
12 Boolean Algebra

Introduction
In this chapter we will use Mathematica to model Boolean algebra. In the first section, we demonstrate
the basic functions that will be used in this chapter. In the second section, we will focus on the disjunc-
tive normal form of a logical expression. We will see how to use Mathematica's functions for finding a
disjunctive normal form expression for a Boolean function and for finding a representation for a func-
tion  defined  by  a  table  of  values.  In  Section  3,  we  will  see  how Mathematica  can  be  used  to  model
logical circuits, including how to go about transforming a circuit diagram into a Mathematica  expres-
sion. We also provide a function that will  transform a logical expression into a model of a circuit.  In
the final  section of  the chapter,  we consider  simplification of  logical  expressions,  and we develop an
implementation of the Quine-McCluskey method.

12.1 Boolean Functions
In this section we will see how to work with Boolean expressions and how to create Boolean functions.
We will  also  use  Mathematica  to  verify  identities  in  Boolean  algebra  and  to  compute  the  dual  of  an
expression.

Preliminaries
In Chapter 1 of this manual, we discussed Mathematica’s logical expressions. The Boolean values true
and false are represented by the symbols True  and False.  To Mathematica,  these are constant val-
ues, like the numbers 2 or Pi.
We also saw in Chapter 1 the logical operators And (&&), Or (||), and Not (!). These can be used in
functional form or as operators. The two expressions below both compute T flŸ HT fiFL.

In[1]:= True && ! HTrue »» FalseL

Out[1]= False

In[2]:= And@True, Not@Or@True, FalseDDD

Out[2]= False

Note  that  Mathematica  obeys  the  usual  order  of  precedence  for  logical  operators,  namely  negation
followed by conjunction, then disjunction, and finally implication. 
Other  logical  operators  supported  by  Mathematica  include:  the  exclusive  or,  Xor,  implication,
Implies,  and the biconditional, Equivalent.  Each logical connective can be entered as the usual
mathematical symbol by using an escape sequence, as shown in the table below. 



Other  logical  operators  supported  by  Mathematica  include:  the  exclusive  or,  Xor,  implication,
Implies,  and the biconditional, Equivalent.  Each logical connective can be entered as the usual
mathematical symbol by using an escape sequence, as shown in the table below. 

And ÂandÂ Ï

Or ÂorÂ Í

Not ÂnotÂ Ÿ

Xor ÂxorÂ „
Implies Â=>Â fl

Equivalent ÂequivÂ Í

In this  manual,  we will  typically enter  operators using either  the simple keyboard character  operators
for And (&&), Or (||), and Not (!) or in functional form, rather than using the escape sequences.
For  Boolean algebra,  the  textbook uses  the  objects  0  and 1 with  operators  +,  ÿ,  and  instead of  their
logical  counterparts.  It  is  tempting  to  use  Mathematica’s  bit  functions,  BitAnd,  BitOr,  and
BitNot, in order to replicate the 0-1 form of Boolean expressions. However, the bit functions behave
differently  than  the  corresponding  Boolean  operators  would,  in  particular  BitNot  does  not  switch
between 0 and 1.

In[3]:= BitNot@0D

Out[3]= -1

In[4]:= BitNot@1D

Out[4]= -2

In the remainder of this manual,  we will  stick to the logical forms of Boolean expressions.  However,
some  readers  may  be  interested  to  know that  it  is  possible  to  create  operators  to  mirror  the  kinds  of
Boolean algebra expressions used in the text. To do so, we use symbols that Mathematica will interpret
as operators but which have no built-in definition. For example, we could use circle times (Ä⊗, entered
Âc*Â) and circle plus (Å⊕, entered Âc+Â) for the and and or operators, and the unary minus-plus
(°, entered Â-+Â) for negation. Then the expression 1 ÿ 0+ H0+ 1L would be entered as shown below.

In[5]:= 1Ä⊗0Å⊕°H0Å⊕1L

Out[5]= 1Ä⊗0Å⊕°H0Å⊕1L

To  get  Mathematica  to  evaluate  such  expressions  properly,  you  just  need  to  make  definitions  to  the
symbols.  By  setting  the  Flat  and  Listable  attributes  first,  the  operator  will  be  associative.  For
example, Ä⊗ can be defined by setting values for CircleTimes.

In[6]:= SetAttributes@CircleTimes, 8Flat, Listable<D;
CircleTimes@1, 1D = 1;
CircleTimes@1, 0D = 0;
CircleTimes@0, 1D = 0;
CircleTimes@0, 0D = 0;

Now Mathematica will automatically simplify Ä⊗, so if we enter the previous expression again:
In[11]:= 1Ä⊗0Å⊕°H0Å⊕1L

Out[11]= 0Å⊕°H0Å⊕1L

Definitions of the other operations are left to the interested reader. In this manual, we will not use this
approach, since the logical form of Boolean expressions is more naturally supported by Mathematica.
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Definitions of the other operations are left to the interested reader. In this manual, we will not use this
approach, since the logical form of Boolean expressions is more naturally supported by Mathematica.

Boolean Expressions and Boolean Functions
Consider Example 1 from the text, which asks that we compute the value of 1 ÿ 0+ H0+ 1L. To perform
this computation in Mathematica, we first translate it into a logical statement. We do this by changing
1 into True,  0 into False,  the multiplication into And  (&&),  the addition into Or  (||),  and the bar
into Not (!).

In[12]:= True && False »» ! HFalse »» TrueL

Out[12]= False

Of  course,  you  can  enter  Boolean  expressions  involving  variables,  assuming  the  symbols  have  not
previously been assigned values.

In[13]:= Implies@p && q, rD

Out[13]= p && q fl r

And,  just  as  with  arithmetic  expressions,  you  can  evaluate  these  expressions  for  specific  values  by
applying the ReplaceAll (/.) operator.

In[14]:= Implies@p && q, rD ê. 8p Ø True, q Ø True, r Ø False<

Out[14]= False

Representing Boolean Functions
You define a Boolean function in Mathematica in the same way as any other function.
Consider, for example, the Boolean function f Hx, y, zL = x y+ y z+ z x (written in the 0-1 notation).
This can be modeled in Mathematica by the function defined below.

In[15]:= f@x_, y_, z_D := Or@And@x, yD, And@y, zD, And@z, xDD

You can work with f in the usual way. The following applies f to p, q, and r.
In[16]:= f@p, q, rD

Out[16]= Hp && qL »» Hq && rL »» Hr && pL

When f is applied to truth values, it is evaluated.
In[17]:= f@True, False, TrueD

Out[17]= True

You  can  also  mix  truth  values  and  symbols.  In  this  case,  Mathematica  will  simplify  the  expression,
given the partial information.

In[18]:= f@True, q, rD

Out[18]= q »» Hq && rL »» r

You may notice that this expression is logically equivalent to qÍ r. Applying the Simplify function
will ask Mathematica to more fully simplify the output.
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In[19]:= f@True, q, rD êê Simplify

Out[19]= q »» r

Values of Boolean Functions
Examples 4 and 5 of  Section 12.1 illustrate  how the values of  a  Boolean function,  in  the 0-1 format,
can be displayed in a table. In the logical form, this is equivalent to a truth table for the Boolean func-
tion. In Chapter 1 of this manual, we illustrated the use of the BooleanTable function for creating
truth tables.
Recall that BooleanTable accepts two arguments: a Boolean expression and a list of the variables.
The output is a list of the truth values for the expression obtained by substituting every possible combi-
nation of truth values into the variables.
For  example,  we will  display the  table  of  values  for  the  Boolean function f  defined above.  The first
argument to  BooleanTable will be a list containing the three variables and the function applied to
them. Giving the first argument as this list means that the output will indicate the values of the individ-
ual variables, and not just the result. The second argument will be the list of variables.

In[20]:= BooleanTable@8p, q, r, f@p, q, rD<, 8p, q, r<D êê TableForm
Out[20]//TableForm=

True True True True
True True False True
True False True True
True False False False
False True True True
False True False False
False False True False
False False False False

If you wish, you can use this function to produce output in the 0-1 form by applying the Boole func-
tion. Boole is a built-in function that transforms the truth values True and False into the values 1
and 0. Since it threads over lists, it can be applied to the output from BooleanTable.

In[21]:= Boole@BooleanTable@8p, q, r, f@p, q, rD<, 8p, q, r<DD êê TableForm

Out[21]//TableForm=
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

We  can  further  refine  the  output  by  using  the  TableHeadings  option  for  TableForm.  Table-
Headings  is  assigned to a pair representing the row and column headings, with None  used when a
group of headings is not wanted.
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In[22]:= TableForm@Boole@BooleanTable@8p, q, r, f@p, q, rD<, 8p, q, r<DD,
TableHeadings Ø 8None, 8p, q, r, f<<D

Out[22]//TableForm=
p q r f
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Operations on Boolean Functions
As  with  functions  on  real  numbers,  Boolean  functions  can  be  combined  using  basic  operations.  The
complement  of  a  Boolean  function  and  the  Boolean  sum and  product  of  functions  are  defined  in  the
text. 
To compute complements, sums, and products of Boolean functions, you must define a new function in
terms  of  the  original.  For  example,  consider  the  function  GHx, yL = x ÿ y.  In  logical  notation,  this  is
GHx, yL = xÏ y.

In[23]:= G@x_, y_D := x && y

The complement  of  G,  which we'll  call  notG,  is  created as  follows.  The arguments  of  notG  are  the
same as G. The formula that defines notG is ! G@x, yD.

In[24]:= notG@x_, y_D := ! G@x, yD

Observe that if we evaluate notG at a pair of variables, Mathematica returns the expected result.
In[25]:= notG@x, yD

Out[25]= ! Hx && yL

Let us define another function, HHx, yL = x ÿ y.
In[26]:= H@x_, y_D := x && ! y

To compute the Boolean sum G+H, we combine the functions with the Or (||) operator. More pre-
cisely, we define a function GpH with the formula G[x,y]||H[x,y].

In[27]:= GpH@x_, y_D := G@x, yD »» H@x, yD

Applying this to a pair of variables and simplifying, we obtain the following formula for G+H.
In[28]:= GpH@x, yD êê Simplify

Out[28]= x

This  result  indicates  that  x ÿ y+ x ÿ y = x.  This  can  also  be  verified  using  the  identities  in  Table  5  of
Section 12.1.

Chapter12.nb  5



Identities of Boolean Algebra
We can check identities, equivalence of Boolean expressions, and equality of Boolean functions using
the Equivalent and TautologyQ functions.
We will use the distributive law xHy+ zL = x ÿ y+ x ÿ z  as an example. First we must translate the state-
ment into a logical equivalence: xÏ HyÍ zL ª HxÏ yL Í Hxfl zL.
Now we will assign the expressions on either side of the equivalence to symbols. This is not necessary,
but it will make later expressions easier to read.

In[29]:= distributiveL = x && Hy »» zL;
distributiveR = Hx && yL »» Hx && zL;

To  confirm  the  equivalence  of  the  two  Boolean  expressions,  we  combine  them  into  a  biconditional
using the Equivalent function. We then apply the TautologyQ function to the biconditional and
a list of the Boolean variables appearing in the expression.

In[31]:= TautologyQ@Equivalent@distributiveL, distributiveRD, 8x, y, z<D

Out[31]= True

This verifies the given distributive law.
In  the  case  that  the  two  expressions  are  not  equivalent,  you  can  use  the  SatisfiabilityIn-
stances  function to find a list  of assignments of truth values to the variables in the expression that
demonstrates that the expressions are not equivalent.
Consider  the  non-equivalence  x+ x ÿ y ¹≠ y.  In  logical  form,  this  is  xÍ HxÏ yL T y.  First  observe  that
TautologyQ returns false.

In[32]:= TautologyQ@Equivalent@x »» Hx && yL, yD, 8x, y<D

Out[32]= False

Now apply SatisfiabilityInstances to the negation of the equivalence.
In[33]:= SatisfiabilityInstances@! Equivalent@x »» Hx && yL, yD, 8x, y<D

Out[33]= 88True, False<<

This output means that setting x equal to true and y equal to false provides a demonstration, by coun-
terexample,  that  xÍ HxÏ yL T y.  Indeed,  substituting  x = true  and  y = false  on  the  left  hand  side  pro-
duces trueÍ HtrueÏ falseL ª trueÍ false ª true. That is not the same as the right hand side, y, which is
assigned false.
Note  that  the  output  from SatisfiabilityInstances  is  a  list  of  assignments.  Ordinarily  only
one truth value assignment will be returned. But if you provide a positive integer as an optional third
argument,  Mathematica  will  attempt  to  find that  number  of  different  assignments.  Below,  we ask for
three assignments, but only two exist and so two are returned.

