x, w, g = G, N, modEdge<,

H* ensure the edge is a DirectedEdge or UndirectedEdge *L
If@UndirectedGraphQ@GD, contractE = UndirectedEdge@u, vD,
contractE = DirectedEdge@u, vDD;

H* store vertex locations *L
Do@vertLocs@xD = PropertyValue@8G, x<, VertexCoordinatesD,
8x, VertexList@GD<D;

H* delete the edge and add the new vertex *L
g = EdgeDelete@g, contractED;
w = ToString@uD <> "-" <> ToString@vD;
g = VertexAdd@g, wD;
vertLocs@wD = HvertLocs@uD + vertLocs@vDLê2;
H* update old edges *L
N = NeighborhoodGraph@g, 8u, v<D;
Do@g = EdgeDelete@g, modEdgeD;
modEdge = modEdge ê. 8u Ø w, v Ø w<;
If@! EdgeQ@g, modEdgeD, g = EdgeAdd@g, modEdgeDD
, 8modEdge, EdgeList@ND<D;

H* delete the old vertices and reset vertex positions *L
g = VertexDelete@g, 8u, v<D;
Do@PropertyValue@8g, x<, VertexCoordinatesD = vertLocs@xD,
8x, VertexList@gD<D;

g
D

We apply contractGraph to the example.
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In[100]:= contractGraph@exampleContraction, 3 Ø 4D

Out[100]=

Unions and Complements of Graphs
Recall that the union of two graphs is the graph obtained by taking the union of the sets of vertices and
the sets of edges from the two graphs. 
As an example, we will “fill in” a prism graph by computing the union of the prism with the complete
graph on the vertices in one ring. We begin with the prism we created above.
In[101]:= unionExampleA = prism

Out[101]=

We  use  the  complete  graph  on  6  vertices  as  the  second  graph  that  will  form  part  of  the  union.  By
default,  CompleteGraph  with  argument  6  will  form  the  complete  graph  on  the  vertices  from  1
through 6. Suppose instead that we want the complete graph on the vertices from 7 through 12. To do
this, apply the VertexReplace function. This function accepts two arguments: a graph and a list of
rules specifying how to modify the names of the vertices. In this instance, we will replace vertex 1 with
7,  2  with  8,  and so  on,  so  we need to  use  the  list  of  rules  81 Ø 7, 2 Ø 6, …, 6 Ø 12<,  which we will
create with a Table.
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In[102]:= unionExampleB =
VertexReplace@CompleteGraph@6, VertexLabels Ø "Name",

ImagePadding Ø 10D, Table@i Ø i + 6, 8i, 6<DD

Out[102]=

Note that the same effect can be obtained with the function IndexGraph, with first argument a graph
and second argument  the smallest  integer  to  be used (defaulting to  1  if  the  second argument  is  omit-
ted). VertexReplace is the more general function.
To obtain the union of the graphs,  we apply the GraphUnion  function,  which simply takes the two
(or more) graphs as arguments, along with the usual options.
In[103]:= unionExample = GraphUnion@unionExampleA,

unionExampleB, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[103]=

Note that Mathematica has rearranged the locations of the vertices. If you prefer the three-dimensional
appearance of the prism, you can impose those locations as shown below. Note how the Property-
Value  function  is  being  used  to  both  access  the  values  from  unionExampleA  and  assign  those
locations to unionExample.
In[104]:= Do@PropertyValue@8unionExample, v<, VertexCoordinatesD =

PropertyValue@8unionExampleA, v<, VertexCoordinatesD,
8v, VertexList@unionExampleD<D
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In[105]:= unionExample

Out[105]=

Finally,  we consider  graph complements,  described in  Exercise  59 of  Section 10.2.  The complement,
G, of a graph G is the graph whose vertex set is the same as that of G, but whose edge set is the set of
all pairs of G that have no edge between them. In other words, if G has n vertices, then the edge set of
G is the complement of the edge set of G relative to Kn, the complete graph on n vertices. Mathematica
has a function to compute the complement of a graph: GraphComplement.
In[106]:= WheelGraph@8, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[106]=
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In[107]:= complementExample = GraphComplement@
WheelGraph@8D, VertexLabels Ø "Name", ImagePadding Ø 7D

Out[107]=

Again, Mathematica has rearranged the vertices. We can impose the original locations as follows.
In[108]:= Do@PropertyValue@8complementExample, v<, VertexCoordinatesD =

PropertyValue@8WheelGraph@8D, v<, VertexCoordinatesD,
8v, VertexList@complementExampleD<D

In[109]:= complementExample

Out[109]=

10.3 Representing Graphs and Graph Isomorphism
In this section we will see how to represent graphs in terms of adjacency matrices, adjacency lists, and
incidence  matrices.  We  will  then  use  the  adjacency  matrix  representation  to  help  determine  whether
two graphs are isomorphic. 

Adjacency Matrices
The adjacency matrix of a graph G with n vertices is the nµ n matrix whose Hi, jL entry is 1 if there is
an edge from vertex i to vertex j and 0 if not. You can define a graph by passing an adjacency matrix,
represented as a list of lists, to the function AdjacencyGraph.
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As an example, we reproduce Example 4 from Section 10.3.
In[110]:= exampleAdjM =

880, 1, 1, 0<, 81, 0, 0, 1<, 81, 0, 0, 1<, 80, 1, 1, 0<<;
exampleAdjM êê MatrixForm

Out[111]//MatrixForm=
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

Recall that we must invoke MatrixForm in an expression separate from the definition of the symbol
in order to avoid having the MatrixForm head permanently stored in the symbol.
We now invoke the AdjacencyGraph function with this matrix.
In[112]:= AdjacencyGraph@exampleAdjMD

Out[112]=

In the textbook, the vertices for this graph were labeled as letters rather than numbers. The Adjacen-
cyGraph function accepts a list of names for the vertices as an optional first argument. It also accepts
the usual graph options.
In[113]:= AdjacencyGraph@8"a", "b", "c", "d"<, exampleAdjM,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[113]=

Notice that this is the same graph as is produced in the textbook, with the exception of the locations of
the vertices. 
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Notice that this is the same graph as is produced in the textbook, with the exception of the locations of
the vertices. 
Mathematica also provides a function, AdjacencyMatrix, for computing the adjacency matrix of a
graph. The output of this function is always a SparseArray object, which is more efficient at stor-
ing large arrays with many entries 0. You can display a SparseArray with MatrixForm, as usual,
and you can convert it into the usual list of lists representation with the function Normal.
In[114]:= wheelAdjacency = AdjacencyMatrix@WheelGraph@7DD

Out[114]= SparseArray@<24>, 87, 7<D

In[115]:= wheelAdjacency êê MatrixForm
Out[115]//MatrixForm=

0 1 1 1 1 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 1 0 1 0
1 0 0 0 1 0 1
1 1 0 0 0 1 0

In[116]:= wheelAdjacency êê Normal

Out[116]= 880, 1, 1, 1, 1, 1, 1<, 81, 0, 1, 0, 0, 0, 1<,
81, 1, 0, 1, 0, 0, 0<, 81, 0, 1, 0, 1, 0, 0<,
81, 0, 0, 1, 0, 1, 0<, 81, 0, 0, 0, 1, 0, 1<, 81, 1, 0, 0, 0, 1, 0<<

Adjacency Lists
Recall  that  a  representation  of  a  graph  as  an  adjacency  list  consists  of  the  lists  of  neighbors  of  each
vertex.
Above,  we  saw  the  function  AdjacencyList  used  to  determine  the  list  of  vertices  adjacent  to  a
given  vertex.  For  example,  the  following  determines  the  vertices  adjacent  to  vertex  2  in  the  wheel
graph on 7 vertices.
In[117]:= AdjacencyList@WheelGraph@7D, 2D

Out[117]= 81, 3, 7<

To obtain the complete adjacency list representation of a graph, it is only a matter of looping through
the vertices of the graph.
In[118]:= adjacencyList@G_GraphD :=

Table@AdjacencyList@G, vD, 8v, VertexList@GD<D

In[119]:= adjacencyList@WheelGraph@7DD

Out[119]= 882, 3, 4, 5, 6, 7<, 81, 3, 7<, 81, 2, 4<,
81, 3, 5<, 81, 4, 6<, 81, 5, 7<, 81, 2, 6<<

Mathematica  does not  include a function to create  a  graph from an adjacency list.  However,  it  is  not
difficult  to  create  a  function  that  transforms  an  adjacency  list  into  a  graph  object  by  using  the  adja-
cency matrix as  an intermediate.  We will  create  a  function adjacencyListGraph  that  accepts  as
its argument a list of lists. We will require that the vertices be represented by positive integers begin-
ning with 1.  For example,  882, 3<, 81, 3, 4<, 81, 2<, 82, 5<, 84<<  will  be used to represent  the adjacency
list for a graph in which vertex 1 is incident to vertices 2 and 3; vertex 2 is incident to vertices 1, 3, and
4; vertex 3 is incident to vertices 1 and 2; and so on.
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Mathematica  does not  include a function to create  a  graph from an adjacency list.  However,  it  is  not
difficult  to  create  a  function  that  transforms  an  adjacency  list  into  a  graph  object  by  using  the  adja-
cency matrix as  an intermediate.  We will  create  a  function adjacencyListGraph  that  accepts  as
its argument a list of lists. We will require that the vertices be represented by positive integers begin-
ning with 1.  For example,  882, 3<, 81, 3, 4<, 81, 2<, 82, 5<, 84<<  will  be used to represent  the adjacency
list for a graph in which vertex 1 is incident to vertices 2 and 3; vertex 2 is incident to vertices 1, 3, and
4; vertex 3 is incident to vertices 1 and 2; and so on.
The main work of the function will be to transform the list into a matrix with 1s in the locations speci-
fied by the adjacency list. The first sublist in the adjacency list indicates the positions in the first row of
the  adjacency  matrix  that  should  be  set  to  1.  In  the  example,  82, 3<  tells  us  that  the  first  row should
have 1s in the second and third columns. The second sublist specifies the second row, and so on.
We  mentioned  above  that  a  SparseArray  is  particularly  suitable  for  matrices  with  few  non-zero
entries.  To  further  explore  this  type  of  object,  we  will  have  our  adjacencyListGraph  function
create a SparseArray as part of its operation. There are several different syntax options for creating
a SparseArray,  but we will  use the most descriptive: a list  of rules identifying positions with val-
ues.  For  example,  to  create  a  4µ 4  matrix  is  1s  in  positions  H1, 3L,  H2, 4L,  and  H4, 1L,  you  enter  the
following.
In[120]:= SparseArray@881, 3< Ø 1, 82, 4< Ø 1, 84, 1< Ø 1<, 84, 4<D êê