In[34]:= SatisfiabilityInstances@! Equivalent@x »» Hx && yL, yD, 8x, y<, 3D

Out[34]= 88True, False<, 8False, True<<

Equality  of  Boolean  functions  can  also  be  checked  with  the  Equivalent  and  TautologyQ
functions.
Consider the following Boolean functions.
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f1Hx, yL = Hx ÿ yL

f2Hx, yL = x+ y

Define the corresponding functions:
In[35]:= f1@x_, y_D := ! Hx && yL;

f2@x_, y_D := ! x »» ! y;

We  can  test  the  assertion  that  f1Hx, yL = f2Hx, yL  by  applying  the  Equivalent  and  TautologyQ
functions as shown below.

In[37]:= TautologyQ@Equivalent@f1@x, yD, f2@x, yDD, 8x, y<D

Out[37]= True

Duality
We conclude this section by showing how Mathematica can be used to compute the dual of an expres-
sion. We will define a function, dual, to achieve this.
Recall that the dual of a Boolean expression is the expression obtained by interchanging conjunctions
and disjunctions and interchanging trues and falses.  We can achieve this in Mathematica  by applying
ReplaceAll (/.) with a list of rules effecting the interchanges.

In[38]:= dual@expr_D :=
expr ê. 8And Ø Or, Or Ø And, False Ø True, True Ø False<

Note that this will not produce an infinite loop, since ReplaceAll (/.) operates by looking at each
part of the expression only once applying the first rule in the list that is valid.
For  example,  consider  the  expression x ÿ y+ y ÿ z+ x ÿ z.  As a  logical  expression,  this  can be written as
HxÏŸ yL Í HyÏŸ zL Í HŸ xfl zL. We calculate the dual by applying the dual function.

In[39]:= dual1 = dual@Hx && ! yL »» Hy && ! zL »» H! x && zLD

Out[39]= Hx »» ! yL && Hy »» ! zL && H! x »» zL

Similarly, the dual of x ÿ y+ y ÿ z+ x ÿ z can be computed by
In[40]:= dual2 = dual@H! x && yL »» H! y && zL »» Hx && ! zLD

Out[40]= H! x »» yL && H! y »» zL && Hx »» ! zL

Exercise 13 of Section 12.1 asks you to prove that the expressions x ÿ y+ y ÿ z+ x ÿ z and x ÿ y+ y ÿ z+ x ÿ z
are  equivalent.  The duality  principle  implies  that  the duals  calculated above are  also equivalent.  This
can be verified by the Equivalent and TautologyQ functions.

In[41]:= TautologyQ@Equivalent@dual1, dual2D, 8x, y, z<D

Out[41]= True

12.2 Representing Boolean Functions
In  this  section  we  will  see  how  to  use  Mathematica  to  express  Boolean  functions  in  the  disjunctive
normal form (also called sum-of-products expansion).  We will  first  look at  the Mathematica  function
for  turning  an  expression  in  Boolean  algebra  into  the  disjunctive  normal  form.  Then  we  will  see  the
function for finding an expression based on a table of values.

Chapter12.nb  7



In  this  section  we  will  see  how  to  use  Mathematica  to  express  Boolean  functions  in  the  disjunctive
normal form (also called sum-of-products expansion).  We will  first  look at  the Mathematica  function
for  turning  an  expression  in  Boolean  algebra  into  the  disjunctive  normal  form.  Then  we  will  see  the
function for finding an expression based on a table of values.

Disjunctive Normal Form from an Expression
Given  an  expression  written  using  the  logical  connectives,  the  BooleanConvert  function  can  be
used to transform the expression into disjunctive normal form.
Consider Example 3: Hx+ yL z. In logical form, this is HxÍ yL ÏŸ z. We assign this logical expression to
a symbol.

In[42]:= example3 = Hx »» yL && ! z

Out[42]= Hx »» yL && ! z

The most common way to apply the BooleanConvert function involves two arguments: the expres-
sion to be converted and a string representing the desired form of the output. There are several possible
forms,  as  detailed  by  the  help  page,  but  the  two  we  will  be  using  are  "DNF"  for  disjunctive  normal
form (or equivalently "SOP"  meaning sum of products) and "CNF"  for conjunctive normal form (or
equivalently "POS" meaning product of sums). Be sure to include the quotation marks.
Below, we convert example3 to disjunctive normal form using "DNF” in the second argument.

In[43]:= BooleanConvert@example3, "DNF"D

Out[43]= Hx && ! zL »» Hy && ! zL

Note that this expression is different from the solution to Example 3 in the text. Mathematica produces
a reduced disjunctive normal form in which terms are not required to contain every variable.
BooleanConvert  can also be applied with a single argument,  in which case it  defaults to disjunc-
tive normal form.

In[44]:= BooleanConvert@example3D

Out[44]= Hx && ! zL »» Hy && ! zL

To produce conjunctive normal form, "CNF" (or "POS") is required as the second argument.
In[45]:= BooleanConvert@example3, "CNF"D

Out[45]= Hx »» yL && ! z

Disjunctive Normal Form from a Table
Example 1 of Section 12.2 describes how to find an expression for a Boolean function represented by a
table of values. We will illustrate the built-in Mathematica functions that accomplish this task.
To define a Boolean function using truth values, we will use BooleanFunction. This function has
a variety of uses, including the ability to specify a Boolean function in terms of the number variables
and an index into the list of all Boolean functions on that number of variables, and the ability to specify
a Boolean function in terms of truth value assignments. We will focus on the latter.
For example, consider the function defined by the following table.

x y z F Hx, y, zL
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0
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x y z F Hx, y, zL
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

There  are  two  ways  we  can  represent  this  function  in  Mathematica  that  will  be  usable  as  input  to
BooleanFunction.  The first  is  as rules that assign the truth value assignments to the value of the
function. For example, the third row in the table would correspond to the rule 81, 0, 1< Ø 0. Note that
BooleanFunction allows for the use of 0-1 notation for true and false. It will also accept the sym-
bols True and False, as in 8True, False, True< Ø False. We will use the 0-1 notation as it makes for
shorter input sequences.
Given a list of such rules, the BooleanFunction will output a Mathematica function object.

In[46]:= BFexample = BooleanFunction@
881, 1, 1< Ø 0, 81, 1, 0< Ø 1, 81, 0, 1< Ø 0, 81, 0, 0< Ø 1,
80, 1, 1< Ø 0, 80, 1, 0< Ø 1, 80, 0, 1< Ø 1, 80, 0, 0< Ø 0<D

Out[46]= BooleanFunction@ < 3 >D

Applying the function to truth values yields the appropriate result.
In[47]:= BFexample@True, False, TrueD

Out[47]= False

With a  list  of  variable  names as  a  second argument,  BooleanFunction  will  output  an  expression
for the Boolean function instead of a BooleanFunction object.

In[48]:= BooleanFunction@881, 1, 1< Ø 0, 81, 1, 0< Ø 1,
81, 0, 1< Ø 0, 81, 0, 0< Ø 1, 80, 1, 1< Ø 0,
80, 1, 0< Ø 1, 80, 0, 1< Ø 1, 80, 0, 0< Ø 0<, 8x, y, z<D

Out[48]= Hx && ! zL »» H! x && ! y && zL »» Hy && ! zL

A third argument can be used to specify the form, e.g., “DNF” or “CNF”, for the output.
In[49]:= BooleanFunction@881, 1, 1< Ø 0, 81, 1, 0< Ø 1,

81, 0, 1< Ø 0, 81, 0, 0< Ø 1, 80, 1, 1< Ø 0, 80, 1, 0< Ø 1,
80, 0, 1< Ø 1, 80, 0, 0< Ø 0<, 8x, y, z<, "CNF"D

Out[49]= H! x »» ! zL && Hx »» y »» zL && H! y »» ! zL

You can simplify the input to BooleanFunction  slightly by entering only those rules correspond-
ing to one of  the possible function values,  say true,  and then use a  BlankSequence  (__)  to  assert
that all others have the other value. This is illustrated below for the same function,
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In[50]:= BooleanFunction@881, 1, 0< Ø 1, 81, 0, 0< Ø 1,
80, 1, 0< Ø 1, 80, 0, 1< Ø 1, 8__< Ø 0<, 8x, y, z<, "CNF"D

Out[50]= H! x »» ! zL && Hx »» y »» zL && H! y »» ! zL

Observe that this is identical to the output above.
You can  simplify  the  input  even  further  by  entering  only  the  output  values  of  the  function,  provided
you enter them in standard order. The order the values must be entered in is the same as displayed in
the table above.

In[51]:= BooleanFunction@80, 1, 0, 1, 0, 1, 1, 0<, 8x, y, z<D

Out[51]= Hx && ! zL »» H! x && ! y && zL »» Hy && ! zL

If you are in doubt of the order in which to enter the function’s values, it is identical to the order used
by  BooleanTable,  the  function  used  to  display  truth  tables.  Below  we  use  BooleanTable  to
display the canonical ordering of truth value assignments for two variables.

In[52]:= BooleanTable@8x, y<, 8x, y<D êê TableForm

Out[52]//TableForm=
True True
True False
False True
False False

12.3 Logic Gates
In this section, we will use Mathematica  to work with logic gates, particularly circuit diagrams. First,
we will see how to use Mathematica to translate a circuit diagram into a Boolean expression. Then we
will do the reverse and see how to transform a logical expression into a circuit diagram (modeled as a
tree diagram).

Circuit Diagram to Logical Expression
Consider the circuit diagram shown below.
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Our goal in this subsection is to use Mathematica to produce a logical expression for the output of this
diagram. 
To do this, we use the fact that Mathematica has functional forms for each of the logical expressions.
That is, Not, And, and Or can all be used as functions applied to expressions. For example, the follow-
ing forms the disjunction of x, y, and z.

In[53]:= Or@x, y, zD

Out[53]= x »» y »» z

We give each gate in the diagram a label. The specific names are not important. We chose to label the
gates using the capital letter G with subscripts numbered from the right to the left.

Interpret the labels as names for both the gates themselves and for their outputs. Note G1  is the name
for  both  the  output  of  the  final  gate  and  also  names  the  output  of  the  circuit.  The  input  of  G1  is  the
outputs  from  gates  G2  and  G3.  That  is  to  say,  G1 = G2 orG3.We  can  write  that  in  Mathematica  as
shown below.
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Interpret the labels as names for both the gates themselves and for their outputs. Note G1  is the name
for  both  the  output  of  the  final  gate  and  also  names  the  output  of  the  circuit.  The  input  of  G1  is  the
outputs  from  gates  G2  and  G3.  That  is  to  say,  G1 = G2 orG3.We  can  write  that  in  Mathematica  as
shown below.

In[54]:= G1 = Or@G2, G3D

Out[54]= G2 »» G3

For each gate, do the same. Note that the order in which the gates are specified is irrelevant. The gate
G2 is a and b.

In[55]:= G2 = And@a, bD

Out[55]= a && b

The output of G3 is the conjunction of G4, b, and G5.
In[56]:= G3 = And@G4, b, G5D

Out[56]= G4 && b && G5

And G4 and G5 are inversions on a and c, respectively.
In[57]:= G4 = Not@aD

Out[57]= ! a

In[58]:= G5 = Not@cD

Out[58]= ! c

Once all of the gates have been specified, inspect the value for the final gate, G1.
In[59]:= G1

Out[59]= Ha && bL »» H! a && b && ! cL

This tells us that the circuit's result is HaÏ bL Í HŸ aÏ bÏŸ cL. In 0-1 form, this is ab+ a b c.
The reason this works is that when we define the output of a gate in terms of unassigned names, such
as G2, Mathematica accepts the definition. When G2 is later assigned its own value and then the expres-
sion  for  G1  is  evaluated,  Mathematica  resolves  all  assigned  names  into  their  definitions  so  that  the
expression for G1 is in terms of unassigned names (a, b, and c) only.

Logical Expression to Circuit Diagram
We have just seen how to use Mathematica to transform a circuit diagram into a logical expression for
the result of the circuit. Now we consider the reverse. Given a logical expression, such as that for G1,
we will use Mathematica to transform the expression into a circuit diagram.
We will model a circuit diagram as a binary tree. While circuit diagrams are generally not necessarily
binary, this will serve for our purposes.
Recall  that  a  binary  tree  has  a  number  of  vertices  and directed edges.  Vertices  in  the  tree  will  corre-
spond to gates in the circuit. One of the vertices is distinguished as the root, which will correspond to
the output of the circuit. Each vertex has at most two children vertices. The edges between the vertex
and its child correspond to the inputs to the gate. Each vertex other than the root has a parent, and the
edge from the vertex to the parent corresponds to the output from the gate.
The assumption that a circuit can be modeled as a binary tree requires that the circuit satisfy the follow-
ing properties. First, the circuit has only one output. Second, each gate has only one output. Third, each
gate has at most two inputs.
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The assumption that a circuit can be modeled as a binary tree requires that the circuit satisfy the follow-
ing properties. First, the circuit has only one output. Second, each gate has only one output. Third, each
gate has at most two inputs.
Recall  that  in  Chapter  11,  we  wrote  the  function  expressionTree  for  converting  an  algebraic
expression in terms of the binary arithmetic operators into a tree representation. We will make use of
the  functions  from  Chapter  11  here,  so  we  load  them.  If  you  place  the  file  Chapter11.mx  from  the
website  in  the  same  directory  as  this  notebook  is  stored,  the  executing  the  following  expression  will
load the functions from Chapter 11.

In[60]:= << HNotebookDirectory@D <> "Chapter11.mx"L

Get::noopen : Cannot open 
êUsersêDanêDropboxêRosenMathematicaêChapter12êChapter11.mx. à

Out[60]= $Failed

Recall that the functions written in each chapter of this manual are collected in packages. Please refer
to the Introduction if you need instructions on how to use the packages on your system.
Observe  what  happens  if  we  apply  the  expressionTree  function  to  the  logical  expression
aÏ HbÍ cL.

In[61]:= expressionTree@a && Hb »» cL, ImagePadding Ø 5D

Out[61]= expressionTree@a && Hb »» cL, ImagePadding Ø 5D

Compare the tree above to the circuit diagram below.

Observe that the diagram and the tree have the same structure. After reversing the arrows, rotating by
90°, and exchanging the symbols with the functions labeling the internal nodes, the two are identical.
As you can see, we nearly have a function for turning logical expressions into trees that correspond to
circuit diagrams. The only problem is that the expressionTree  function does not allow for unary
operators such as Not.
In order to create a function like this that will work with expressions using the Boolean operators, we
need to allow for the possibility that there is only one operand.
The inner If statement below tests the number of operands of the expression using Length. This will
function similarly to the original function, except using the left hand side for the sole operand. We also
need  to  create  a  new  function,  addLeftBranch,  to  take  the  place  of  joinTrees  for  unary
operators.
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In[62]:= SetAttributes@logicTree, HoldFirstD;
logicTree@expr_, opts___D :=
Module@8e, lhs, rhs, operator, lhsTree, rhsTree, result<,
If@expr@@0DD === Hold,
e = expr,
e = Hold@exprD

D;
If@e@@1, 0DD === Integer »» e@@1, 0DD === Symbol,
result = newExpressionTree@ReleaseHold@eD, optsD,
operator = Extract@e, 81, 0<D;
If@Length@e@@1DDD ã 1,
lhs = Extract@e, 81, 1<, HoldD;
lhsTree = logicTree@lhsD;
result = addLeftBranch@operator, lhsTree, optsD,
H* else there are 2 operands *L
lhs = Extract@e, 81, 1<, HoldD;
rhs = Extract@e, 81, 2<, HoldD;
lhsTree = logicTree@lhsD;
rhsTree = logicTree@rhsD;
result = joinTrees@operator, lhsTree, rhsTree, optsD

D
D;
drawBinaryTree@resultD

D

To  implement  addLeftBranch,  we  essentially  repeat  the  definition  of  joinTrees  with  the  ele-
ments related to the right child removed.
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In[64]:= addLeftBranch@newR_, A_?binaryTreeQ, opts___D :=
Module@8newRI, newT, newVerts, Aroot, newEdges, v, e, p, w<,
newRI = ToString@newRID;
newVerts = Join@8newRI<, VertexList@ADD;
Aroot = findRoot@AD;
newEdges = Join@EdgeList@AD, 8DirectedEdge@newRI, ArootD<D;
newT = Graph@newVerts, newEdges, optsD;
Do@PropertyValue@8newT, v<, "order"D =

PropertyValue@8A, v<, "order"D
, 8v, VertexList@AD<D;

PropertyValue@8newT, Aroot<, "order"D = 1;
PropertyValue@8newT, newRI<, "order"D = 0;
Do@PropertyValue@8newT, v<, VertexLabelsD =

PropertyValue@8A, v<, VertexLabelsD
, 8v, VertexList@AD<D;

PropertyValue@8newT, newRI<, VertexLabelsD = newR;
drawBinaryTree@newTD

D

With these in place, let's look at the result for an example. Consider Hx+ yL x,  the subject of Example
1(a) from the text.

In[65]:= logicTree@Hx »» yL && ! x, ImagePadding Ø 10D

Out[65]= drawBinaryTree@joinTrees@And, drawBinaryTree@
joinTrees@Or, drawBinaryTree@newExpressionTree@xDD,
drawBinaryTree@newExpressionTree@yDDDD, drawBinaryTree@

addLeftBranch@Not, drawBinaryTree@newExpressionTree@xDDDD,
ImagePadding Ø 10DD

Compare this diagram to Figure 4(a) in the text.
Note  that  the  function  above  will  not  work  correctly  on  expressions,  such  as  the  expression  G1,  that
Mathematica interprets as applications of And or Or with more than two arguments. Observe that the
FullForm of G1 reveals that Mathematica considers it to include an And applied to three arguments.

In[66]:= FullForm@G1D
Out[66]//FullForm=

Or@And@a, bD, And@Not@aD, b, Not@cDDD

It is left as an exercise for the reader to alter the logicTree function to handle this case. 

12.4 Minimization of Circuits
In  this  section  we will  discuss  the  use  of  the  BooleanMinimize  function  for  minimizing  circuits,
and we will provide an implementation of the Quine-McCluskey method.
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The BooleanMinimize Function
The  BooleanMinimize  function,  applied  to  a  Boolean  expression,  finds  a  minimal  representation
of the expression in disjunctive normal form.
For  example,  we  apply  BooleanMinimize  to  the  expression  we  obtained  for  the  output  of  the
circuit diagram at the beginning of Section 12.3.

In[67]:= BooleanMinimize@Ha && bL »» H! a && b && ! cLD

Out[67]= Ha && bL »» Hb && ! cL

The result indicates that Ÿ a can be removed as an input to the second AND gate.
The result of BooleanMinimize is guaranteed to be of minimal length among all possible disjunc-
tive normal form representations of the input, however, such a minimal expression is not unique. Note
that if you don’t care that the expression be in disjunctive normal form, the Simplify  function will
produce a shorter expression.

In[68]:= Simplify@Ha && bL »» H! a && b && ! cLD

Out[68]= Ha »» ! cL && b

The  BooleanMinimize  function  can  also  accept,  as  a  second  argument,  all  the  same  forms  as
BooleanConvert in order to produce minimal expressions of different forms. For example, to find
a minimal conjunctive normal form expression for G1, you enter the following.

In[69]:= BooleanMinimize@Ha && bL »» H! a && b && ! cL, "CNF"D

Out[69]= Ha »» ! cL && b

Don’t Care conditions
Informally, a set of don't care conditions for a Boolean function F is a set of points in the domain of F
whose images do not concern us.
If F  is a function on n  variables, then its domain is 8true, false<n.  Let A  be the subset of 8true, false<n
for  which the value of  F  is  specified.  If  we think of  F  as  fully defined on this  subset  A,  then we are
interested  in  the  family  of  all  extensions  of  F  to  all  of  8true, false<n.  In  other  words,  the  set  of  all  G
defined on 8true, false<n  that agree with F on A. The goal is to choose the particular G that is simplest.
That is, the G that has the smallest sum of products expansion.

We should pause to consider the size of this problem. If there are d  don't care points, then there are 2d
possible extensions G. Considering every possible extension can become rather time consuming.
Consider  the  Boolean  function  F  defined  by  the  following  table  of  values,  in  which  “d”  in  the  final
column indicates a don't care condition.

x y z F(x,y,z)
true true true true
true true false false
true false true false
true false false true
false true true d
false true false d
false false true false
false false false true
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x y z F(x,y,z)
true true true true
true true false false
true false true false
true false false true
false true true d
false true false d
false false true false
false false false true

The points that must evaluate to true are: 8Hfalse, false, falseL, Htrue, false, falseL, Htrue, true, trueL< and
the don’t care conditions are 8Hfalse, true, falseL, Hfalse, true, trueL<.
In Section 12.2, we showed how to use BooleanFunction to define a Boolean function in terms of
a table. We also saw above that you can specify a default output by using a BlankSequence (__).
For example,  the following returns the Boolean expression that  is  true on Htrue, false, true, falseL  and
false otherwise.

In[70]:= BooleanFunction@
88True, False, True, False< Ø True, 8__< Ø False<, 8x, y, z, w<D

Out[70]= ! w && x && ! y && z

We  can  specify  a  don’t  care  condition  within  a  call  to  BooleanFunction  by  identifying  a  don’t
care condition, e.g., Hfalse, true, falseL, with a blank. 
So we can determine a Boolean function defined by the table above as follows. (Note that we could use
a  BlankSequence  (__)  to  simplify  the  input,  but  in  this  example  we  list  all  the  elements  of  the
domain for clarity.)

In[71]:= BooleanFunction@88True, True, True< Ø True,
8True, True, False< Ø False,
8True, False, True< Ø False,
8True, False, False< Ø True,
8False, True, True< Ø _,
8False, True, False< Ø _,
8False, False, True< Ø False,
8False, False, False< Ø True<,

8x, y, z<D

Out[71]= Hx && y && zL »» H! x && ! zL »» H! y && ! zL

Quine-McCluskey
We conclude with an implementation of the Quine-McCluskey method. This method is fairly involved
and  it  will  take  considerable  effort  to  implement  it  correctly,  but  understanding  this  algorithm  is
worthwhile.
It will be helpful to have an example that we can use to illustrate the method as we build the function.
The expression we use for the example is 
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It will be helpful to have an example that we can use to illustrate the method as we build the function.
The expression we use for the example is 

w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z

We assign this to the symbol F.
In[72]:= F = Hw && x && ! y && ! zL »» Hw && ! x && y && zL »»

Hw && ! x && y && ! zL »» Hw && ! x && ! y && ! zL »»

H! w && x && y && zL »» H! w && x && ! y && zL »»

H! w && x && ! y && ! zL »» H! w && ! x && y && zL »»

H! w && ! x && ! y && zL »» H! w && ! x && ! y && ! zL;

Let us begin by (very) briefly outlining the approach. More details will be given as we proceed.
1. Transform the minterms into bit strings.
2. Group the bit strings by the number of 1s.
3. Combine bit strings that differ in exactly one location.
4. Repeat steps 2 and 3 until no additional combinations are possible.
5. Identify the prime implicants (those bit strings not used in a simplification) and form the coverage 

table.
6.  Identify the essential prime implicants and update the table.
7. Process the remaining prime implicants using a heuristic approach in order to achieve complete 

coverage.
Implementing this will require several different functions that will come together to achieve the goal of
minimizing the expression for F.
Modifying Arguments
Before  we  begin  implementing  the  method,  we  take  a  moment  to  explain  the  HoldRest  attribute.
Earlier in this manual, we have seen how to use a held argument to allow modification of an argument
to a function. We will need to do this again here in order to avoid the need to copy data structures that
must be modified by a function.
Holding parameters to a function means that, when you call the function on a symbol, instead of apply-
ing the function to the object stored in that symbol, the function is given the name of the symbol itself.
This allows the symbol name to be reassigned and otherwise modified within the function. 
The HoldRest  attribute  causes  all  but  the  first  argument  to  a  function to  be  held.  For  example,  the
following function  updates  the  symbol  given as  the  second argument  to  be  the  sum of  what  it  previ-
ously stored and the first argument, and appends the result to the list associated to the symbol given as
the third argument.