MatrixForm
Out[120]//MatrixForm=

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0

Observe that the first  argument is  a list  of rules with the positions within the matrix given as lists on
the left hand of each rule, and the value that belongs in the position on the right. The second argument
to SparseArray is a list specifying the dimensions of the matrix. If the second argument is omitted,
Mathematica will attempt to deduce the size of the matrix from the given entries.
The adjacencyListGraph function will begin by determining the dimension of the matrix, which
must be equal to the length of the adjacency list. The function must then create the list of rules from the
adjacency list. 
Recall that the Map function is used to apply a function to every member of a sequence. For example,
the following can be used to add "x" to each element of a list.
In[121]:= Map@Ò + x &, 81, 2, 3, 4<D

Out[121]= 81 + x, 2 + x, 3 + x, 4 + x<

As you can see above, the function is applied to each element of the list with the Slot (#) replaced by
the elements of the list.  There is a related function, MapIndexed,  whose first  argument should be a
function on two arguments, which are taken as the element of the list together with a specification of
the location of that element within the list as the second. For example, the following applies the func-
tion “f” to a list of letters.
In[122]:= MapIndexed@f, 8"a", "b", "c"<D

Out[122]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D<

You see that “f” is applied to two arguments: the letter from the second argument and a list containing
the position of the letter in the list of letters. The position is given as a list in case of nested structures
requiring more complicated position specifications. The following makes use of MapIndexed to add
x raised to a power determined by the index of the list element. We use First to take the index out of
the enclosing list.
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You see that “f” is applied to two arguments: the letter from the second argument and a list containing
the position of the letter in the list of letters. The position is given as a list in case of nested structures
requiring more complicated position specifications. The following makes use of MapIndexed to add
x raised to a power determined by the index of the list element. We use First to take the index out of
the enclosing list.
In[123]:= MapIndexed@Ò1 + x^First@Ò2D &, 87, 3, 11, 4<D

Out[123]= 97 + x, 3 + x2, 11 + x3, 4 + x4=

For  nested  lists,  MapIndexed  requires  a  third  argument  specifying  the  level  at  which  to  apply  the
function. For example, the following function applies the function “f” at the second level.
In[124]:= MapIndexed@f, 881, 2<, 83, 4, 5<<, 82<D

Out[124]= 88f@1, 81, 1<D, f@2, 81, 2<D<,
8f@3, 82, 1<D, f@4, 82, 2<D, f@5, 82, 3<D<<

Without the level {2}, which means that the function should be applied only to elements at the second
level in the nested lists, f would have been applied only to the two lists 81, 2< and 83, 4, 5< instead of
the  five  numbers  1  through 5.  Note  that  the  second arguments  passed  to  f  are  lists  consisting  of  two
integers: the first indicating which sublist it is and the second indicating the position within the sublist.
If 881, 2<, 83, 4, 5<< were an adjacency list, the first element from the index information tells us which
row in the adjacency matrix that sublist refers to. The values in the lists tell us which columns in that
row  should  be  1s.  The  following  application  of  MapIndexed  uses  this  observation  to  print  out  the
locations of 1s in the adjacency matrix.
In[125]:= MapIndexed@Print@8First@Ò2D, Ò1<D &, 881, 2<, 83, 4, 5<<, 82<D;

81, 1<

81, 2<

82, 3<

82, 4<

82, 5<

To form a SparseArray, we need to create a Rule (->) rather than printing the list. And we must
apply Flatten since MapIndexed preserves the list structure and we need a simple list of rules.
In[126]:= Flatten@

MapIndexed@8First@Ò2D, Ò1< Ø 1 &, 881, 2<, 83, 4, 5<<, 82<D
D

Out[126]= 881, 1< Ø 1, 81, 2< Ø 1, 82, 3< Ø 1, 82, 4< Ø 1, 82, 5< Ø 1<

We  now  build  adjacencyListGraph.  We  also  illustrate  how  to  use  a  BlankNullSequence
(___),  which  matches  any,  including  0,  number  of  arguments,  to  pass  options  from  this  function  to
AdjacencyGraph.
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In[127]:= adjacencyListGraph@L_List, opts___D := Module@8n, rules<,
n = Length@LD;
rules =
Flatten@MapIndexed@Rule@8First@Ò2D, Ò1<, 1D &, L, 82<DD;

AdjacencyGraph@SparseArray@rules, 8n, n<D, optsD
D

We apply this to an example.
In[128]:= exampleAL =

adjacencyListGraph@882, 3<, 81, 3, 4<, 81, 2<, 82, 5<, 84<<,
VertexLabels Ø "Name", ImagePadding Ø 5D

Out[128]=

Incidence Matrices
The third representation of graphs that we are considering is incidence matrices. For a graph G with n
vertices  and  m  edges,  the  associated  incidence  matrix  is  the  nµm  matrix  whose  Hi, jL  entry  is  1  if
vertex i is an endpoint of edge j.
Mathematica  includes  functions  for  working  with  incidence  matrices.  Given  an  incidence  matrix  M ,
the function IncidenceGraph will produce the associated graph. As an example, we reverse Exam-
ple  6  from Section  10.3  and  use  the  incidence  matrix  given  in  the  solution  in  order  to  reproduce  the
graph.
In[129]:= exampleIncidenceM = 881, 1, 0, 0, 0, 0<, 80, 0, 1, 1, 0, 1<,

80, 0, 0, 0, 1, 1<, 81, 0, 1, 0, 0, 0<, 80, 1, 0, 1, 1, 0<<

Out[129]= 881, 1, 0, 0, 0, 0<, 80, 0, 1, 1, 0, 1<,
80, 0, 0, 0, 1, 1<, 81, 0, 1, 0, 0, 0<, 80, 1, 0, 1, 1, 0<<
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In[130]:= exampleIncidenceG = IncidenceGraph@exampleIncidenceM,
VertexLabels Ø "Name", ImagePadding Ø 10, VertexCoordinates Ø
880, 1<, 81, 1<, 82, 1<, 80.5, 0<, 81.5, 0<<D

Out[130]=

For  the  reverse,  the  IncidenceMatrix  function  will  produce  the  incidence  matrix  for  a  Graph
object.  We  apply  this  function  to  the  previous  graph.  Again,  the  output  from  this  function  is  a
SparseArray object, so we apply MatrixForm to view it.
In[131]:= IncidenceMatrix@exampleIncidenceGD êê MatrixForm

Out[131]//MatrixForm=
1 1 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 1 0

For  a  directed  graph,  the  IncidenceMatrix  function  returns  a  matrix  with  a  1  in  position  Hi, jL
indicating that the vertex i is the head of edge j and an entry of -1 indicating that the vertex is the tail
of the edge.
In[132]:= directedIncidenceG = Graph@81 Ø 2, 2 Ø 3, 3 Ø 1, 2 Ø 4, 4 Ø 1<,

DirectedEdges Ø True, VertexLabels Ø "Name", ImagePadding Ø 10,
VertexCoordinates Ø 880, 0<, 81, 1<, 80, 1<, 81, 0<<D

Out[132]=
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In[133]:= IncidenceMatrix@directedIncidenceGD êê MatrixForm
Out[133]//MatrixForm=

-1 0 1 0 1
1 -1 0 -1 0
0 1 -1 0 0
0 0 0 1 -1

Isomorphism of Graphs
We conclude this section with a brief discussion of isomorphism of graphs and graph invariants. Deter-
mining  whether  two  graphs  are  isomorphic  is  a  difficult  problem.  The  naive  approach  (exhaustively
checking each possible mapping) can require exponential time. 
Graph invariants are useful tools for confirming that two graphs are not isomorphic. While there is no
complete  collection  of  graph  invariants  that  will  definitively  conclude  whether  two graphs  are  or  are
not isomorphic, they can, for many pairs of graphs, quickly demonstrate the impossibility of an isomor-
phism.  We  will  create  a  function  that  will  check  some  of  the  basic  invariants:  number  of  vertices,
number of edges, whether the graph is directed, and whether it is bipartite. We also introduce another
invariant: the degree sequence.
For a graph G, the degree sequence is the list of the degrees of the vertices of the graph sorted in ascend-
ing  order.  The  Mathematica  function  VertexDegree  applied  to  a  graph  and  a  vertex  returns  the
degree of the vertex. Applied to the graph with no second argument, it produces a list of the degrees of
the vertices of a graph, listed in order of the vertices. Since this depends on the order in which Mathe-
matica stores the vertices, it is not an invariant. However, applying the Sort function to the result of
VertexDegree returns the degree sequence for the graph, which is an invariant.
The  function  defined  below  checks,  one  at  a  time,  the  invariants  we  have  mentioned.  If  any  of  the
invariants indicate that the graphs are not isomorphic, the procedure prints a statement to that effect.
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In[134]:= checkInvariants@G1_Graph, G2_GraphD :=
Module@8notIsomorphic = False<,
If@VertexCount@G1D ¹≠ VertexCount@G2D,
notIsomorphic = True;
Print@"Different numbers of vertices."D

D;
If@EdgeCount@G1D ¹≠ EdgeCount@G2D,

notIsomorphic = True;
Print@"Different numbers of edges."D

D'
If@! Equivalent@DirectedGraphQ@G1D, DirectedGraphQ@G2DD,
notIsomorphic = True;
Print@"One is directed, one is undirected."D

D;
If@! Equivalent@BipartiteGraphQ@G1D, BipartiteGraphQ@G2DD,
notIsomorphic = True;
Print@"One is bipartite, one is not."D

D;
If@Sort@VertexDegree@G1DD ¹≠ Sort@VertexDegree@G2DD,
notIsomorphic = True;
Print@"Degree sequences do not match."D

D;
If@notIsomorphic,
Print@"The graphs are not isomorphic."D,
Print@"The graphs MAY be isomorphic."D

D
D

In[135]:= checkInvariants@directedIncidenceG, exampleIncidenceGD

Different numbers of vertices.

Different numbers of edges.

One is directed, one is undirected.

Degree sequences do not match.

The graphs are not isomorphic.

In[136]:= checkInvariants@CompleteGraph@3D, CycleGraph@3DD

The graphs MAY be isomorphic.

Mathematica provides a function, IsomorphicGraphQ, for definitively determining whether or not
two  graphs  are  isomorphic.  This  function  applies  to  any  Graph  object.  The  IsomorphicGraphQ
function accepts two graphs as its arguments. It returns True if the graphs are isomorphic.
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In[137]:= IsomorphicGraphQ@CompleteGraph@3D, CycleGraph@3DD

Out[137]= True

The FindGraphIsomorphism function can be used to determine an explicit isomorphism for a pair
of  graphs  that  are  in  fact  isomorphic.  Like  IsomorphicGraphQ,  the  only  arguments  are  the  two
graphs. If the two graphs are in fact isomorphic, the output is a list of rules of the form v Ø w indicat-
ing  that  vertex  v  in  the  first  graph  is  mapped  to  vertex  w  in  the  second  graph.  If  the  graphs  are  not
isomorphic, IsomorphicGraphQ returns an empty list.
We illustrate by reproducing the graphs in Figure 12 of Section 10.3 of the textbook. 
In[138]:= figure12G = Graph@8u1, u2, u3, u4, u5, u6<,

8u1 Ø u2, u1 Ø u4, u2 Ø u3, u2 Ø u6, u3 Ø u4, u4 Ø u5, u5 Ø u6<,
DirectedEdges Ø False, VertexLabels Ø "Name",
ImagePadding Ø 10, VertexCoordinates Ø
880, 2<, 83, 2<, 83, 0<, 80, 0<, 81, 1<, 82, 1<<D

Out[138]=

In[139]:= figure12H = Graph@8v1, v2, v3, v4, v5, v6<,
8v1 Ø v2, v1 Ø v5, v2 Ø v3, v3 Ø v4, v3 Ø v6, v4 Ø v5, v5 Ø v6<,
DirectedEdges Ø False, VertexLabels Ø "Name",
ImagePadding Ø 10, VertexCoordinates Ø
880, 2<, 81, 1.3<, 83, 2<, 83, 0<, 80, 0<, 82, 1<<D

Out[139]=
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Applying IsomorphicGraphQ confirms that the graphs are isomorphic.
In[140]:= IsomorphicGraphQ@figure12G, figure12HD

Out[140]= True

FindGraphIsomorphism determines the isomorphism.
In[141]:= FindGraphIsomorphism@figure12G, figure12HD

Out[141]= 8u1 Ø v4, u2 Ø v3, u3 Ø v6, u4 Ø v5, u5 Ø v1, u6 Ø v2<

10.4 Connectivity
Mathematica provides a number of functions related to connectivity of graphs.
The  first  such  function  that  we  consider  is  ConnectedGraphQ.  This  function  takes  one  argument,
the name of the graph, and returns true or false. As an example, consider the complete bipartite graph
K2,3 and its complement.

In[142]:= CompleteGraph@82, 3<D

Out[142]=

In[143]:= ConnectedGraphQ@CompleteGraph@82, 3<DD

Out[143]= True
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In[144]:= GraphComplement@CompleteGraph@82, 3<DD

Out[144]=

In[145]:= ConnectedGraphQ@GraphComplement@CompleteGraph@82, 3<DDD

Out[145]= False

When used with a directed graph, ConnectedGraphQ returns True if the directed graph is strongly
connected.
In[146]:= stronglyConnectedEx =

Graph@81 Ø 2, 2 Ø 3, 3 Ø 4, 4 Ø 1, 1 Ø 5, 5 Ø 2, 3 Ø 5, 5 Ø 4<D

Out[146]=

Applying ConnectedGraphQ reveals that the above graph is connected.
In[147]:= ConnectedGraphQ@stronglyConnectedExD

Out[147]= True

The  following  example,  while  weakly  connected,  is  not  strongly  connected  and  thus  Connected-
GraphQ will return False.
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In[148]:= weaklyConnectedEx = Graph@84 Ø 2, 2 Ø 1,
1 Ø 3, 3 Ø 4, 4 Ø 5, 6 Ø 8, 8 Ø 9, 9 Ø 7, 7 Ø 6, 6 Ø 5<D

Out[148]=

In[149]:= ConnectedGraphQ@weaklyConnectedExD

Out[149]= False

The  WeaklyConnectedGraphQ  function  will  determine  whether  a  directed  graph  is  weakly  con-
nected. A graph is weakly connected if it is connected as an undirected graph.
In[150]:= WeaklyConnectedGraphQ@weaklyConnectedExD

Out[150]= True

Mathematica also has functions to extract the connected components of a graph that is not connected.
The ConnectedComponents  function takes a  graph as input  and returns a  list  of  lists  of  vertices.
For  directed graphs,  ConnectedComponents  is  used to  determine the strongly connected compo-
nents of the graph. 
As an example, consider the complement of the graph K2,3.

In[151]:= GraphComplement@CompleteGraph@82, 3<D,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[151]=

In[152]:= ConnectedComponents@GraphComplement@CompleteGraph@82, 3<DDD

Out[152]= 883, 4, 5<, 81, 2<<

This output indicates that the complement of K2,3  has two connected components, one with vertex set
81, 2< and the other with vertex set 83, 4, 5<.
For directed graphs, ConnectedComponents will produce the strongly connected components. The
WeaklyConnectedComponents function will output the weakly connected components.
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In[153]:= ConnectedComponents@weaklyConnectedExD

Out[153]= 885<, 84, 2, 1, 3<, 86, 8, 9, 7<<

In[154]:= WeaklyConnectedComponents@weaklyConnectedExD

Out[154]= 884, 2, 1, 3, 5, 6, 8, 9, 7<<

Coloring the Components
Now we present  a  function that  will  color  code the connected components  in  a  graph.  (This  function
will color up to 5 components before repeating colors.) 
Note  that  Mathematica  understands  the  symbols  Red,  Green,  Blue,  Brown,  and  Gray  as  Colors.
Also note the use of PropertyValue to set the VertexStyle property. We first saw Property-
Value  in  the subsection on edge contraction in Section 10.2 of  this  manual.  Finally,  note the use of
Mod with third argument 1, which causes the result of Mod to have minimum value 1. This allows us to
cycle through the list of colors.
In[155]:= highlightComponents@G_GraphD :=

Module@8colorList = 8Red, Green, Blue, Brown, Gray<,
components, c, i, v, H = G<,

components = ConnectedComponents@GD;
c = 0;
For@i = 1, i § Length@componentsD, i++,
c = Mod@c + 1, 5, 1D;
Do@PropertyValue@8H, v<, VertexStyleD = colorList@@cDD
, 8v, components@@iDD<D

D;
H

D

We apply this function to the weakly connected graph above.
In[156]:= highlightComponents@weaklyConnectedExD

Out[156]=

Counting Paths Between Vertices
The last topic that we consider in this section is determining the number of paths between two vertices
of a given length. As described in the textbook, if A is the adjacency matrix for a graph (which may be
undirected or directed and may include loops and multiple edges), then the Hi, jL entry of the matrix Ar
is the number of paths of length r from vertex i to vertex j.
As  an  example,  consider  the  stronglyConnectedEx  graph  from  above.  We  can  obtain  its  adja-
cency matrix by applying the AdjacencyMatrix function to the name of the graph. 
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In[157]:= aMatrix = AdjacencyMatrix@stronglyConnectedExD;
aMatrix êê MatrixForm

Out[158]//MatrixForm=
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0

You could use Normal to transform the SparseArray object into a usual list of lists representation
of the matrix. However, Mathematica can compute more efficiently with the SparseArray.
Next, compute some powers of the adjacency matrix.
In[159]:= Table@MatrixForm@MatrixPower@aMatrix, iDD, 8i, 2, 7<D

Out[159]= :

0 1 1 1 0
0 0 0 1 1
1 1 0 1 0
0 1 0 0 1
1 0 1 0 0

,

1 0 1 1 1
1 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 1 2

,

1 2 0 2 2
1 1 1 0 1
0 2 1 2 2
1 0 1 1 1
1 2 1 2 0

,

2 3 2 2 1
0 2 1 2 2
2 2 2 3 1
1 2 0 2 2
2 1 2 1 2

,

2 3 3 3 4
2 2 2 3 1
3 3 2 3 4
2 3 2 2 1
1 4 1 4 4

,

3 6 3 7 5
3 3 2 3 4
3 7 3 6 5
2 3 3 3 4
4 5 4 5 2

>

Note that  the MatrixPower  function is  used to compute powers of matrices.  Using the Power  (^)
operator on a matrix computes element-wise.
We see  that  there  are  4  paths  of  length  6  from vertex  3  to  vertex  5,  since  the  H3, 5L  entry  in  the  6th
power of the adjacency matrix is 4. We also see that there are cycles of length 3 for every vertex and
there are no cycles of length less than 3. Finally, we know that the shortest path from vertex 2 to vertex
1 is of length 3, since the H2, 1L entry is 0 for the first and second powers of the matrix.

10.5 Euler and Hamilton Paths
In this section we will show how to use Mathematica to solve two problems that seem closely related,
but which are quite different in computational complexity. The two problems that will be analyzed are
the problem of finding a simple circuit that contains every edge exactly once (an Euler circuit) and the
problem of finding a simple circuit that contains every vertex exactly once (a Hamilton circuit). (Note
that  the  textbook  uses  the  term circuit  while  Mathematica  uses  the  word  cycle.  These  two  terms  are
synonymous.)