In[73]:= exampleHold1 = 5;
exampleHold2 = 12;
exampleHold3 = 81, 2, 3<;
SetAttributes@exampleHoldFunction, 8HoldRest<D;
exampleHoldFunction@a_, b_, c_D := Module@8<,

b = a + b;
AppendTo@c, bD

D
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In[78]:= exampleHoldFunction@exampleHold1, exampleHold2, exampleHold3D

Out[78]= 81, 2, 3, 17<

Observe  that  the  values  stored  in  the  last  two  arguments  have  changed.  Without  the  HoldRest
attribute, both expressions in the body of the Module would have produced errors.

In[79]:= exampleHold2

Out[79]= 17

In[80]:= exampleHold3

Out[80]= 81, 2, 3, 17<

Other attributes that can be used to hold arguments are HoldFirst and HoldAll.
Transforming Minterms Into Bit Strings
The first task is to process the input. That is, F must be transformed into a list of bit strings. This is not
strictly necessary,  but it  makes working with the minterms more convenient.  We represent bit  strings
as lists of 0s and 1s.
We begin  by  creating  a  function  to  transform a  single  minterm into  a  bit  string.  We assume that  the
input to this function will be a properly formed minterm, that is, a conjunction of variables and nega-
tions of variables. We require that a list of variables be provided to the function, so that the bit string
can be formed in the proper order.
Consider the following minterm, which is the fourth minterm in our example F.

In[81]:= minterm = w && ! x && y && ! z

Out[81]= w && ! x && y && ! z

Fortunately, Mathematica automatically transforms a series of conjunctions into a single application of
the And (&&) function with multiple arguments. Applying FullForm illustrates.

In[82]:= FullForm@mintermD
Out[82]//FullForm=

And@w, Not@xD, y, Not@zDD

MemberQ’s first argument can have any head, not just a List. So, we can determine that w is part of
the conjunction but that x is not by applying MemberQ to minterm and the variables.

In[83]:= MemberQ@minterm, wD

Out[83]= True

In[84]:= MemberQ@minterm, xD

Out[84]= False

But of course, the negation of x is part of minterm.
In[85]:= MemberQ@minterm, Not@xDD

Out[85]= True

To transform the minterm into a bit string, we only need to check, for each variable, whether the vari-
able or its negation is in the list. Recall that we will insist that the function be given the list of variables
as an argument to maintain the proper order of the variables.
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To transform the minterm into a bit string, we only need to check, for each variable, whether the vari-
able or its negation is in the list. Recall that we will insist that the function be given the list of variables
as an argument to maintain the proper order of the variables.
We first assign the list of variables to a symbol.

In[86]:= variableList = 8w, x, y, z<

Out[86]= 8w, x, y, z<

Now create a list, initialized to the proper length, for the bit string.
In[87]:= bitstring = ConstantArray@Null, 4D

Out[87]= 8Null, Null, Null, Null<

Finally, we use a For loop to check, for each variable in the variable list, whether the variable is in the
minterm. If  the variable is  a  member of  minterm,  then we change the bit  to  1.  If  the negation is  in
minterm,  we set the value in the bit  string to 0. Otherwise, we place the character “-“ in the list,  to
indicate the absence of the variable in the string.

In[88]:= For@i = 1, i § Length@variableListD, i++,
Which@MemberQ@minterm, variableList@@iDDD,
bitstring@@iDD = 1,
MemberQ@minterm, Not@variableList@@iDDDD,
bitstring@@iDD = 0,
True, bitstring@@iDD = "-"D

D

This has created the bit string associated to minterm.
In[89]:= bitstring

Out[89]= 81, 0, 1, 0<

We condense this process into a single function.
In[90]:= mtToBitstring@minterm_, variableList_D :=

Module@8i, bitstring<,
bitstring = ConstantArray@Null, Length@variableListDD;
For@i = 1, i § Length@variableListD, i++,
Which@MemberQ@minterm, variableList@@iDDD,
bitstring@@iDD = 1,
MemberQ@minterm, Not@variableList@@iDDDD,
bitstring@@iDD = 0,
True,
bitstring@@iDD = "-"

D
D;
bitstring

D

In[91]:= mtToBitstring@minterm, 8w, x, y, z<D

Out[91]= 81, 0, 1, 0<
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Transforming the Original Expression Into Bit Strings
Now that we have the means for transforming a single minterm into a bit string, we are ready to trans-
form an expression in disjunctive normal form into a list of bit strings.
Observe  that  an  expression  in  disjunctive  normal  form  is  the  Or  (||)  function  applied  to  minterms.
Again, FullForm reveals this convenient structure.

In[92]:= FullForm@FD
Out[92]//FullForm=

Or@And@w, x, Not@yD, Not@zDD,
And@w, Not@xD, y, zD, And@w, Not@xD, y, Not@zDD,
And@w, Not@xD, Not@yD, Not@zDD, And@Not@wD, x, y, zD,
And@Not@wD, x, Not@yD, zD, And@Not@wD, x, Not@yD, Not@zDD,
And@Not@wD, Not@xD, y, zD, And@Not@wD, Not@xD, Not@yD, zD,
And@Not@wD, Not@xD, Not@yD, Not@zDDD

Our goal is to produce a list of the bit strings obtained from the minterms. We can transform the disjunc-
tion into a list by using the Apply (@@) function to replace the Or (||) head with a List head.

In[93]:= List üü F

Out[93]= 8w && x && ! y && ! z, w && ! x && y && z,
w && ! x && y && ! z, w && ! x && ! y && ! z, ! w && x && y && z,
! w && x && ! y && z, ! w && x && ! y && ! z, ! w && ! x && y && z,
! w && ! x && ! y && z, ! w && ! x && ! y && ! z<

Then we just need to apply the mtToBitstring function to each member of the list. We can do this
by using the Map (/@) function, which applies a function (given as the first argument) to a list (given
as the second argument) and returns the list  obtained by applying the function to each element of the
list. Since the mtToBitstring requires two arguments, not just one, the first argument to Map (/@)
will  be  a  pure  Function  (&)  obtained  by  calling  mtToBitstring  on  a  Slot  (#)  and  the  list  of
variables.

In[94]:= Map@mtToBitstring@Ò, 8w, x, y, z<D &, List üü FD

Out[94]= 881, 1, 0, 0<, 81, 0, 1, 1<, 81, 0, 1, 0<, 81, 0, 0, 0<, 80, 1, 1, 1<,
80, 1, 0, 1<, 80, 1, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<

We define a function based on this model.
In[95]:= dnfToBitList@dnfExpr_, variableList_D :=

Map@mtToBitstring@Ò, variableListD &, List üü dnfExprD

We now apply this function to the example expression and store the result as the symbol Fbits.
In[96]:= Fbits = dnfToBitList@F, 8w, x, y, z<D

Out[96]= 881, 1, 0, 0<, 81, 0, 1, 1<, 81, 0, 1, 0<, 81, 0, 0, 0<, 80, 1, 1, 1<,
80, 1, 0, 1<, 80, 1, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<

Transforming Bit Strings Into Minterms
At  the  conclusion  of  the  Quine-McCluskey  process,  we  will  want  to  display  the  result  in  disjunctive
normal form. This will require that we turn bit strings back into minterms.
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At  the  conclusion  of  the  Quine-McCluskey  process,  we  will  want  to  display  the  result  in  disjunctive
normal form. This will require that we turn bit strings back into minterms.
Note that since this function will be applied at the end of the process, it may be that some of the vari-
ables have been removed. We will be using the string “-“ in a bit string to indicate the elimination of a
variable.
This  function  will  require  the  bit  string  and  a  list  of  variable  names  as  its  input.  It  operates  in  two
stages. First, it processes the variable list based on the content of the bit string. It initializes an empty
list  and,  for  each  variable,  appends  the  variable  or  its  negation  or  does  nothing,  depending  on  the
content of the bit string.

In[97]:= bitstr = 80, 1, "-", 0<

Out[97]= 80, 1, -, 0<

In[98]:= outList = 8<

Out[98]= 8<

In[99]:= For@i = 1, i § Length@variableListD, i++,
Switch@bitstr@@iDD,
1, AppendTo@outList, variableList@@iDDD,
0, AppendTo@outList, Not@variableList@@iDDDD,
"-", NullD

D

In[100]:= outList

Out[100]= 8! w, x, ! z<

Note the use of the Switch function. Recall that Switch evaluates its first argument, and then com-
pares  that  result  to  the  arguments  with  even  index,  executing  the  argument  following  the  first  of  the
even-indexed arguments that matches the result of the first argument.
Once this list is formed, we form the conjunction of the elements by using Apply (@@) to change the
List head into And (&&).
In[101]:= And üü outList

Out[101]= ! w && x && ! z

Here is the function based on this process.
In[102]:= bitStringToMT@bitstring_, variableList_D :=

Module@8outList, i<,
outList = 8<;
For@i = 1, i § Length@variableListD, i++,
Switch@bitstring@@iDD,
1, AppendTo@outList, variableList@@iDDD,
0, AppendTo@outList, Not@variableList@@iDDDD,
"-", NullD

D;
And üü outList

D

Applied to 80, 1, 0, 1< and 8w, x, y, z<, we see that bitStringToMT reproduces the original minterm
example.
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Applied to 80, 1, 0, 1< and 8w, x, y, z<, we see that bitStringToMT reproduces the original minterm
example.
In[103]:= bitStringToMT@80, 1, 0, 1<, 8w, x, y, z<D

Out[103]= ! w && x && ! y && z

And applied to 80, 1, "-", 1<, it removes the y and negates w.
In[104]:= bitStringToMT@80, 1, "-", 1<, 8w, x, y, z<D

Out[104]= ! w && x && z

The final result of our Quine-McCluskey process will be a list of bit strings. To produce the associated
disjunctive normal form expression, we only need to apply bitStringToMT to each element of the
list and then join the elements of the list in a disjunction.
In[105]:= bitListToDNF@bitList_, variableList_D :=

Map@bitStringToMT@Ò, variableListD &, Or üü bitListD

Initializing the Source Table
In  order  to  form the coverage table  in  the  second part  of  the  method,  we need to  know which of  the
original  minterms are  covered by which of  the prime implicants.  Refer  to  Tables  3  and 6 in  the text.
Notice that each bit  string in those tables is associated with either a single number, in the case of the
original minterms, or lists of numbers, for the derived products.
We will store this information as an indexed symbol whose indices are the bit strings and whose values
are  lists  of  integers.  Given  the  Fbits  list,  we  initialize  this  indexed  symbol  with  the  elements  of
Fbits  as  the  indices.  The  corresponding  entries  will  be  the  whose  sole  element  is  the  bit  string's
position in Fbits.
We will refer to this as the “coverage dictionary,” since it allows us to look up any bit string and deter-
mine all of the original minterms covered by it. The following function accepts the name of a symbol
and the Fbits list as arguments and assigns the coverage dictionary to the symbol. Note that we must
set the HoldFirst  attribute in order to pass the symbol name as an argument. We apply Clear  so
as to remove anything already associated to the symbol.
In[106]:= SetAttributes@initCoverDict, 8HoldFirst<D;

initCoverDict@symbol_, L_D := Module@8i<,
Clear@symbolD;
For@i = 1, i § Length@LD, i++,
symbol@L@@iDDD = 8i<

D
D

Applying this function to a symbol and Fbits produces the initial coverage dictionary. 
In[108]:= initCoverDict@coverageDict, FbitsD

We can check what is stored in the indexed symbol coverageDict as shown below. Remember that
the indices are the elements of the list of bit strings Fbits.
In[109]:= coverageDict@80, 1, 0, 1<D

Out[109]= 86<

Chapter12.nb  23



The value, after initialization, is the location within Fbits where the bit string is stored.
In[110]:= Fbits@@6DD

Out[110]= 80, 1, 0, 1<

Grouping by the Number of 1s
Step 2 in our outline is to group the bit strings by the number of 1s.
The reason for this step is to improve the efficiency of finding simplifications to make. Since two bit
strings can be combined only when they are identical except for one location, the only possible combi-
nations are when one bit string has n 1s and the other has n- 1.
After step 1 is concluded, we have a list of bit strings. That will be the starting point for the function
we create for this step. The result of this step will be to turn the list of bit strings into a list of lists of bit
strings, which we'll call groups. In location i of groups will be the set of all bit strings with i- 1
1s. So location 1 will have the bit strings with no 1s, location 2 will contain the bit strings with a single
1, etc.
We know that the number of 1s in any bit string must be between 0 and the length of the bit string. We
initialize groups to be the list of empty lists. The maximum number of 1s in equal to the length of a
bit string, which we can obtain from the size of the first element of Fbits.
In[111]:= groups = ConstantArray@8<, Length@First@FbitsDD + 1D

Out[111]= 88<, 8<, 8<, 8<, 8<<

Since the bit strings had four entries, groups now consists of five copies of the empty list.
For each member of Fbits, we need to count the number of 1s. We will create a small function to do
this.
In[112]:= count1s@bitstring_D := Module@8c = 0, i<,

Do@If@i ã 1, c++D
, 8i, bitstring<D;

c
D

We test this function on a small example.
In[113]:= count1s@81, 0, 1, 1, 0, 0, 1<D

Out[113]= 4

We  use  count1s  to  sort  the  members  of  Fbits  into  groups.  Using  a  loop  to  step  through  the
Fbits list, we apply count1s and add 1 to the result (since the bit strings with no 1s are in the first
position) to obtain the correct location for that bit string in groups. We then add that bit string to the
correct sublist in groups.
Here is the function implementing this.
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In[114]:= sortGroups@bitstringList_D := Module@8groups, bitstring, c<,
groups = ConstantArray@8<, Length@First@bitstringListDD + 1D;
Do@c = count1s@bitstringD;
groups@@c + 1DD = Append@groups@@c + 1DD, bitstringD
, 8bitstring, bitstringList<D;

groups
D

Here is the result of sorting Fbits.
In[115]:= groups = sortGroups@FbitsD

Out[115]= 8880, 0, 0, 0<<, 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<<,
881, 1, 0, 0<, 81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<<,
881, 0, 1, 1<, 80, 1, 1, 1<<, 8<<

Applying TableForm will make the output easier to read. The TableDepth option prevents Table-
Form from splitting the sublists into subtables.
In[116]:= TableForm@groups, TableDepth Ø 1D

Out[116]//TableForm=
880, 0, 0, 0<<
881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<<
881, 1, 0, 0<, 81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<<
881, 0, 1, 1<, 80, 1, 1, 1<<
8<

Combining Bit Strings
Step 3 is to combine all of the bit strings that differ in exactly one location. We first write a function
that  takes  as  input  two  bit  strings  and  either  combines  them if,  in  fact,  they  do  differ  in  exactly  one
location, or returns False if they do not.
This function needs to do two tasks. First, it has to check to see whether or not the two bit strings differ
in more than one location. Second, it needs to combine them if they are allowed to be combined.
Combining  two  bit  strings  is  easy,  provided  we  know  the  one  location  in  which  they  differ.  For
example,
In[117]:= bit1 = 81, "-", 0, 1, 1<

Out[117]= 81, -, 0, 1, 1<

In[118]:= bit2 = 81, "-", 0, 0, 1<

Out[118]= 81, -, 0, 0, 1<

You can see that these are identical except in position 4.
To merge them, we take either one and replace position 4 with “-“.
In[119]:= bit1@@4DD = "-";

bit1

Out[120]= 81, -, 0, -, 1<

We determine that they differ only in position 4 using a Catch and Throw with a For loop. Inside a
Catch block, initialize a symbol pos, for position, to 0. Now begin a For loop to compare each pair
of entries in the two bit strings. If we find a difference, check the value of pos. If it is still 0, then this
is the first difference that has been encountered, so set pos to the position of this difference and con-
tinue the loop.  If  pos  is  not  0,  however,  then we know that  this  is  the  second time a  difference was
found. In this case, we immediately Throw False, terminating the loop. Once the loop is complete, if
pos  is  still  0,  then  there  was  no  difference,  so  again  we  Throw  False.  Otherwise,  pos  stores  the
location of the sole difference, and we modify one of the bit strings and return it.
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We determine that they differ only in position 4 using a Catch and Throw with a For loop. Inside a
Catch block, initialize a symbol pos, for position, to 0. Now begin a For loop to compare each pair
of entries in the two bit strings. If we find a difference, check the value of pos. If it is still 0, then this
is the first difference that has been encountered, so set pos to the position of this difference and con-
tinue the loop.  If  pos  is  not  0,  however,  then we know that  this  is  the  second time a  difference was
found. In this case, we immediately Throw False, terminating the loop. Once the loop is complete, if
pos  is  still  0,  then  there  was  no  difference,  so  again  we  Throw  False.  Otherwise,  pos  stores  the
location of the sole difference, and we modify one of the bit strings and return it.
Here is the function
In[121]:= mergeBitstrings@bit1_, bit2_D := Module@8i, pos, result<,

Catch@
pos = 0;
For@i = 1, i § Length@bit1D, i++,
If@bit1@@iDD ¹≠ bit2@@iDD,
If@pos ã 0, pos = i, Throw@FalseDD

D
D;
If@pos ã 0, Throw@FalseDD;
result = bit1;
result@@posDD = "-";
Throw@resultD

D
D

We see that it works correctly on our two example bit strings.
In[122]:= mergeBitstrings@81, "-", 0, 1, 1<, 81, "-", 0, 0, 1<D

Out[122]= 81, -, 0, -, 1<

Searching for Combinations to Make
The mergeBitstrings  function  will  do  the  work  of  checking  to  see  if  bit  strings  can  be  merged
and returning the result if they can. However, we need to give mergeBitstrings the bit strings to
test.
Recall  that,  in  our  example,  we  have  successfully  grouped  the  minterms  by  the  number  of  1s  they
contain.
In[123]:= TableForm@groups, TableDepth Ø 1D

Out[123]//TableForm=
880, 0, 0, 0<<
881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<<
881, 1, 0, 0<, 81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<<
881, 0, 1, 1<, 80, 1, 1, 1<<
8<

Next we will produce a list containing all the bit strings formed by merging two members of groups.
Note there may be multiple ways to obtain the same bit string, so we will think of this collection as a
set. We initialize to the empty set.
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Next we will produce a list containing all the bit strings formed by merging two members of groups.
Note there may be multiple ways to obtain the same bit string, so we will think of this collection as a
set. We initialize to the empty set.
In[124]:= Fbits1 = 8<

Out[124]= 8<

Also recall that it  is only possible to merge bit strings that are in successive locations in groups.  In
other words, we only need to check bit strings when one has n 1s and one has n- 1 1s. This suggests a
loop with n ranging from 1 to one less than the size of groups. Within the body of the loop, we will
consider the lists with n- 1 1s (index n) and with n 1s (index n+ 1). (Remember that groups[[1]]
is the set of bit strings with 0 1s.)
The loop is structured as follows.

For@n = 1, n § Length@groupsD - 1, n++,
A = groups@@nDD;
B = groups@@n + 1DD;
H* search for bit strings from A and B to merge *L

D

After  A  and  B  have  been  defined,  we  need  to  compare  every  possible  pair.  We  use  a  Do  loop  with
indices  for  the  members  of  A  and  another  for  members  of  B.  Within  the  Do  loop,  we  use
mergeBitstrings  and  store  the  result.  If  it  is  not  false,  we  add  it  to  the  new  list  of  bit  strings,
Fbits1.
In[125]:= For@n = 1, n § Length@groupsD - 1, n++,

A = groups@@nDD;
B = groups@@n + 1DD;
Do@m = mergeBitstrings@a, bD;
If@m =!= False, Fbits1 = Union@Fbits1, 8m<DD
, 8a, A<, 8b, B<

D
D

In[126]:= Fbits1

Out[126]= 880, 0, 0, -<, 80, 0, -, 1<, 80, 1, 0, -<, 80, 1, -, 1<, 80, -, 0, 0<,
80, -, 0, 1<, 80, -, 1, 1<, 81, 0, 1, -<, 81, 0, -, 0<,
81, -, 0, 0<, 8-, 0, 0, 0<, 8-, 0, 1, 1<, 8-, 1, 0, 0<<

This is close to the function we want, but we need to think ahead a bit. Recall from the description of
the Quine-McCluskey process in the text that, in order to proceed with the second half of the method,
we need to know which of the bit strings are prime implicants. That is, which bit strings are never used
in a simplification.
We will track which bit strings are used as follows. Before the first loop, we create a set consisting of
all  of  the  bit  strings  in  groups.  We  can  do  this  by  applying  Flatten  to  groups,  removing  the
sublist structure. To obtain the elements of the sublists of groups rather than just all the 0s and 1s, we
need to use the option second argument of Flatten  to specify that  we wish to flatten only the first
level.
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In[127]:= Flatten@groups, 1D

Out[127]= 880, 0, 0, 0<, 81, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<, 81, 1, 0, 0<,
81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<, 81, 0, 1, 1<, 80, 1, 1, 1<<

Then  each  time  mergeBitstrings  is  successful,  we  remove  the  pair  of  bit  strings  from  this  set,
using the  Complement  set  operator.  For  example,  to  remove 80, 0, 0, 0<  and 81, 0, 0, 0<,  we would
execute the following expression.
In[128]:= Complement@Flatten@groups, 1D, 880, 0, 0, 0<, 81, 0, 0, 0<<D

Out[128]= 880, 0, 0, 1<, 80, 0, 1, 1<, 80, 1, 0, 0<, 80, 1, 0, 1<,
80, 1, 1, 1<, 81, 0, 1, 0<, 81, 0, 1, 1<, 81, 1, 0, 0<<

The function will return the list consisting of the next level of bit strings and the prime implicants from
this stage. Here is our next attempt at the function.
In[129]:= nextBitList1@lastgroups_ListD :=

Module@8nextL = 8<, primeImps, n, A, B, a, b, m<,
primeImps = Flatten@lastgroups, 1D;
For@n = 1, n § Length@lastgroupsD - 1, n++,
A = lastgroups@@nDD;
B = lastgroups@@n + 1DD;
Do@m = mergeBitstrings@a, bD;
If@m =!= False,
nextL = Union@nextL, 8m<D;
primeImps = Complement@primeImps, 8a, b<D

D
, 8a, A<, 8b, B<

D
D;
8nextL, primeImps<

D

This still isn't sufficient, however, because we also need to update the coverage dictionary as we create
new  bit  strings.  Recall  that  “coverage  dictionary”  is  the  name  we  gave  to  the  table  that  records,  for
each bit string, which of the original minterms are covered by that bit string. The coverage dictionary
was initialized with the bit strings formed from the minterms.
We can inspect the values stored with the Definition function.
In[130]:= Definition@coverageDictD

Out[130]= coverageDict@80, 0, 0, 0<D = 810<

coverageDict@80, 0, 0, 1<D = 89<

coverageDict@80, 0, 1, 1<D = 88<

coverageDict@80, 1, 0, 0<D = 87<
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Out[130]=

coverageDict@80, 1, 0, 1<D = 86<

coverageDict@80, 1, 1, 1<D = 85<

coverageDict@81, 0, 0, 0<D = 84<

coverageDict@81, 0, 1, 0<D = 83<

coverageDict@81, 0, 1, 1<D = 82<

coverageDict@81, 1, 0, 0<D = 81<

Within our function, we need to update the coverage dictionary. To do this, we will pass it as an argu-
ment to the function. The function will be able to update the indexed variable as if it were global with-
out it needing to be held. Consider the following, for example.
In[131]:= indexedExample@"a"D = 1;

indexedExample@"b"D = 2;

In[133]:= Definition@indexedExampleD

Out[133]= indexedExample@aD = 1

indexedExample@bD = 2

In[134]:= functionToChangeIndexed@
indexedVar_Symbol, i_, v_D := Module@8<,
indexedVar@iD = v;