Euler Circuits in Simple Graphs
Mathematica comes equipped with a function to determine if a given simple graph has an Euler circuit
or not. This function, EulerianGraphQ, takes one argument, a Graph object. As an example, we'll
have Mathematica check to see if K5 is Eulerian, i.e., has an Euler circuit.
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Mathematica comes equipped with a function to determine if a given simple graph has an Euler circuit
or not. This function, EulerianGraphQ, takes one argument, a Graph object. As an example, we'll
have Mathematica check to see if K5 is Eulerian, i.e., has an Euler circuit.
In[160]:= EulerianGraphQ@CompleteGraph@5DD

Out[160]= True

To explicitly find an Euler circuit, we use the function FindEulerianCycle. The function accepts
one or two arguments. The first argument must be a graph, and if this is the only argument, the func-
tion returns a list containing a single list of edges representing an Euler circuit. For example, the follow-
ing identifies an Euler circuit on the complete graph K5.
In[161]:= FindEulerianCycle@CompleteGraph@5DD

Out[161]= 881 ê 5, 5 ê 4, 4 ê 3, 3 ê 5,
5 ê 2, 2 ê 4, 4 ê 1, 1 ê 3, 3 ê 2, 2 ê 1<<

If  you  provide  FindEulerianCycle  with  a  positive  integer  as  a  second  argument,  Mathematica
will  attempt  to  find  more  than  one  Euler  circuit,  with  the  integer  serving  as  a  maximum  number  of
cycles to return, provided they exist.  In this case, the output will  be a list  of lists of edges, with each
sublist representing a distinct circuit.
In[162]:= FindEulerianCycle@CompleteGraph@5D, 3D

Out[162]= 881 ê 2, 2 ê 5, 5 ê 4, 4 ê 3, 3 ê 5, 5 ê 1, 1 ê 4,
4 ê 2, 2 ê 3, 3 ê 1<, 81 ê 2, 2 ê 5, 5 ê 4, 4 ê 3,
3 ê 5, 5 ê 1, 1 ê 3, 3 ê 2, 2 ê 4, 4 ê 1<, 81 ê 2, 2 ê 5,
5 ê 4, 4 ê 3, 3 ê 2, 2 ê 4, 4 ê 1, 1 ê 5, 5 ê 3, 3 ê 1<<

With the symbol All as the third argument, Mathematica will determine all of the Euler circuits. We
see below that the complete graph on 5 vertices has 132 Euler circuits.
In[163]:= Length@FindEulerianCycle@CompleteGraph@5D, AllDD

Out[163]= 132

Now we’ll have Mathematica help us to visualize this path by creating an animation that successively
highlights the edges in the path. To do this we will  use the Animate  function. The Animate  func-
tion takes two arguments, similar to Table. The first argument is a Mathematica expression, typically
one that generates an image and which is dependent on a variable. The second argument is a list describ-
ing the range of the variable. The structure of this list is similar to the second argument in a Table. 
We will also be making use of two options. Setting the AnimationRunning option to False will
prevent the animation from beginning until you explicitly click on the play button. Without this option,
the  animation  would  run  as  soon  as  Mathematica  has  finished  generating  it.  Setting  the  Anima-
tionRepetitions  option  to  1  will  cause  the  animation  to  stop  once  it  has  played  through.  This
option defaults to Infinity, meaning it will automatically restart every time it reaches the end.
To create the animation, we need a graph and a circuit. We will use K5  as the graph and we store the
circuit  as  exampleCircuit.  Note  that  we  apply  First  since  FindEulerianCycle  returns  a
list of circuits and we want to access the first element of that list.
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In[164]:= exampleCircuit = First@FindEulerianCycle@CompleteGraph@5DDD

Out[164]= 81 ê 5, 5 ê 4, 4 ê 3, 3 ê 5,
5 ê 2, 2 ê 4, 4 ê 1, 1 ê 3, 3 ê 2, 2 ê 1<

To display the path, we will apply the HighlightGraph function. This function was first described
in Section 10.2 in the subsection on bipartite graphs. It takes two arguments: a graph and a list of either
vertices or edges.
To draw the successive stages in the circuit, we will apply HighlightGraph  to the graph and to a
sublist of exampleCircuit. We will obtain the sublist by applying Part ([[…]]) to a Span (;;)
from 1 to the current stage. For example, to display the path after three steps, we enter the following.
In[165]:= HighlightGraph@CompleteGraph@5D, exampleCircuit@@1 ;; 3DDD

Out[165]=

Also note that the span from 1 to 0 will result in the empty list and thus nothing highlighted.
In[166]:= exampleCircuit@@1 ;; 0DD

Out[166]= 8<

In[167]:= HighlightGraph@CompleteGraph@5D, exampleCircuit@@1 ;; 0DDD

Out[167]=

We produce the animation using HighlightGraph as above, with the second argument to the Span
(;;) as a variable. In the second argument of Animate, this variable will be set to run from 0 to the
Length  of  the  path.  Note  that,  unlike  Table,  the  variables  in  an  Animate  are  not  assumed to  be
restricted to integers, so we must specify a step value of 1 in the variable specification.
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In[168]:= Animate@HighlightGraph@CompleteGraph@5D,
exampleCircuit@@1 ;; iDDD, 8i, 0, Length@exampleCircuitD, 1<,

AnimationRunning Ø False, AnimationRepetitions Ø 1D

i

We now turn this into a function. The only difference between the animatePath function below and
the  example  from  above  is  that  we  replace  the  variable  in  the  loop  specification  with  the  list
{i,0,"step"}.  This  syntax  gives  the  variable  i  the  initial  value  0  and  labels  it  as  “step”  in  the
animation  controller.  Also  note  that  we  use  a  BlankNullSequence  (___)  to  allow  the
animatePath function to take 0 or more arguments after the required graph and path arguments. We
use this to pass options to the HighlightGraph function.
In[169]:= animatePath@g_Graph, p_List, opts___D := Module@8i, len<,

len = Length@pD;
Animate@HighlightGraph@g, p@@1 ;; iDD, optsD,
88i, 0, "step"<, 0, len, 1<,
AnimationRunning Ø False, AnimationRepetitions Ø 1D

D

To use this function, we just pass it an Eulerian graph, a circuit, and any options for drawing the graph.
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In[170]:= animatePath@CompleteGraph@7D,
First@FindEulerianCycle@CompleteGraph@7DDD,
VertexLabels Ø "Name", ImagePadding Ø 10D

step

You can see the Euler circuit traced out by clicking on the play button.
Note  that  while  our  examples  have  all  been  undirected,  the  functions  described  here  also  apply  to
directed graphs.

Euler Circuits in Multigraphs
As usual, Mathematica's built-in function does not apply to pseudographs. We will examine the prob-
lem of  finding  Euler  circuits  in  undirected  multigraphs.  We  know,  from Theorem 1  of  Section  10.5,
that a connected multigraph with at least two vertices has an Euler circuit if and only if the degree of
every vertex is even. It is easy to see that Theorem 1 extends to pseudographs as well. Using this fact,
we can write a simple function for determining whether or not an undirected pseudograph has an Euler
circuit.  Note that, as we have done before, we input the undirected pseudograph as a list of rules, but
the function assumes that the graph being modeled is undirected.
In[171]:= eulerianPseudographQ@edgeList : 8___Rule<D := Module@8v, G<,

G = Graph@DeleteDuplicates@Sort êü edgeListD,
DirectedEdges Ø FalseD;

Catch@
If@! ConnectedGraphQ@GD »» Length@VertexList@GDD < 2,
Throw@FalseDD;

Do@If@OddQ@undirectedDegree@edgeList, vDD, Throw@FalseDD
, 8v, VertexList@GD<D;

Throw@TrueD
D

D

We  begin  the  eulerianPseudographQ  function  by  forming  an  undirected  Graph  object.  The
purpose of this is to allow us to use some built-in functions rather than creating them from scratch. The
Graph  object  is  obtained  from  the  input  pseudograph  as  follows.  We  Map  (/@)  the  Sort  function
over the edgeList of the input graph. The Map (/@) causes the Sort function to be applied to the
elements of edgeList, rather than the list itself. That is, Sort will be applied to the individual rules
that  describe  the  edges  of  the  graph,  which  causes  the  Rule  (->)  to  point  from lesser  to  greater,  as
illustrated  below.  This  forces  a  canonical  representation  of  each  edge.  Since  the  graph  is  undirected,
this allows Mathematica to recognize 1 Ø 2 as the same as 2 Ø 1.
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We  begin  the  eulerianPseudographQ  function  by  forming  an  undirected  Graph  object.  The
purpose of this is to allow us to use some built-in functions rather than creating them from scratch. The
Graph  object  is  obtained  from  the  input  pseudograph  as  follows.  We  Map  (/@)  the  Sort  function
over the edgeList of the input graph. The Map (/@) causes the Sort function to be applied to the
elements of edgeList, rather than the list itself. That is, Sort will be applied to the individual rules
that  describe  the  edges  of  the  graph,  which  causes  the  Rule  (->)  to  point  from lesser  to  greater,  as
illustrated  below.  This  forces  a  canonical  representation  of  each  edge.  Since  the  graph  is  undirected,
this allows Mathematica to recognize 1 Ø 2 as the same as 2 Ø 1.
In[172]:= Sort@2 Ø 1D

Out[172]= 1 Ø 2

After  the  edges  are  put  in  canonical  form  with  Sort êü edgeList,  we  apply  DeleteDupli-
cates.  This  results  in  the  edge  set  of  a  simple  graph  but  such  that  every  pair  of  vertices  that  were
connected  in  the  pseudograph  are  still  connected.  We  then  use  the  resulting  list  as  the  argument  to
Graph, with the DirectedEdges option set to False. Note that if we had not mapped Sort onto
the original  edge list,  we would risk  an error.  For  example,  if  the  input  had included both 1 Ø 2 and
2 Ø 1, when Mathematica  applied Graph  with DirectedEdges  false, it  would then identify those
as the same edge and identify the graph as having multiple edges. For a directed version of this func-
tion, DirectedEdges would be true, and you would not map Sort over the edge list.
All of the tests are contained in Catch. If any of the conditions fail, they will Throw False. Other-
wise, if the graph passes all of the hurdles, True will be thrown at the end of the block. The first test is
to ensure that  the graph is  connected and that  it  has at  least  2 vertices,  which are conditions required
for  Theorem 1  to  apply.  This  is  where  the  creation  of  the  Graph  object  is  useful,  as  it  allows  us  to
apply the built-in functions ConnectedGraphQ and VertexList rather than create such functions
for pseudographs. The second If is contained within a Do loop to test the degree of each vertex. We
apply the undirectedDegree function, written in Section 10.2, and the Boolean function OddQ.
We can use this function to solve the Bridges of Königsberg problem. First we create a representation
of the town and its bridges as a graph (this replicates Figure 2 in Section 10.5). Then we apply the test.
In[173]:= konigsbergEdges = 8"A" Ø "B", "A" Ø "B",

"A" Ø "C", "A" Ø "C", "A" Ø "D", "B" Ø "D", "C" Ø "D"<

Out[173]= 8A Ø B, A Ø B, A Ø C, A Ø C, A Ø D, B Ø D, C Ø D<
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In[174]:= GraphPlot@konigsbergEdges,
VertexLabeling Ø True, VertexCoordinateRules Ø
8"A" Ø 80, 1<, "B" Ø 80, 0<, "C" Ø 80, 2<, "D" Ø 81, 1<<D

Out[174]= A

B

C

D

In[175]:= eulerianPseudographQ@konigsbergEdgesD

Out[175]= False

Now that  we have a test  that  tells  us if  a  circuit  exists,  we will  implement Algorithm 1 from Section
10.5 in order to find an Euler circuit, if it exists. The following algorithm will find an Euler circuit in a
multigraph.  It  could  also  be  applied  to  a  pseudograph  without  generating  an  error,  but  it  will  not
include loops in the circuit.
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In[176]:= findEulerianCycleMultigraph@edgeList : 8___Rule<D :=
Module@8H, circuit, subC, i, n,

v, insertPoint, w, buildingSub, oldC<,
If@! eulerianPseudographQ@edgeListD, Return@$FailedDD;
circuit = 8<;
H = edgeList;
While@H ¹≠ 8<,
H* find a starting point *L
If@circuit ã 8<,
subC = 8H@@1DD<;
H = Delete@H, 1D;
insertPoint = 0,
For@i = 1, i § Length@circuitD, i++,
v = circuit@@i, 2DD;
n = neighbors@H, vD;
If@n ¹≠ 8<,
w = n@@1DD;
subC = 8v Ø w<;
insertPoint = i;
H = DeleteCases@H, Rule@v, wD Rule@w, vD, 81<, 1D;
Break@D

D
D

D;
H* build a subcircuit *L
buildingSub = True;
While@buildingSub && H ¹≠ 8<,
v = subC@@-1, 2DD;
w = First@neighbors@H, vDD;
H = DeleteCases@H, Rule@v, wD Rule@w, vD, 81<, 1D;
AppendTo@subC, v Ø wD;
If@w ã subC@@1, 1DD, buildingSub = FalseD

D;
H* splice the subcircuit into the main circuit *L
If@circuit ã 8<,
circuit = subC,
circuit = Flatten@Insert@circuit, subC, insertPoint + 1DD

D
D;
circuit

D

The  function  begins  with  a  use  of  eulerianPseudographQ  in  order  to  avoid  searching  for  a
circuit that cannot exist. It then assigns to the symbol H a copy of the graph. It is this copy that is used
throughout the rest of the function, rather than the input that was passed to the algorithm. The benefit
of  using  a  copy  is  that  the  function  will  be  able  to  manipulate  it  as  the  algorithm  proceeds,  e.g.,  by
deleting edges of H once they are included in the circuit so that those edges are not reused.

60   Chapter10.nb



The  function  begins  with  a  use  of  eulerianPseudographQ  in  order  to  avoid  searching  for  a
circuit that cannot exist. It then assigns to the symbol H a copy of the graph. It is this copy that is used
throughout the rest of the function, rather than the input that was passed to the algorithm. The benefit
of  using  a  copy  is  that  the  function  will  be  able  to  manipulate  it  as  the  algorithm  proceeds,  e.g.,  by
deleting edges of H once they are included in the circuit so that those edges are not reused.
Recall  the  description  of  Algorithm  1  in  Section  10.5.  There  are  two  key  ideas  at  the  heart  of  this
algorithm. The first is that, for a graph whose vertices all have even degree, if you pick any vertex to
start  at  and  follow  edges  at  random  but  without  repetition,  you  will  definitely  return  to  the  original
vertex and create a circuit. The second key idea is that (for a connected graph), if your circuit does not
include  all  of  the  edges  of  the  graph,  then  some  vertex  used  in  the  existing  circuit  can  be  made  the
starting point for a new subcircuit.  This subcircuit can then be spliced into the main circuit.  This will
eventually use all the edges and the result will be a Euler circuit.
The symbol circuit will hold the main circuit that, at the end of the function, is output to the user.
The circuit will be stored as a list of the edges through which the circuit passes and is initialized to the
empty  list.  The  main  While  loop  consists  of  three  parts:  (1)  determining  the  starting  point  for  the
subcircuit  (named  subC);  (2)  building  the  subcircuit;  and  (3)  splicing  the  subcircuit  into  the  main
circuit.
The first  step, finding the starting point for the subcircuit,  depends on the state of the main circuit.  If
circuit is the empty list (i.e., this is the first pass through the main loop), then the starting point is
the first edge in the graph. If the main circuit is not empty, then the else clause looks at the vertices in
the main circuit to find one that has neighbors (since edges are deleted from H as they are added to the
circuit, only vertices that are an endpoint of an unused edge have neighbors). The first vertex that has a
neighbor is used as the starting point for the subcircuit.  The insertPoint  variable is used to keep
track of the index, relative to circuit, of the starting vertex for the subcircuit. This is used when the
subcircuit is spliced into the main circuit.
The second step is to build subC. The buildingSub symbol is used to control the While loop. It is
initialized to true and is set to false once subC has returned to its starting vertex and is thus a circuit.
The variable  v  is  set  to  the last  vertex currently  included as  part  of  the subcircuit  and w  represents  a
neighbor of v. To remove the edge between v and w from H, we use DeleteCases. The first argu-
ment is the list to delete from. The second argument is a pattern, in this case using Alternatives
(|) to allow for either order of the vertices in the edge being deleted. If this function were to apply to a
directed graph, the order would be important, but here we need to allow for the fact that the circuit may
follow edges in either direction. The third argument is an optional level specification, with {1} indicat-
ing that only the first level is to be matched, that is, only members of the list and not substructures are
considered.  The  final  argument,  which  is  also  optional,  places  a  limit  on  the  number  of  matches  to
delete. With 1 in the final position, the function will only delete the first edge it finds, rather than all of
them. Note that {1} is the default level specification for this function, but it must be included in order
to use the fourth argument.
After deleting the edge from H, the newest vertex is compared with the starting vertex to determine if
the circuit has been closed. If the new vertex closes the circuit, then the buildingSub variable is set
to  false,  which  causes  the  loop  to  terminate.  Otherwise,  the  While  loop  continues  building  the
subcircuit.
The third step,  once the subcircuit  has been built,  is  to splice it  into the main circuit.  If  circuit  is
empty, it is merely set to subC. Otherwise, Insert is used to add the subcircuit. Insert takes a list
as the first argument and adds the expression given as the second argument in the position specified by
the third argument. The elements previously in that position and later and pushed down to make room.
We give the third argument as insertPoint + 1  to insert the sublist between the edges at position
insertPoint and position insertPoint + 1.
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The third step,  once the subcircuit  has been built,  is  to splice it  into the main circuit.  If  circuit  is
empty, it is merely set to subC. Otherwise, Insert is used to add the subcircuit. Insert takes a list
as the first argument and adds the expression given as the second argument in the position specified by
the third argument. The elements previously in that position and later and pushed down to make room.
We give the third argument as insertPoint + 1  to insert the sublist between the edges at position
insertPoint and position insertPoint + 1.
The  main  While  loop  continues  until  all  the  edges  of  the  graph  have  been  included  in  the  circuit,
making circuit an Euler circuit for the graph. As an example, consider Exercise 5 from Section 10.5.
In[177]:= exercise5Edges =

8"a" Ø "b", "a" Ø "e", "a" Ø "e", "a" Ø "e", "b" Ø "c", "b" Ø "d",
"b" Ø "e", "c" Ø "d", "c" Ø "d", "c" Ø "e", "d" Ø "e"<

Out[177]= 8a Ø b, a Ø e, a Ø e, a Ø e, b Ø c,
b Ø d, b Ø e, c Ø d, c Ø d, c Ø e, d Ø e<

In[178]:= GraphPlot@exercise5Edges, VertexLabeling Ø True,
VertexCoordinateRules Ø 8"a" Ø 80, 2<, "b" Ø 81, 2<,

"c" Ø 82, .5<, "d" Ø 81, 1<, "e" Ø 80, 1<<D

Out[178]=

a b

e

c

d

In[179]:= exercise5EulerPath =
findEulerianCycleMultigraph@exercise5EdgesD

Out[179]= 8a Ø b, b Ø c, c Ø d, d Ø e, e Ø a,
a Ø e, e Ø c, c Ø d, d Ø b, b Ø e, e Ø a<

Note  that  the  edge  between  a  and  e  is  traversed  three  times:  twice  in  about  the  middle  of  the  circuit
immediately in succession,  and once as  the last  edge in the cycle.  This  is  consistent  with there being
three edges between a and e.

Hamilton Circuits
Turning  our  attention  to  Hamilton  circuits,  Mathematica  provides  the  function  Hamiltonian-
GraphQ  for  determining  whether  or  not  the  graph  contains  a  Hamilton  circuit.  This  command,  like
EulerianGraphQ,  accepts  a  graph  as  the  sole  argument.  It  returns  true  or  false  depending  on
whether the graph has a Hamilton circuit.
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In[180]:= hcGraphExample = HypercubeGraph@3D

Out[180]=

In[181]:= HamiltonianGraphQ@hcGraphExampleD

Out[181]= True

The FindHamiltonianCycle function, similar to FindEulerianCycle, accepts a graph as the
argument  and  returns  a  list  containing  a  list  containing  a  Hamiltonian  circuit.  The  optional  second
argument can be used to find more than one cycle.
In[182]:= FindHamiltonianCycle@hcGraphExampleD

Out[182]= 881 ê 2, 2 ê 4, 4 ê 8, 8 ê 6, 6 ê 5, 5 ê 7, 7 ê 3, 3 ê 1<<

In[183]:= FindHamiltonianCycle@hcGraphExample, AllD

Out[183]= 881 ê 3, 3 ê 7, 7 ê 8, 8 ê 4, 4 ê 2, 2 ê 6, 6 ê 5, 5 ê 1<,
81 ê 3, 3 ê 4, 4 ê 2, 2 ê 6, 6 ê 8, 8 ê 7, 7 ê 5, 5 ê 1<,
81 ê 2, 2 ê 6, 6 ê 8, 8 ê 4, 4 ê 3, 3 ê 7, 7 ê 5, 5 ê 1<,
81 ê 2, 2 ê 4, 4 ê 3, 3 ê 7, 7 ê 8, 8 ê 6, 6 ê 5, 5 ê 1<,
81 ê 2, 2 ê 6, 6 ê 5, 5 ê 7, 7 ê 8, 8 ê 4, 4 ê 3, 3 ê 1<,
81 ê 2, 2 ê 4, 4 ê 8, 8 ê 6, 6 ê 5, 5 ê 7, 7 ê 3, 3 ê 1<<

In[184]:= hcGraphExampleCircuit =
First@FindHamiltonianCycle@hcGraphExampleDD

Out[184]= 81 ê 2, 2 ê 4, 4 ê 8, 8 ê 6, 6 ê 5, 5 ê 7, 7 ê 3, 3 ê 1<

We can use HighlightGraph to illustrate the path statically.
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In[185]:= HighlightGraph@hcGraphExample, hcGraphExampleCircuitD

Out[185]=

Also, our animation function animatePath, created above, works equally well here.
In[186]:= animatePath@hcGraphExample, hcGraphExampleCircuitD

step

Note that  a  pseudograph is  Hamiltonian if  and only if  its  underlying simple graph is  Hamiltonian,  so
there is no need for us to extend the built-in functions to pseudographs.