D

The intent of this function is to add the index i with value v to the indexed variable passed as the first
argument. If the first argument were a list, for example, this function would not have the desired effect,
as the list  would be passed to the function,  modified within the Module,  but  remain unchanged out-
side  the  function.  For  an  indexed  symbol,  however,  when  we  call  this  function  with  first  argument
indexedExample,  the  argument  variable  indexedVar  is  assigned  to  the  symbol
indexedExample. It is like assigning indexedVar to the name of the indexed variable. Inside the
function, the variable indexedVar is resolved to the symbol indexedExample, making the assign-
ment within the function a “global” assignment.
In[135]:= functionToChangeIndexed@indexedExample, "c", 3D
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In[136]:= Definition@indexedExampleD

Out[136]= indexedExample@aD = 1

indexedExample@bD = 2

indexedExample@cD = 3

We update the dictionary within the m=!=False If statement. When we form a new bit string m, we
obtain the set of minterms it covers by taking the union of the sets of minterms covered by the two bit
strings  that  were  merged.  That  is,  coverDict[m]  is  the  union  of  coverDict[a]  and
coverDict[b].  Note  that  bit  strings  formed  beyond  the  first  step  are  typically  generated  multiple
times. However, each time they are generated they always cover the same set of original minterms.
Here is the final version of nextBitList.
In[137]:= nextBitList@lastgroups_List, coverDict_SymbolD :=

Module@8nextL = 8<, primeImps, n, A, B, a, b, m<,
primeImps = Flatten@lastgroups, 1D;
For@n = 1, n § Length@lastgroupsD - 1, n++,
A = lastgroups@@nDD;
B = lastgroups@@n + 1DD;
Do@m = mergeBitstrings@a, bD;
If@m =!= False,
nextL = Union@nextL, 8m<D;
primeImps = Complement@primeImps, 8a, b<D;
coverDict@mD = Union@coverDict@aD, coverDict@bDD;

D
, 8a, A<, 8b, B<

D
D;
8nextL, primeImps<

D

We apply it to groups to obtain Fbits1 and primes1.
In[138]:= 8Fbits1, primes1< = nextBitList@groups, coverageDictD

Out[138]= 8880, 0, 0, -<, 80, 0, -, 1<, 80, 1, 0, -<,
80, 1, -, 1<, 80, -, 0, 0<, 80, -, 0, 1<,
80, -, 1, 1<, 81, 0, 1, -<, 81, 0, -, 0<, 81, -, 0, 0<,
8-, 0, 0, 0<, 8-, 0, 1, 1<, 8-, 1, 0, 0<<, 8<<

We see that there are
In[139]:= Length@Fbits1D

Out[139]= 13

bit strings in the second level, but no prime implicants coming from the first pass.
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In[140]:= Length@primes1D

Out[140]= 0

Also, almost as a side effect, the function has updated coverageDict.
In[141]:= Definition@coverageDictD

Out[141]= coverageDict@80, 0, 0, 0<D = 810<

coverageDict@80, 0, 0, 1<D = 89<

coverageDict@80, 0, 0, -<D = 89, 10<

coverageDict@80, 0, 1, 1<D = 88<

coverageDict@80, 0, -, 1<D = 88, 9<

coverageDict@80, 1, 0, 0<D = 87<

coverageDict@80, 1, 0, 1<D = 86<

coverageDict@80, 1, 0, -<D = 86, 7<

coverageDict@80, 1, 1, 1<D = 85<

coverageDict@80, 1, -, 1<D = 85, 6<

coverageDict@80, -, 0, 0<D = 87, 10<

coverageDict@80, -, 0, 1<D = 86, 9<

coverageDict@80, -, 1, 1<D = 85, 8<

coverageDict@81, 0, 0, 0<D = 84<

coverageDict@81, 0, 1, 0<D = 83<

coverageDict@81, 0, 1, 1<D = 82<

coverageDict@81, 0, 1, -<D = 82, 3<

coverageDict@81, 0, -, 0<D = 83, 4<
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Out[141]=

coverageDict@81, 1, 0, 0<D = 81<

coverageDict@81, -, 0, 0<D = 81, 4<

coverageDict@8-, 0, 0, 0<D = 84, 10<

coverageDict@8-, 0, 1, 1<D = 82, 8<

coverageDict@8-, 1, 0, 0<D = 81, 7<

Repeating
Step 4 is to repeat steps 2 and 3.
The Fbits1 list takes the place of Fbits. We apply sortGroups to produce groups1.
In[142]:= groups1 = sortGroups@Fbits1D

Out[142]= 8880, 0, 0, -<, 80, -, 0, 0<, 8-, 0, 0, 0<<,
880, 0, -, 1<, 80, 1, 0, -<, 80, -, 0, 1<,
81, 0, -, 0<, 81, -, 0, 0<, 8-, 1, 0, 0<<,

880, 1, -, 1<, 80, -, 1, 1<, 81, 0, 1, -<, 8-, 0, 1, 1<<, 8<, 8<<

Then applying nextBitList to groups1 produces Fbits2 and primes2.
In[143]:= 8Fbits2, primes2< = nextBitList@groups1, coverageDictD

Out[143]= 8880, -, 0, -<, 80, -, -, 1<, 8-, -, 0, 0<<,
881, 0, 1, -<, 81, 0, -, 0<, 8-, 0, 1, 1<<<

We see that  we have found three prime implicants.  The coverage dictionary was further  expanded to
include the new bit strings.
Do the same thing again with Fbits2.
In[144]:= groups2 = sortGroups@Fbits2D

Out[144]= 8880, -, 0, -<, 8-, -, 0, 0<<, 880, -, -, 1<<, 8<, 8<, 8<<

In[145]:= 8Fbits3, primes3< = nextBitList@groups2, coverageDictD

Out[145]= 88<, 880, -, 0, -<, 8-, -, 0, 0<, 80, -, -, 1<<<

This time, Fbits3 was empty, which indicates that no more merging is possible and all prime impli-
cants have been found.
This part of the process concludes by forming the list of all the prime implicants.
In[146]:= allprimeImps = Union@primes1, primes2, primes3D

Out[146]= 880, -, 0, -<, 80, -, -, 1<, 81, 0, 1, -<,
81, 0, -, 0<, 8-, 0, 1, 1<, 8-, -, 0, 0<<

Forming the Coverage Table
Now that we have identified all of the prime implicants, we will use the coverage dictionary to create
the coverage table.
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Take a look at the final state of the coverage dictionary.
In[147]:= Definition@coverageDictD

Out[147]= coverageDict@80, 0, 0, 0<D = 810<

coverageDict@80, 0, 0, 1<D = 89<

coverageDict@80, 0, 0, -<D = 89, 10<

coverageDict@80, 0, 1, 1<D = 88<

coverageDict@80, 0, -, 1<D = 88, 9<

coverageDict@80, 1, 0, 0<D = 87<

coverageDict@80, 1, 0, 1<D = 86<

coverageDict@80, 1, 0, -<D = 86, 7<

coverageDict@80, 1, 1, 1<D = 85<

coverageDict@80, 1, -, 1<D = 85, 6<

coverageDict@80, -, 0, 0<D = 87, 10<

coverageDict@80, -, 0, 1<D = 86, 9<

coverageDict@80, -, 0, -<D = 86, 7, 9, 10<

coverageDict@80, -, 1, 1<D = 85, 8<

coverageDict@80, -, -, 1<D = 85, 6, 8, 9<

coverageDict@81, 0, 0, 0<D = 84<

coverageDict@81, 0, 1, 0<D = 83<

coverageDict@81, 0, 1, 1<D = 82<

coverageDict@81, 0, 1, -<D = 82, 3<

coverageDict@81, 0, -, 0<D = 83, 4<
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Out[147]=

coverageDict@81, 1, 0, 0<D = 81<

coverageDict@81, -, 0, 0<D = 81, 4<

coverageDict@8-, 0, 0, 0<D = 84, 10<

coverageDict@8-, 0, 1, 1<D = 82, 8<

coverageDict@8-, 1, 0, 0<D = 81, 7<

coverageDict@8-, -, 0, 0<D = 81, 4, 7, 10<

Each  bit  string,  and  in  particular  each  prime  implicant,  is  an  index  in  this  table.  The  corresponding
entry is the set of integers which are the indices to the original minterms in Fbits. Thus, to determine
which of the original minterms are covered by each prime implicant, we just look it up in the table.
We will model the coverage table as a matrix. Each row corresponds to a prime implicant, so there will
be
In[148]:= Length@allprimeImpsD

Out[148]= 6

rows. And each column corresponds to a minterm, so there are
In[149]:= Length@FbitsD

Out[149]= 10

columns. The entries in the matrix will be 0s and 1s with 1 in position Hi, jL  indicating that the prime
implicant at position i in allprimeImps covers the minterm at position j in Fbits.
We use ConstantArray with first argument 0 and second argument a list consisting of the number
of rows and columns to form a matrix of all 0s of the appropriate size.
In[150]:= ConstantArray@0, 86, 10<D êê MatrixForm

Out[150]//MatrixForm=
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

To enter  1s  in  the  appropriate  positions,  we loop over  the  rows,  considering  each  prime implicant  in
turn.  For  each  prime  implicant,  we  look  up  its  entry  in  the  coverage  dictionary  to  obtain  the  set  of
minterms it covers. For each of those minterms, we place a 1 in the matrix.
The following function initializes the coverage table.
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In[151]:= initCoverageMatrix@minterms_List, primeImps_List,
coverDict_SymbolD := Module@8M, i, C, j<,
M = ConstantArray@0, 8Length@primeImpsD, Length@mintermsD<D;
For@i = 1, i § Length@primeImpsD, i++,
C = coverDict@primeImps@@iDDD;
Do@M@@i, jDD = 1, 8j, C<D

D;
M

D

Applied to our example, this produces the following coverage table.
In[152]:= coverageTable =

initCoverageMatrix@Fbits, allprimeImps, coverageDictD;
MatrixForm@coverageTableD

Out[153]//MatrixForm=
0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 1

Manipulating the Matrix
Once the  coverage table  is  set  up,  we move to  steps  6  and 7,  determining which prime implicants  to
include in the minimal  expression.  In step 6,  we identify the essential  prime implicants  and in step 7
we identify which of the non-essential prime implicants we will  include. We will  see how to identify
the prime implicants to use in a moment.
To aid  in  performing both  steps  6  and  7,  we will  be  manipulating  the  coverage  table.  Once  we have
decided to include a particular prime implicant in the minimal expression, we take three actions.
First,  record  the  decision  by  adding  the  prime  implicant  to  a  new  list,  say  minBits,  the  list  of  bit
strings to be included in the minimal expression.
Second, delete that prime implicant's row from the coverage table and delete the columns correspond-
ing  to  the  minterms  it  covered.  We know the  prime  implicant  will  be  in  the  expression  and  thus  the
minterms it covers are satisfied. Hence, there is no longer any need to keep track of that information.
Third,  delete  the  prime  implicant  and  the  minterms  it  covers  from  the  lists  storing  them
(allprimeImps  and  Fbits).  This  is  to  ensure  that  the  indices  of  allprimeImps  and  Fbits
continue to match the row and column numbers of the matrix.
We will  now write  a  function  that  implements  these  actions.  Its  input  will  be  the  index  to  the  prime
implicant  that  has  been  chosen.  It  will  also  accept  the  names  of  the  coverage  matrix,  the  list  of
minterms,  and the  list  of  prime implicants.  All  of  these  will  be  modified in  the  function (refer  to  the
subsection  on  “Modifying  arguments”  above).  The  function  will  return  the  bit  string  of  the  prime
implicant that was chosen.
Our  function  will  be  called  updateCT,  for  “update  coverage  table.”  The  minBits  list,  the  list  of
chosen prime implicants, will be updated via the return value. This accomplishes the first task for this
function.
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Our  function  will  be  called  updateCT,  for  “update  coverage  table.”  The  minBits  list,  the  list  of
chosen prime implicants, will be updated via the return value. This accomplishes the first task for this
function.
Second,  we must  delete the row corresponding to the chosen prime implicant  and the columns corre-
sponding to the minterms covered by that implicant. Suppose, in our example, that we have decided to
include the fourth prime implicant in the final result. This is:
In[154]:= allprimeImps@@4DD