10.6 Shortest-Path Problems
Among the most common problems in graph theory are shortest path problems. Generally, in shortest
path problems, we wish to determine a path between two vertices of a weighted graph that is minimal
in terms of the total weight of the edges in the path.
To define a Graph object with weighted edges, you use the EdgeWeight option. The value associ-
ated with the option is the list of the weights of each edge. The weights must appear in the same order
as they are displayed in the output by EdgeList.  For graphs you define by listing the edges, this is
identical to the order you give in the definition.
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To define a Graph object with weighted edges, you use the EdgeWeight option. The value associ-
ated with the option is the list of the weights of each edge. The weights must appear in the same order
as they are displayed in the output by EdgeList.  For graphs you define by listing the edges, this is
identical to the order you give in the definition.
We reproduce Exercise 2 from Section 10.6 of the textbook to use as an example. 
In[187]:= exercise2 = Graph@8"a", "b", "c", "d", "e", "z"<,

8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e", "c" Ø "e",
"d" Ø "e", "d" Ø "z", "e" Ø "z"<, DirectedEdges Ø False,

EdgeWeight -> 82, 3, 5, 2, 5, 1, 2, 4<, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[187]=

A second approach to setting edge weights is by using the EdgeWeight property. Rather than listing
all of the edges and then listing the weights separately using the option as shown above, we can wrap
the edge definitions in the Property wrapper, setting the edge weights at the same time the edges are
described.

Chapter10.nb  65



In[188]:= Graph@8"a", "b", "c", "d", "e", "z"<,
8Property@"a" Ø "b", EdgeWeight Ø 2D,
Property@"a" Ø "c", EdgeWeight Ø 3D,
Property@"b" Ø "d", EdgeWeight Ø 5D,
Property@"b" Ø "e", EdgeWeight Ø 2D,
Property@"c" Ø "e", EdgeWeight Ø 5D,
Property@"d" Ø "e", EdgeWeight Ø 1D,
Property@"d" Ø "z", EdgeWeight Ø 2D,
Property@"e" Ø "z", EdgeWeight Ø 4D<,

DirectedEdges Ø False, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[188]=

You  can  also  define  a  weighted  graph  using  the  WeightedAdjacencyGraph  function  and  an
adjacency matrix. Unlike with AdjacencyGraph, the adjacency matrix must use Infinity, or ¶
(ÂinfÂ) to indicate that there is no edge between the corresponding vertices. In the example below,
we give the list of vertices as the first argument, otherwise Mathematica will automatically use positive
integers to name the vertices. Note that WeightedAdjacencyMatrix applied to a weighted graph
returns the adjacency matrix with weights.
In[189]:= exercise2matrix =

88¶, 2, 3, ¶, ¶, ¶<, 82, ¶, ¶, 5, 2, ¶<, 83, ¶, ¶, ¶, 5, ¶<,
8¶, 5, ¶, ¶, 1, 2<, 8¶, 2, 5, 1, ¶, 4<, 8¶, ¶, ¶, 2, 4, ¶<<;

exercise2matrix êê MatrixForm
Out[190]//MatrixForm=

¶ 2 3 ¶ ¶ ¶

2 ¶ ¶ 5 2 ¶

3 ¶ ¶ ¶ 5 ¶

¶ 5 ¶ ¶ 1 2
¶ 2 5 1 ¶ 4
¶ ¶ ¶ 2 4 ¶
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In[191]:= WeightedAdjacencyGraph@8"a", "b", "c", "d", "e", "z"<,
exercise2matrix, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[191]=

Observe  that  the  edge  weights  are  not  automatically  displayed.  We  can  display  them with  EdgeLa-
bels, but unlike VertexLabels, there is no simple value, like “Name”, that will cause the weights
to appear. Rather, we must set each edge’s label individually. This is illustrated below.
In[192]:= Graph@8"a", "b", "c"<,

8"a" Ø "b", "b" Ø "c", "c" Ø "a"<, EdgeWeight Ø 81, 2, 3<,
VertexLabels Ø "Name", ImagePadding Ø 10,
EdgeLabels Ø 8"a" ð "b" Ø 1, "b" ð "c" Ø 2, "c" ð "a" Ø 3<D

Out[192]=

Note that,  even in a  directed graph,  rules  cannot  be used to describe edges within the EdgeLabels
value. Rather the symbols ð (ÂdeÂ) or ê (ÂueÂ) must be used.
For graphs of any size, needing to assign the edge weights for the EdgeWeight option can be cumber-
some. For convenience, we create the following function, which modifies a given graph by setting the
EdgeWeight property to be the edge weight.
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In[193]:= addWeightLabels@G_GraphD := Module@8E, W, H, i<,
H = G;
Do@
PropertyValue@8H, e<, EdgeLabelsD =
PropertyValue@8H, e<, EdgeWeightD

, 8e, EdgeList@HD<D;
H

D

This can be applied to an existing graph to display the labels once.
In[194]:= addWeightLabels@exercise2D

Out[194]=

Or it can be applied at the time the graph is created to make the labels permanent.
In[195]:= exercise2 = Graph@8"a", "b", "c", "d", "e", "z"<,

8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e", "c" Ø "e",
"d" Ø "e", "d" Ø "z", "e" Ø "z"<, DirectedEdges Ø False,

EdgeWeight -> 82, 3, 5, 2, 5, 1, 2, 4<, VertexCoordinates Ø
880, .5<, 81, 1<, 81, 0<, 82, 1<, 82, 0<, 83, .5<<,

VertexLabels Ø "Name", ImagePadding Ø 5D êê addWeightLabels

Out[195]=

Now we will make use of Mathematica's implementation of Dijkstra's algorithm to compute the short-
est  path  between  a  and  z.  To  do  this,  we  simply  call  the  FindShortestPath  function  with  three
arguments:  the  graph  and  the  names  of  the  starting  and  ending  vertices.  The  output  will  be  a  list  of
vertices beginning with the starting vertex and ending with the final vertex through which the path runs.
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In[196]:= FindShortestPath@exercise2, "a", "z"D

Out[196]= 8a, b, e, d, z<

The PathGraph function can be use to help visualize this path. PathGraph accepts a list of vertices
as input and produces the graph obtained by connecting successive vertices with an edge. By default,
the  graph  produced  is  undirected.  To  obtain  a  directed  path,  assign  the  DirectedEdges  option  to
True.  Here,  we  will  display  the  path  in  the  graph  by  applying  HighlightGraph,  using  Path-
Graph in the second argument.
In[197]:= HighlightGraph@exercise2,

PathGraphüFindShortestPath@exercise2, "a", "z"DD

Out[197]=

The length of the shortest path can be determined with the GraphDistance  function and the same
arguments.
In[198]:= GraphDistance@exercise2, "a", "z"D

Out[198]= 7.

If  the  final  argument,  the  destination  vertex,  is  omitted  from GraphDistance,  the  result  will  be  a
list of the lengths of the shortest paths to each vertex of the graph.
In[199]:= GraphDistance@exercise2, "a"D

Out[199]= 80, 2., 3., 5., 4., 7.<

To determine the shortest path from every vertex to every other vertex, use the GraphDistanceMa-
trix  function.  Algorithm 2 in the Exercises of  Section 10.6 describes the Floyd-Warshall  algorithm
(also known as simply the Floyd algorithm), which is one method for computing this matrix.
In[200]:= GraphDistanceMatrix@exercise2D êê MatrixForm

Out[200]//MatrixForm=
0. 2. 3. 5. 4. 7.
2. 0. 5. 3. 2. 5.
3. 5. 0. 6. 5. 8.
5. 3. 6. 0. 1. 2.
4. 2. 5. 1. 0. 3.
7. 5. 8. 2. 3. 0.

10.7 Planar Graphs
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10.7 Planar Graphs
This  section  explains  how  Mathematica  can  be  used  to  explore  the  question  of  whether  a  graph  is
planar  by  manipulating  graphs  in  order  to  produce  homeomorphic  graphs  and  applying  Kuratowski's
Theorem.  We consider  only  undirected  simple  graphs  in  this  section.  The  question  of  planarity  for  a
directed graph can be answered by considering the underlying undirected graph, which can be obtained
by applying the function UndirectedGraph.
Before looking at  how Mathematica  can help you manipulate graphs to apply Kuratowski’s Theorem
manually, note that the function PlanarGraphQ, applied to a Graph object, will determine whether
or not the graph is planar.
In[201]:= PlanarGraphQ@HypercubeGraph@3DD

Out[201]= True

In[202]:= PlanarGraphQ@CompleteGraph@5DD

Out[202]= False

Elementary Subdivisions, Smoothing, and Homeomorphic Graphs
Recall that an elementary subdivision refers to the process of modifying a graph by removing an edge
8u, v<  and  replacing  it  with  a  vertex  w  and  new  edges  8u, w<  and  8w, v<.  Effectively,  this  splits  the
original edge into two by inserting a vertex in the middle of it. It is not difficult to use Mathematica to
perform an elementary subdivision. We will use a cycle graph as an example.
In[203]:= subdivideExample =

CycleGraph@5, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[203]=

We will  subdivide  the  edge  81, 2<.  To  do  this,  we  first  need  to  introduce  a  vertex.  We will  give  this
vertex the name “1-2”.  We apply ToString  to  the integers  to  create  strings and combine them and
the hyphen with the StringJoin (<>) operator. We use the VertexAdd function to add the vertex
to the graph.
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In[204]:= subdivideExampleB =
VertexAdd@subdivideExample, ToString@1D <> "-" <> ToString@2DD

Out[204]=

Note that Mathematica has moved the original vertices. We can put them back in place by using Prop-
ertyValue  to  assign  the  VertexCoordinates  property  in  the  new graph to  the  position  in  the
old.
In[205]:= Do@PropertyValue@8subdivideExampleB, v<, VertexCoordinatesD =

PropertyValue@8subdivideExample, v<, VertexCoordinatesD,
8v, VertexList@subdivideExampleD<D

In[206]:= subdivideExampleB

Out[206]=

Now we place the new vertex along the edge which is to be deleted. This is done by using Property-
Value and averaging the positions of the existing vertices.
In[207]:= PropertyValue@8subdivideExampleB, "1-2"<, VertexCoordinatesD =