Out[154]= 81, 0, -, 0<

From coverageTable,  we  need  to  remove  row 4  (since  this  corresponds  to  the  prime  implicant).
We also need to remove the columns corresponding to the minterms covered by this prime implicant.
To determine which columns are to be removed, we find the locations of the 1s in the row of the matrix.
To determine the locations of  the 1s,  we'll  loop over the columns checking each position in row 4 to
see  if  it  is  1  or  not.  We  use  the  Dimensions  function  to  determine  the  number  of  columns.  For  a
matrix, Dimensions returns a list whose elements are the number of rows and columns.
In[155]:= covered = 8<;

For@i = 1, i § Dimensions@coverageTableD@@2DD, i++,
If@coverageTable@@4, iDD ã 1, AppendTo@covered, iDD

D;
covered

Out[157]= 83, 4<

We now know that we need to remove row 4 and columns 3 and 4. To do this, we will use a compli-
cated selection. Recall that Part ([[…]]) can be used with a list within the double brackets to select
specific elements. For example, 
In[158]:= 8"a", "b", "c", "d", "e", "f", "g"<@@81, 2, 4, 5, 6<DD

Out[158]= 8a, b, d, e, f<

The same is true for matrices. Given a matrix, a list of rows, and a list of columns, you can obtain the
submatrix containing only the specified rows and columns as illustrated below.
In[159]:= exampleMatrix = Table@a8i,j<, 8i, 7<, 8j, 6<D;

exampleMatrix êê MatrixForm
Out[160]//MatrixForm=

a81,1< a81,2< a81,3< a81,4< a81,5< a81,6<
a82,1< a82,2< a82,3< a82,4< a82,5< a82,6<
a83,1< a83,2< a83,3< a83,4< a83,5< a83,6<
a84,1< a84,2< a84,3< a84,4< a84,5< a84,6<
a85,1< a85,2< a85,3< a85,4< a85,5< a85,6<
a86,1< a86,2< a86,3< a86,4< a86,5< a86,6<
a87,1< a87,2< a87,3< a87,4< a87,5< a87,6<
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In[161]:= exampleMatrix@@81, 2, 4, 6, 7<, 81, 2, 3, 6<DD êê MatrixForm

Out[161]//MatrixForm=
a81,1< a81,2< a81,3< a81,6<
a82,1< a82,2< a82,3< a82,6<
a84,1< a84,2< a84,3< a84,6<
a86,1< a86,2< a86,3< a86,6<
a87,1< a87,2< a87,3< a87,6<

This is the matrix that results from deleting the 3rd and 5th rows, and the 4th and 5th columns.
So for the coverage table, we can obtain the modified matrix by forming the lists of row and column
numbers that should remain and then apply Part ([[…]]).
In[162]:= remainingRows = 81, 2, 3, 5, 6<

Out[162]= 81, 2, 3, 5, 6<

In[163]:= remainingColumns = Complement@Range@Length@FbitsDD, coveredD

Out[163]= 81, 2, 5, 6, 7, 8, 9, 10<

In[164]:= coverageTable@@remainingRows, remainingColumnsDD êê MatrixForm
Out[164]//MatrixForm=

0 0 0 1 1 0 1 1
0 0 1 1 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1

The reader is encouraged to compare this to the original matrix. Note that in this example, we have not
actually modified coverageTable.
The last tasks are to remove the selected prime implicant from the list of prime implicants, and remove
the  covered  minterms  from  its  list.  Note  that  remainingRows  and  remainingColumns  are
indices into the allprimeImps list and the list of minterms. Applying Part ([[…]]) produces the
desired outcome.
In[165]:= allprimeImps@@remainingRowsDD

Out[165]= 880, -, 0, -<, 80, -, -, 1<, 81, 0, 1, -<, 8-, 0, 1, 1<, 8-, -, 0, 0<<

In[166]:= Fbits@@remainingColumnsDD

Out[166]= 881, 1, 0, 0<, 81, 0, 1, 1<, 80, 1, 1, 1<, 80, 1, 0, 1<,
80, 1, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<

Here is the function.
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In[167]:= SetAttributes@updateCT, 8HoldRest<D;
updateCT@newPI_, coverTable_, minterms_, primeImps_D :=
Module@8newPIbitstring, numRows, numCols,

covered, i, remainingRows, remainingCols<,
newPIbitstring = primeImps@@newPIDD;
8numRows, numCols< = Dimensions@coverTableD;
covered = 8<;
For@i = 1, i § numCols, i++,
If@coverTable@@newPI, iDD ã 1, AppendTo@covered, iDD

D;
remainingRows = Delete@Range@numRowsD, newPID;
remainingCols = Complement@Range@numColsD, coveredD;
coverTable = coverTable@@remainingRows, remainingColsDD;
primeImps = primeImps@@remainingRowsDD;
minterms = minterms@@remainingColsDD;
newPIbitstring

D

Finding Essential Prime Implicants
Next  we  write  a  function  to  identify  the  essential  prime  implicants.  Recall  that  a  prime  implicant  is
essential  when it  is  the  only  prime implicant  to  cover  some minterm.  In  terms of  the  coverage  table,
this is equivalent to the existence of a column with only one 1.
We will  locate the essential  prime implicants as follows. First,  we initialize the set of essential  prime
implicants to the empty list.
We  proceed  in  a  manner  similar  to  the  mergeBitstrings  function.  We  use  a  For  loop  to  step
through the columns of the coverage table. Within this loop, we initialize a symbol, rowhas1, to 0.
We then enter a second loop to step through the entries in the columns. When a 1 entry has been found,
we check rowhas1.  If that symbol is 0, then it is assigned to the current row number. If it is not 0,
then we have found a second 1 in the column and we assign rowhas1 to -1 and use Break to termi-
nate the inner  loop.  After  the inner  loop,  we test  rowhas1.  If  it  is  positive,  then we know that  only
one  1  was  located  in  that  column,  and  hence  the  row  the  solitary  1  was  found  in  corresponds  to  an
essential prime implicant. In this case, we add the row number (rowhas1) to essentials.
The following function implements this algorithm and returns the list of essential prime implicants.
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In[169]:= findEssentials@coverTable_ListD :=
Module@8essentials = 8<, r, c, i, j, rowhas1<,
8r, c< = Dimensions@coverTableD;
For@i = 1, i § c, i++,
rowhas1 = 0;
For@j = 1, j § r, j++,
If@coverTable@@j, iDD ã 1,
If@rowhas1 ã 0,
rowhas1 = j,
rowhas1 = -1; Break@D

D
D

D;
If@rowhas1 > 0,
AppendTo@essentials, rowhas1D

D
D;
Sort@Union@essentialsD, GreaterD

D

The Sort applied with the comparison function Greater ensures that the output will be in decreas-
ing order. This will allow us to update the coverage table and other lists without affecting the index of
smaller-indexed essential prime implicants.
We use this to determine the essential prime implicants of our example.
In[170]:= essentialPIs = findEssentials@coverageTableD

Out[170]= 86, 2<

Now that we have the essential prime implicants, we can initialize minBits and apply updateCT to
the essential prime implicants.
In[171]:= minBits = 8<

Out[171]= 8<

In[172]:= Do@AppendTo@minBits,
updateCT@i, coverageTable, Fbits, allprimeImpsDD

, 8i, essentialPIs<D

In[173]:= minBits

Out[173]= 88-, -, 0, 0<, 80, -, -, 1<<
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In[174]:= coverageTable êê MatrixForm

Out[174]//MatrixForm=
0 0
1 1
0 1
1 0

Completing the Coverage
Provided that the essential prime implicants did not completely cover the original minterms, we must
complete  the  coverage  with  non-essential  prime  implicants.  First,  we  ensure  that  the  coverage  is  not
complete by checking the column dimension.
In[175]:= Dimensions@coverageTableD@@2DD > 0

Out[175]= True

We will use a heuristic approach to find a minimal set of prime implicants rather than using an exhaus-
tive search to determine the minimum. The heuristic we use will be to choose the prime implicant with
the most extensive coverage of the remaining minterms.
To  find  such  a  prime  implicant,  we  will  do  the  following.  First,  initialize  maxCoverage  and
bestImp both to 0. Then loop over each row of the (modified) coverage table. For each row, we will
compute the sum of the entries. If this sum is greater than maxCoverage, then set maxCoverage to
the sum and set bestImp to the row number. Once the loop is complete, bestImp will be the index
to a row with maximum coverage and will be the next prime implicant added to the minBits list.
Here is the function that implements this strategy.
In[176]:= findBestImp@coverTable_D :=

Module@8maxCoverage = 0, bestImp = 0, i, j, sum<,
For@i = 1, i § Dimensions@coverTableD@@1DD, i++,
sum = Plus üü coverTable@@iDD;
If@sum > maxCoverage,
maxCoverage = sum;
bestImp = i

D
D;
bestImp

D

As long as the coverage table is not empty, we apply this function to it to obtain the next implicant. We
add  the  implicant  to  the  list  minBits  representing  the  minimal  expression  and  update  the  coverage
table using updateCT.
In[177]:= While@Dimensions@coverageTableD@@2DD > 0,

nextPI = findBestImp@coverageTableD;
AppendTo@minBits,
updateCT@nextPI, coverageTable, Fbits, allprimeImpsDD

D
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In[178]:= minBits

Out[178]= 88-, -, 0, 0<, 80, -, -, 1<, 81, 0, 1, -<<

All  that's  left  is  to  translate  minBits  back  into  a  logical  expression.  This  can  be  done  using
bitListToDNF created earlier.
In[179]:= bitListToDNF@minBits, 8w, x, y, z<D

Out[179]= H! y && ! zL »» H! w && zL »» Hw && ! x && yL

Putting It All Together
Finally, we assemble the pieces into a single function, which accepts a logical expression in disjunctive
normal form and a list of its variables. It returns a minimal equivalent expression.
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In[180]:= quineMcCluskey@F_, variables_D :=
Module@8fBits, fBitsL, coverageDict, groupsL,

primesL, newFbits, newprimes, i, allprimeImps, j,
coverageTable, essentialPIs, minBits, nextPI<,

fBits = dnfToBitList@F, variablesD;
initCoverDict@coverageDict, fBitsD;
i = 0;
fBitsL = 8fBits<;
groupsL = 8<;
primesL = 8<;
While@fBitsL@@-1DD =!= 8<,
AppendTo@groupsL, sortGroups@fBitsL@@-1DDDD;
8newFbits, newprimes< =
nextBitList@groupsL@@-1DD, coverageDictD;

AppendTo@fBitsL, newFbitsD;
AppendTo@primesL, newprimesD;

D;
allprimeImps = Union üü primesL;
coverageTable =
initCoverageMatrix@fBits, allprimeImps, coverageDictD;

essentialPIs = findEssentials@coverageTableD;
minBits = 8<;
Do@AppendTo@minBits,

updateCT@i, coverageTable, fBits, allprimeImpsDD
, 8i, essentialPIs<D;

While@MatrixQ@coverageTableD &&
Dimensions@coverageTableD@@2DD > 0,

nextPI = findBestImp@coverageTableD;
AppendTo@minBits,
updateCT@nextPI, coverageTable, fBits, allprimeImpsDD

D;
bitListToDNF@minBits, variablesD

D

Define ex10 to be the expression in Example 10 from Section 12.4 of the text.
In[181]:= ex10 = Hw && x && y && ! zL »» Hw && ! x && y && zL »»

Hw && ! x && y && ! zL »» H! w && x && y && zL »» H! w && x && ! y && zL »»

H! w && ! x && y && zL »» H! w && ! x && ! y && zL

Out[181]= Hw && x && y && ! zL »» Hw && ! x && y && zL »»

Hw && ! x && y && ! zL »» H! w && x && y && zL »» H! w && x && ! y && zL »»

H! w && ! x && y && zL »» H! w && ! x && ! y && zL
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In[182]:= quineMcCluskey@ex10, 8w, x, y, z<D

Out[182]= Hw && y && ! zL »» H! w && zL »» Hw && ! x && yL

Note that this is the first of the two answers given in the solution to Example 10.

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 2

Construct a table listing the set of values of all 256 Boolean functions of degree three.