HPropertyValue@8subdivideExample, 1<, VertexCoordinatesD +
PropertyValue@8subdivideExample, 2<, VertexCoordinatesDLê2

Out[207]= 8-0.769421, -0.25<
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In[208]:= subdivideExampleB

Out[208]=

Now we simply remove the original edge with EdgeDelete  and add the new ones with EdgeAdd.
Recall  that  the  second  argument  of  EdgeDelete  must  be  given  using  the  special  symbols  ê
(ÂueÂ) or ð (ÂdeÂ), not as a Rule (->). 
In[209]:= subdivideExampleB = EdgeDelete@subdivideExampleB, 1 ê 2D;

subdivideExampleB = EdgeAdd@subdivideExampleB, 1 Ø "1-2"D;
subdivideExampleB = EdgeAdd@subdivideExampleB, 2 Ø "1-2"D

Out[211]=

Based on this example, we create the following function.
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In[212]:= subdivideGraph::nonedge =
"Second argument must be an edge in the graph.";

subdivideGraph@G_Graph, E_Rule E_UndirectedEdgeD ê;
UndirectedGraphQ@GD := Module@8H, e, newV, v<,
If@Head@ED === Rule,
e = UndirectedEdge üü E,
e = E

D;
If@! EdgeQ@G, eD,
Message@subdivideGraph::nonedgeD; Return@$FailedDD;

newV = ToString@e@@1DDD <> "-" <> ToString@e@@2DDD;
H = VertexAdd@G, newVD;
Do@PropertyValue@8H, v<, VertexCoordinatesD =

PropertyValue@8G, v<, VertexCoordinatesD,
8v, VertexList@GD<D;

PropertyValue@8H, newV<, VertexCoordinatesD =
HPropertyValue@8H, e@@1DD<, VertexCoordinatesD +

PropertyValue@8H, e@@2DD<, VertexCoordinatesDLê2;
H = EdgeDelete@H, eD;
H = EdgeAdd@H, e@@1DD Ø newVD;
H = EdgeAdd@H, newV Ø e@@2DDD;
H

D

The inverse operation of elementary subdivision is referred to as smoothing. To be precise, let v  be a
vertex  of  degree  2  with  neighbors  u  and  w  and  such  that  u  and  w  are  not  adjacent.  We  smooth  the
vertex v by deleting v and the edges incident to it and adding the edge 8u, w<. Below we have created a
function to implement smoothing. 
In[214]:= smoothGraph::vertx = "Cannot smooth this vertex.";

smoothGraph@G_Graph, v_D ê; UndirectedGraphQ@GD :=
Module@8N, H, e<,
N = AdjacencyList@G, vD;
If@Length@ND ¹≠ 2 »» EdgeQ@G, UndirectedEdge@N@@1DD, N@@2DDDD,
Message@smoothGraph::vertxD; Return@$FailedDD;

H = VertexDelete@G, vD;
e = UndirectedEdge@N@@1DD, N@@2DDD;
H = EdgeAdd@H, eD;
H

D

As an example, we can smooth the vertex “1-2” added above.
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In[216]:= smoothGraph@subdivideExampleB, "1-2"D

Out[216]=

The textbook defines graphs to be homeomorphic if they can be obtained from the same graph from a
sequence  of  elementary  subdivisions.  It  is  clear  that  if  G1, G2, G3, …, Gn  is  a  sequence  of  graphs,
each  of  which  can  be  obtained  from  the  previous  by  an  elementary  subdivision,  then
Gn, …, G3, G2, G1  is  a  sequence  of  graphs,  each  of  which  can  be  obtained  from  the  previous  by  a
smoothing. So we can say that two graphs are homeomorphic if one can be transformed into the other
by a sequence of elementary subdivisions and smoothings.

Applying Kuratowski’s Theorem
Recall that Kuratowski's Theorem asserts that a graph is nonplanar if and only if it contains a subgraph
homeomorphic  to  either  K3,3  or  K5.  Using  the  functions  above  and  those  for  creating  subgraphs,  we
can use Mathematica to manipulate a graph and confirm that it is nonplanar using Kuratowski's Theo-
rem. We will illustrate this with the Petersen graph.
In[217]:= petersen =

PetersenGraph@5, 2, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[217]=

First,  we form the subgraph of the Petersen graph obtained by removing vertex 2 and the three edges
incident to it.
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In[218]:= petersen1 = VertexDelete@petersen, 6D

Out[218]=

Now we notice that there are three vertices that are smoothable: 1, 7, and 10. That is to say, those three
vertices have degree 2 and their neighbors are not adjacent. 
In[219]:= petersen2 = smoothGraph@petersen1, 1D;

petersen3 = smoothGraph@petersen2, 7D;
petersen4 = smoothGraph@petersen3, 10D

Out[220]=

We now observe that this graph has 6 vertices, each of which has degree 3, just like K3,3. So there is a
definite  possibility  that  this  graph  is  K3,3.  We have  Mathematica  confirm that  is  K3,3  with  Isomor-
phicGraphQ.
In[221]:= IsomorphicGraphQ@petersen4, CompleteGraph@83, 3<DD

Out[221]= True

This  demonstrates  that  the  Petersen  graph has  a  subgraph that  is  homeomorphic  to  K3,3  and hence  is
nonplanar.

10.8 Graph Coloring
In this section we consider the problem of how to properly color a graph; that is, how to assign to each
vertex of a graph a color such that no vertex has the same color as any of its neighbors. 
It is worth noting that, in terms of computational complexity, Hamilton circuits and graph coloring are
equivalently difficult problems.
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It is worth noting that, in terms of computational complexity, Hamilton circuits and graph coloring are
equivalently difficult problems.

A Greedy Coloring Algorithm
We  will  create  a  function  based  on  the  algorithm  described  in  the  preface  to  Exercise  29  in  Section
10.8 of  the text.  It  can be shown that  this  algorithm will  color  a  graph using at  most  one more color
than  the  maximal  degree  of  the  graph.  It  is  considered  a  greedy  algorithm because  it  makes  optimal
choices at each step but never reconsiders its choices. That is to say, it does the best it can at every step
but  never  backtracks  to  make improvements.  Greedy algorithms often lead to  good,  but  non-optimal,
solutions.
The  algorithm  proceeds  as  follows.  First,  the  vertices  are  sorted  in  order  of  descending  degree.  The
first color is assigned to the first vertex in the list. Also assign color 1 to the first vertex in the list not
adjacent to vertex 1, to the next vertex not adjacent to those already colored, etc. Then move on to the
second color. The first uncolored vertex in the list is assigned color 2, as are vertices further down the
list  not  adjacent  to  ones  previously  assigned the  second color.  This  continues  until  all  of  the  vertices
have been given a color.
Our  first  step  in  implementing  this  function  will  be  to  sort  the  list  of  vertices  in  decreasing  order  of
degree. For this, we will make use of Mathematica's  very flexible Sort  function. With no additional
instructions, Mathematica will sort a list of numbers in increasing numerical order and a list of strings
in lexicographical  order.  But  the Sort  function takes  an optional  argument  that  allows us  to  specify
the way in which the list is sorted. Specifically, Sort takes as an argument a Boolean-valued function
on two arguments and returns true if the first argument precedes the second.
For  our  graph  coloring  procedure,  we  will  create  a  helper  function  that  takes  a  Graph  object  and
returns the sorted list of vertices.
In[222]:= sortVertices@G_GraphD := Sort@VertexList@GD,

VertexDegree@G, Ò1D ¥ VertexDegree@G, Ò2D &D

In order for our algorithm to color the vertices of a graph, we need to decide on what colors to use. We
define a list of colors globally.
In[223]:= colorList = 8Red, Green, Blue, Magenta,

Orange, Pink, Purple, Cyan, Brown, Black<

Out[223]= 8RGBColor@1, 0, 0D, RGBColor@0, 1, 0D,
RGBColor@0, 0, 1D, RGBColor@1, 0, 1D, RGBColor@1, 0.5, 0D,
RGBColor@1, 0.5, 0.5D, RGBColor@0.5, 0, 0.5D,
RGBColor@0, 1, 1D, RGBColor@0.6, 0.4, 0.2D, GrayLevel@0D<

Now we will implement the greedy coloring algorithm.

76   Chapter10.nb



In[224]:= greedyColorer::colorx = "Insufficiently many colors.";
greedyColorer@G_GraphD :=
Module@8H = G, V, currentColor, excludeSet, i<,
V = sortVertices@HD;
For@currentColor = 1,
currentColor § Length@colorListD, currentColor++,
PropertyValue@8H, V@@1DD<, VertexStyleD =
colorList@@currentColorDD;

excludeSet = VertexList@NeighborhoodGraph@H, V@@1DDDD;
V = Delete@V, 1D;
i = 1;
While@i § Length@VD,
If@! MemberQ@excludeSet, V@@iDDD,
PropertyValue@8H, V@@iDD<, VertexStyleD =
colorList@@currentColorDD;

excludeSet = Union@excludeSet,
VertexList@NeighborhoodGraph@H, V@@iDDDDD;

V = Delete@V, iD,
i++

D
D;
If@V ã 8<, Break@DD

D;
If@V ¹≠ 8<,
Message@greedyColorer::colorxD; Return@$FailedD,
HD

D

Note that the list  V,  which is initialized to the list  of vertices, sorted in decreasing order of degree, is
used to track which vertices still need to be assigned a color. When a vertex has been assigned a color,
it  is  deleted  from the  list  V  using  Delete.  The  Delete  function  removes  from the  list  in  the  first
argument the element at the position specified by the second argument.
The  excludeSet  variable  is  used  to  store  all  vertices  which  cannot  be  assigned  the  current  color.
Each time a vertex is assigned a color,  it  and all  of its neighbors are added to the excludeSet.  As
the function looks down the list of vertices that still  need to have a color assigned, it  checks to see if
they are in this set.
The index i, which controls the While loop, is incremented in the else clause of the If statement that
tests to see if a vertex can be assigned the color. If the vertex at index i is assigned the color, then it is
removed  from  the  list  V,  and  thus  the  index  i  refers  to  a  different  vertex  (the  vertex  previously  in
position i+ 1).
As an example, we solve Exercise 29 of Section 10.8.
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In[226]:= exercise29 =
Graph@8"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"<,
8"a" Ø "b", "a" Ø "d", "a" Ø "e", "a" Ø "h", "b" Ø "c",
"b" Ø "e", "b" Ø "f", "c" Ø "e", "c" Ø "f", "c" Ø "h",
"d" Ø "g", "e" Ø "g", "e" Ø "h", "e" Ø "i", "f" Ø "i",
"f" Ø "j", "h" Ø "i", "i" Ø "j"<, DirectedEdges Ø False,

VertexCoordinates Ø 880, 2<, 81, 2<, 82, 2<, 80, 1<,
81, 1<, 82, 1<, 80, 0<, 81, 0<, 82, 0<, 83, 0<<,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[226]=

In[227]:= greedyColorer@exercise29D

Out[227]=

Solutions to Computer Projects and Computations and 
Explorations

Computations and Explorations 1

Display all simple graphs with four vertices.