Solution:  The Boolean functions of degree three are in one-to-one correspondence with the subsets of
8true, false<3. This is because each subset S of 8true, false<3  can be identified with the unique Boolean
function of degree three that returns true on the members of S and false on all other inputs.

The  set  8true, false<3  consists  of  8  elements:  Htrue, true, trueL,  Htrue, true, falseL,  Htrue, false, trueL,...,
Hfalse, false, falseL.  The  power  set  can  therefore  be  identified  with  bit  strings  of  length  8,  with  a  1
indicating  inclusion  of  the  corresponding  member  of  8true, false<3.  For  example,  “10100000”  would
correspond  to  the  set  8Htrue, true, trueL, Htrue, false, trueL<  which  in  turn  corresponds  to  the  Boolean
function that returns true on Htrue, true, trueL and Htrue, false, trueL and false for all other input. The bit
strings, in turn, can be identified with integers between 0 and 255, based on their binary representation.
Mathematica’s  BooleanFunction  function  takes  advantage  of  this  correspondence  between  inte-
gers and Boolean functions. Given two integers k and n as arguments, BooleanFunction produces
the Boolean function, as a pure Function, on n variables corresponding to the binary representation
of k.
In[183]:= BooleanFunction@132, 3D

Out[183]= BooleanFunction@ < 3 >D

The resulting BooleanFunction can be applied to truth values.
In[184]:= BooleanFunction@132, 3D@True, False, TrueD

Out[184]= False

With  a  list  of  variables  passed  as  a  third  argument,  the  output  will  be  an  expression  for  the  Boolean
function.
In[185]:= BooleanFunction@132, 3, 8x, y, z<D

Out[185]= Hx && y && zL »» H! x && y && ! zL

Applying BooleanTable,  described in the first  section of this chapter,  to the output of Boolean-
Function produces the functions’ truth table.
In[186]:= BooleanTable@BooleanFunction@132, 3DD

Out[186]= 8True, False, False, False, False, True, False, False<

We  prefer  a  table  that  shows  the  input  values  along  with  the  output.  For  this,  we  apply
BooleanTable  to a list consisting of variables as the second argument. Then in the first argument,
we can use the variables.
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We  prefer  a  table  that  shows  the  input  values  along  with  the  output.  For  this,  we  apply
BooleanTable  to a list consisting of variables as the second argument. Then in the first argument,
we can use the variables.
In[187]:= BooleanTable@

8x, y, z, BooleanFunction@132, 3D@x, y, zD<, 8x, y, z<D

Out[187]= 88True, True, True, True<, 8True, True, False, False<,
8True, False, True, False<, 8True, False, False, False<,
8False, True, True, False<, 8False, True, False, True<,
8False, False, True, False<, 8False, False, False, False<<

The third element of the output indicates that the function 132 returns false on Htrue, false, trueL.
We  can  now  replace  the  specific  application  of  BooleanFunction  with  a  Table  to  allow  the
integer to range. For demonstration purposes, we restrict the range to 100 to 105. We also apply Table-
Form with the TableDepth option set to 1 to make the output readable.
In[188]:= TableForm@BooleanTable@

8x, y, z, Table@BooleanFunction@k, 3D@x, y, zD, 8k, 100, 105<D<,
8x, y, z<D, TableDepth Ø 1D

Out[188]//TableForm=
8True, True, True, 8False, False, False, False, False, False<<
8True, True, False, 8True, True, True, True, True, True<<
8True, False, True, 8True, True, True, True, True, True<<
8True, False, False, 8False, False, False, False, False, False<<
8False, True, True, 8False, False, False, False, True, True<<
8False, True, False, 8True, True, True, True, False, False<<
8False, False, True, 8False, False, True, True, False, False<<
8False, False, False, 8False, True, False, True, False, True<<

The output above indicates that, on the input HTrue, False, TrueL, all 6 Boolean functions associated to
the integers 100 through 105 output true.

Computations and Explorations 6

Randomly generate 10 different Boolean expressions in four variables and determine the 
average number of steps required to minimize them using the Quine-McCluskey method.

Solution:  To solve this problem, we need to find a way to generate random Boolean expressions, and
then we must find a method of examining the minimization process so that we can count the number of
steps.
Using what we learned about BooleanFunction in the solution to Computer Projects 2 above, we
can produce random Boolean functions by applying BooleanFunction to random integers. For an
expression  in  four  variables,  there  are  224 = 65 536  different  Boolean  functions.  So  we  choose  10
different integers between 0 and 65535 using RandomSample. Recall that RandomSample accepts
a list of elements, which in this case will be obtained from Range, and a positive integer. It returns a
list of the specified number of elements randomly selected from the list of objects.
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Using what we learned about BooleanFunction in the solution to Computer Projects 2 above, we
can produce random Boolean functions by applying BooleanFunction to random integers. For an
expression  in  four  variables,  there  are  224 = 65 536  different  Boolean  functions.  So  we  choose  10
different integers between 0 and 65535 using RandomSample. Recall that RandomSample accepts
a list of elements, which in this case will be obtained from Range, and a positive integer. It returns a
list of the specified number of elements randomly selected from the list of objects.
In[189]:= RandomSample@Range@0, 65 535D, 10D

Out[189]= 86993, 6632, 36 964, 58 324,
61 650, 17 988, 9289, 28 671, 21 165, 4861<

Applying BooleanFunction  to each of the values output  by RandomSample  will  produce a list
of 10 randomly chosen Boolean expressions.
In[190]:= Table@BooleanFunction@k, 4, 8x, y, z, w<D,

8k, RandomSample@Range@0, 65 535D, 10D<D êê TableForm

Out[190]//TableForm=
Hw && ! x && ! y && ! zL »» H! w && y && ! zL »» H! w && ! y && zL »» Hx && y &&
Hw && yL »» H! w && ! yL »» Hx && ! yL »» Hy && zL
Hw && yL »» Hw && zL »» H! w && ! x && ! zL »» Hx && ! y && zL
Hx && ! yL »» Hx && ! zL »» H! y && ! zL
Hw && x && ! y && zL »» Hw && ! x && ! zL »» H! w && ! y && ! zL »» H! x && ! y &&
Hw && yL »» H! x && ! yL »» ! z
Hw && ! zL »» x »» y
Hw && ! x && zL »» H! w && x && yL »» H! w && ! y && ! zL »» Hx && y && ! zL
Hw && ! x && y && zL »» H! w && ! x && ! yL »» H! w && ! x && ! zL »» Hx && ! y &&
Hw && ! xL »» H! w && xL »» Hx && ! yL »» H! y && zL

Having determined how to generate random expressions, we need to find a way to count the number of
steps taken during the minimization process. There are several approaches we could take to this part of
the problem.
The first is to measure the time taken to execute the procedure. We have done this many times before.
In[191]:= QMtimes = 8<;

randExprs = Table@BooleanFunction@k, 4, 8x, y, z, w<D,
8k, RandomSample@Range@0, 65 535D, 10D<D;

For@i = 1, i § 10, i++,
AppendTo@QMtimes,
Timing@quineMcCluskey@randExprs@@iDD, 8x, y, z, w<DD@@1DDD

D;
Mean@QMtimesD

Out[194]= 0.000904

The  second  approach  is  to  modify  the  implementation  of  Quine-McCluskey  to  count  the  number  of
times certain operations are called. For example, we may be interested in the number of times that the
updateCT procedure is executed. In this case, we can alter quineMcCluskey to include a variable
that is incremented at the start of every execution of updateCT.
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In[195]:= quineMcCluskeycountCT@F_, variables_D :=
Module@8fBits, fBitsL, coverageDict, groupsL,

primesL, newFbits, newprimes, i, allprimeImps, j,
coverageTable, essentialPIs, minBits, nextPI, count = 0<,

fBits = dnfToBitList@F, variablesD;
initCoverDict@coverageDict, fBitsD;
i = 0;
fBitsL = 8fBits<;
groupsL = 8<;
primesL = 8<;
While@fBitsL@@-1DD =!= 8<,
AppendTo@groupsL, sortGroups@fBitsL@@-1DDDD;
8newFbits, newprimes< =
nextBitList@groupsL@@-1DD, coverageDictD;

AppendTo@fBitsL, newFbitsD;
AppendTo@primesL, newprimesD;

D;
allprimeImps = Union üü primesL;
coverageTable =
initCoverageMatrix@fBits, allprimeImps, coverageDictD;

essentialPIs = findEssentials@coverageTableD;
minBits = 8<;
Do@AppendTo@minBits,

updateCT@i, coverageTable, fBits, allprimeImpsDD;
count++
, 8i, essentialPIs<D;

While@MatrixQ@coverageTableD &&
Dimensions@coverageTableD@@2DD > 0,

nextPI = findBestImp@coverageTableD;
AppendTo@minBits,
updateCT@nextPI, coverageTable, fBits, allprimeImpsDD

D;
bitListToDNF@minBits, variablesD;
count

D

Now execute quineMcCluskeycountCT on 10 random expressions.
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In[196]:= QMtotal = 0;
randExprs = Table@BooleanFunction@k, 4, 8x, y, z, w<D,

8k, RandomSample@Range@0, 65 535D, 10D<D;
For@i = 1, i § 10, i++,

QMtotal = QMtotal +
quineMcCluskeycountCT@randExprs@@iDD, 8x, y, z, w<D;

D;
N@QMtotalê10D

Out[199]= 4.9

Exercises
1. Use Mathematica to verify De Morgan's Laws and the commutative and associative laws. 

(See Table 5 of Section 12.1.)
2. Construct truth tables for each of the following pairs of Boolean expressions and decide 

whether they are logically equivalent.
a. a Ø b and b Ø a
b. a Ø b and b Ø a
c. a+ b c and Ha+ b+ dL Ha+ c+ dL

3. Write a Mathematica function that, given a Boolean function, represents this function using 
only the Nand operator.

4. Use the function in the previous exercise to represent the following Boolean functions using 
only the Nand operator.
a. FHx, y, zL = x y+ y z
b. GHx, y, zL = x+ x y+ y z
c. HHx, y, zL = x y z+ x y z

5. Write a Mathematica function that, given a Boolean function, represents this function using 
only the Nor operator.

6. Use the function in the previous exercise to represent the Boolean functions in Exercise 4 
using only the Nor operator.

7. Write a Mathematica function for determining the output of a threshold gate, given the values 
of n Boolean variables as input, and given the threshold value and a set of weights for the 
threshold gate. (See the Supplementary Exercises of Chapter 12 for information on threshold 
gates. )

8. Develop a Mathematica function that, given a Boolean function in four variables, determines 
whether it is a threshold function, and if so, finds the appropriate threshold gate representing 
this function. (See the Supplementary Exercises of Chapter 12.)

9. A Boolean expression e is called self dual if it is logically equivalent to its dual ed. Write a 
Mathematica function to test whether a given expression is self dual.
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10. Determine, for each integer n œ 81, 2, 3, 4, 5, 6<, the total number of Boolean functions of n 
variables and the number of those functions that are self dual.

11. Write a Mathematica function that, given a positive integer n, constructs a list of all Boolean 
functions of degree n. Use your function to find all Boolean functions of degree 4. Do not use 
BooleanFunction.

12. At the end of Section 12.3 of this manual, it was suggested that the procedure for producing 
tree representations of logical circuits could be improved by combining successive and or or 
gates into gates accepting multiple inputs. Implement this.

13. Use BooleanFunction to compute a minimal sum of products expansion for the Boolean 
functions with don't care conditions specified by the Karnaugh maps shown in Exercises 30 
through 32 of Section 12.4.

14. Use the function you wrote in Exercise 9 to write a Mathematica function to generate random 
Boolean expressions in 4 variables and stop when it is has found one that is self dual. Run the 
program several times and time it. Find the average number of random expressions needed 
before stopping. Repeat for Boolean expressions in 5 and 6 variables. Can you make any 
conjectures from this information?

15. Modify quineMcCluskey to allow for don't care conditions. 
16. Modify quineMcCluskey to use backtracking instead of the heuristic approach in order to 

determine the expression with the minimum number of terms. Use a large number of 
randomly generated expressions to compare the old function with the new and determine how 
often the heuristic produces non-optimal output.
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