Solution:  To solve this problem, we will generate all possible edge sets and then construct the graphs
based on these edge sets. The possible edge sets are all of the subsets of the set of all possible edges,
which we obtain from the complete graph on the vertices. We will generalize the question and have our
function create all the simple graphs on n vertices.
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Solution:  To solve this problem, we will generate all possible edge sets and then construct the graphs
based on these edge sets. The possible edge sets are all of the subsets of the set of all possible edges,
which we obtain from the complete graph on the vertices. We will generalize the question and have our
function create all the simple graphs on n vertices.
In[228]:= allGraphs@n_IntegerD ê; n > 0 :=

Module@8cg, v, A = 8<, V = Range@nD, powerE, vCoords, E<,
cg = CompleteGraph@nD;
powerE = Subsets@EdgeList@cgDD;
vCoords = Table@

PropertyValue@8cg, v<, VertexCoordinatesD, 8v, Range@nD<D;
Do@AppendTo@A, Graph@V, E, VertexLabels Ø "Name",

ImagePadding Ø 10, VertexCoordinates Ø vCoordsDD
, 8E, powerE<D;

A
D

Recall that the complete graph on n vertices has CHn, 2L edges, so there are 2CHn,2L graphs on n vertices.
So on 4 vertices, there are 64 graphs. For n = 3, there are only 8 graphs, which is more manageable.
We use the Partition function to break the list of all graphs into triples and then apply Grid with
the Frame option in order to display the results in a useful way.
In[229]:= Grid@Partition@allGraphs@3D, 3D, Frame Ø AllD

Computations and Explorations 2

Display a full set of nonisomorphic simple graphs with six vertices.

Solution:  The solution to this exercise is very similar to the previous question. The only difference is
that,  once  the  list  of  graphs  is  generated,  we remove those  that  are  isomorphic  to  others  by  applying
DeleteDuplicates  with  second  argument  IsomorphicGraphQ.  This  uses  Isomorphic-
GraphQ to determine whether two elements are to be considered duplicates or not.
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Solution:  The solution to this exercise is very similar to the previous question. The only difference is
that,  once  the  list  of  graphs  is  generated,  we remove those  that  are  isomorphic  to  others  by  applying
DeleteDuplicates  with  second  argument  IsomorphicGraphQ.  This  uses  Isomorphic-
GraphQ to determine whether two elements are to be considered duplicates or not.
In[230]:= nonIsoGraphs@n_IntegerD ê; n > 0 := Module@

8A = 8<, cg, v, V = Range@nD, powerE, vCoords, E, i, G, j<,
cg = CompleteGraph@nD;
powerE = Subsets@EdgeList@cgDD;
vCoords = Table@

PropertyValue@8cg, v<, VertexCoordinatesD, 8v, Range@nD<D;
Do@AppendTo@A, Graph@V, E, ImagePadding Ø 10,

VertexCoordinates Ø vCoordsDD
, 8E, powerE<D;

DeleteDuplicates@A, IsomorphicGraphQD
D

We apply this to five vertices, since six takes a bit more time to compute.
In[231]:= nonIso5 = nonIsoGraphs@5D;

In[232]:= Length@nonIso5D

Out[232]= 34

We see that there are 34 nonisomorphic graphs on 5 vertices. Here are the first eight.
In[233]:= Grid@Partition@nonIso5@@1 ;; 8DD, 3D, Frame Ø AllD

Computations and Explorations 9

Generate at random simple graphs with 10 vertices. Stop when you have constructed one 
with an Euler circuit. Display an Euler circuit in this graph.

Solution:  To  generate  the  random graphs,  we  will  use  the  RandomGraph  function.  By  passing  this
function  a  list  containing  a  number  of  vertices  and  a  number  of  edges,  it  produces  a  graph  with  that
number  of  vertices  and  edges.  To display  a  random graph on  10  vertices  and  15  edges,  we enter  the
following.

80   Chapter10.nb



Solution:  To  generate  the  random graphs,  we  will  use  the  RandomGraph  function.  By  passing  this
function  a  list  containing  a  number  of  vertices  and  a  number  of  edges,  it  produces  a  graph  with  that
number  of  vertices  and  edges.  To display  a  random graph on  10  vertices  and  15  edges,  we enter  the
following.
In[234]:= RandomGraph@810, 15<D

Out[234]=

Alternately, the argument to RandomGraph can be a graph distribution, which is a probability distribu-
tion on the sample space consisting of  graphs.  There are six built-in  graph distributions.  We will  use
the  BernoulliGraphDistribution,  which  allows  you  to  specify  a  number  of  vertices  and  a
probability. The probability indicates the independent probability that an edge will appear between any
two  vertices.  It  accepts  two  arguments,  the  number  of  vertices  and  the  probability.  The  following
constructs a random graph with 10 vertices and with each edge as likely to appear as not.
In[242]:= RandomGraph@BernoulliGraphDistribution@10, .5DD

Out[242]=

RandomGraph  also accepts an optional  second argument,  a  positive integer,  causing it  to produce a
list of that many random graphs.
Recall  the  description  of  the  EulerianGraphQ  function.  When  this  function  is  given  a  graph,  it
returns true or false depending on the existence of an Euler circuit.
To  satisfy  the  requirements  of  this  problem,  we  use  RandomGraph  to  generate  a  random  graph  G.
Then  we  test  it  for  an  Euler  circuit  using  EulerianGraphQ.  As  long  as  the  randomly  generated
graph does not have an Euler circuit, we continue generating new random graphs. We display the path
using FindEulerianCycle and the animatePath function we created in Section 10.5.
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In[236]:= generateEulerian@n_IntegerD ê; n > 0 := Module@8G, path<,
While@! EulerianGraphQ@GD,
G = RandomGraph@BernoulliGraphDistribution@n, .5DDD;

animatePath@G, First@FindEulerianCycle@GDDD
D

In[237]:= generateEulerian@10D

step

Computations and Explorations 13

Estimate the probability that a randomly generated simple graph with n vertices is connected 
for each possible integer n not exceeding ten by generating a set of random simple graphs 
and determining whether each is connected.

Solution: To solve this problem we will create a function that generates a number of random graphs of
the specified size  and counts  the  number  that  are  connected.  We use the  RandomGraph  function to
create the random graphs and the ConnectedGraphQ function to test them for connectivity.
In[238]:= connectedProbability@n_Integer, max_IntegerD ê;

n > 0 && max > 0 := Module@8G, i, count = 0<,
For@i = 1, i § max, i++,
G = RandomGraph@BernoulliGraphDistribution@n, .5DD;
If@ConnectedGraphQ@GD, count++D

D;
countêmax

D
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In[239]:= Table@connectedProbability@i, 100D, 8i, 10<D

Out[239]= :1,
12

25
,
14

25
,
31

50
,

69

100
,

77

100
,
22

25
,

97

100
,
19

20
, 1>

Exercises
1. Write a Mathematica function to find all maximal matchings for a bipartite graph.
2. Write Mathematica functions for calculating the adjacency and incidence matrices for a 
	

pseudograph.

3. Write a Mathematica function for creating a pseudograph from an incidence matrix.
4. Write a Mathematica function to find all of the minimal edge cuts of a given graph.
5. Write a Mathematica function to count the number of Hamilton circuits in a simple graph.
6. Write a Mathematica function to determine whether a mixed graph (with directed edges, 

multiple edges, and loops) has an Euler circuit and, if so, to find such a circuit.
7. Use Mathematica to construct all regular graphs of degree n, given a positive integer n. 

(Regular is defined in the Exercises for Section 10.2.)
8. For vertices u and v in a simple, undirected and connected graph G, the local vertex 

connectivity kHu, vL is defined to be the minimum number of vertices that must be removed so 
that there is no path between vertex u and vertex v. Write a Mathematica function that 
calculates the local vertex connectivity of a graph and a pair of its vertices.

9. For vertices u and v in a simple, undirected and connected graph G, the local edge 
connectivity lHu, vL is defined to be the minimum number of edges that must be removed so 
that there is no path between vertex u and vertex v. Write a Mathematica function that 
calculates the local edge connectivity of a graph and a pair of its vertices.

10. Write a Mathematica function that computes the thickness of a nonplanar simple graph (see 
the Exercises in Section 10.7 for a definition of thickness).

11. Write a Mathematica function for finding an orientation of a simple graph. (An orientation of 
a graph is defined in the Supplementary Exercises of Chapter 10.)

12. Write a Mathematica function for finding the bandwidth of a simple graph. (The bandwidth of 
a graph is defined in the Supplementary Exercises of Chapter 10.)

13. Write a Mathematica function for finding the radius and diameter of a simple graph. (The 
radius and diameter of a graph are defined in the Supplementary Exercises of Chapter 10.)

14. Use Mathematica to find the minimum number of queens controlling an nµ n chessboard for 
as many values of n as you can. Make use of the concept of a dominating set, described in the 
Supplementary Exercises of Chapter 10.

15. Write a Mathematica function for finding all self-complementary graphs on n vertices. (A self-
complementary graph is a graph which is isomorphic to its own complement.) Use your 
function to display the self-complementary graphs for as large a n as possible.
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16. Write a Mathematica function that finds a total coloring for a graph. A total coloring of a 
graph is an assignment of a color to each vertex and each edge such that: (a) no pair of 
adjacent vertices have the same color; (b) no two edges with a common endpoint have the 
same color; and (c) no edge has the same color as either of its endpoints.

17. A sequence of positive integers is called graphic if there is a simple graph that has this 
sequence as its degree sequence. In this context, the degree sequence of a graph is the 
nondecreasing sequence made up of the degrees of the vertices of the graph. Develop a 
Mathematica function for determining whether a sequence of positive integers is graphic and, 
if it is, to construct a graph with this degree sequence.
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