
12 Boolean Algebra

Introduction
In this chapter we will use Mathematica to model Boolean algebra. In the first section, we demonstrate
the basic functions that will be used in this chapter. In the second section, we will focus on the disjunc-
tive normal form of a logical expression. We will see how to use Mathematica's functions for finding a
disjunctive normal form expression for a Boolean function and for finding a representation for a func-
tion defined by a table of values. In Section 3, we will see how Mathematica can be used to model
logical circuits, including how to go about transforming a circuit diagram into a Mathematica expres-
sion. We also provide a function that will transform a logical expression into a model of a circuit. In
the final section of the chapter, we consider simplification of logical expressions, and we develop an
implementation of the Quine-McCluskey method.

12.1 Boolean Functions
In this section we will see how to work with Boolean expressions and how to create Boolean functions.
We will also use Mathematica to verify identities in Boolean algebra and to compute the dual of an
expression.

Preliminaries
In Chapter 1 of this manual, we discussed Mathematica’s logical expressions. The Boolean values true
and false are represented by the symbols True and False. To Mathematica, these are constant val-
ues, like the numbers 2 or Pi.
We also saw in Chapter 1 the logical operators And (&&), Or (||), and Not (!). These can be used in
functional form or as operators. The two expressions below both compute T flŸ HT fiFL.

In[1]:= True && ! HTrue »» FalseL

Out[1]= False

In[2]:= And@True, Not@Or@True, FalseDDD

Out[2]= False

Note that Mathematica obeys the usual order of precedence for logical operators, namely negation
followed by conjunction, then disjunction, and finally implication.
Other logical operators supported by Mathematica include: the exclusive or, Xor, implication,
Implies, and the biconditional, Equivalent. Each logical connective can be entered as the usual
mathematical symbol by using an escape sequence, as shown in the table below.

Other logical operators supported by Mathematica include: the exclusive or, Xor, implication,
Implies, and the biconditional, Equivalent. Each logical connective can be entered as the usual
mathematical symbol by using an escape sequence, as shown in the table below.

And ÂandÂ Ï

Or ÂorÂ Í

Not ÂnotÂ Ÿ

Xor ÂxorÂ „
Implies Â=>Â fl

Equivalent ÂequivÂ Í

In this manual, we will typically enter operators using either the simple keyboard character operators
for And (&&), Or (||), and Not (!) or in functional form, rather than using the escape sequences.
For Boolean algebra, the textbook uses the objects 0 and 1 with operators +, ÿ, and instead of their
logical counterparts. It is tempting to use Mathematica’s bit functions, BitAnd, BitOr, and
BitNot, in order to replicate the 0-1 form of Boolean expressions. However, the bit functions behave
differently than the corresponding Boolean operators would, in particular BitNot does not switch
between 0 and 1.

In[3]:= BitNot@0D

Out[3]= -1

In[4]:= BitNot@1D

Out[4]= -2

In the remainder of this manual, we will stick to the logical forms of Boolean expressions. However,
some readers may be interested to know that it is possible to create operators to mirror the kinds of
Boolean algebra expressions used in the text. To do so, we use symbols that Mathematica will interpret
as operators but which have no built-in definition. For example, we could use circle times (Ä⊗, entered
Âc*Â) and circle plus (Å⊕, entered Âc+Â) for the and and or operators, and the unary minus-plus
(°, entered Â-+Â) for negation. Then the expression 1 ÿ 0+ H0+ 1L would be entered as shown below.

In[5]:= 1Ä⊗0Å⊕°H0Å⊕1L

Out[5]= 1Ä⊗0Å⊕°H0Å⊕1L

To get Mathematica to evaluate such expressions properly, you just need to make definitions to the
symbols. By setting the Flat and Listable attributes first, the operator will be associative. For
example, Ä⊗ can be defined by setting values for CircleTimes.

In[6]:= SetAttributes@CircleTimes, 8Flat, Listable<D;
CircleTimes@1, 1D = 1;
CircleTimes@1, 0D = 0;
CircleTimes@0, 1D = 0;
CircleTimes@0, 0D = 0;

Now Mathematica will automatically simplify Ä⊗, so if we enter the previous expression again:
In[11]:= 1Ä⊗0Å⊕°H0Å⊕1L

Out[11]= 0Å⊕°H0Å⊕1L

Definitions of the other operations are left to the interested reader. In this manual, we will not use this
approach, since the logical form of Boolean expressions is more naturally supported by Mathematica.

2 Chapter12.nb

Definitions of the other operations are left to the interested reader. In this manual, we will not use this
approach, since the logical form of Boolean expressions is more naturally supported by Mathematica.

Boolean Expressions and Boolean Functions
Consider Example 1 from the text, which asks that we compute the value of 1 ÿ 0+ H0+ 1L. To perform
this computation in Mathematica, we first translate it into a logical statement. We do this by changing
1 into True, 0 into False, the multiplication into And (&&), the addition into Or (||), and the bar
into Not (!).

In[12]:= True && False »» ! HFalse »» TrueL

Out[12]= False

Of course, you can enter Boolean expressions involving variables, assuming the symbols have not
previously been assigned values.

In[13]:= Implies@p && q, rD

Out[13]= p && q fl r

And, just as with arithmetic expressions, you can evaluate these expressions for specific values by
applying the ReplaceAll (/.) operator.

In[14]:= Implies@p && q, rD ê. 8p Ø True, q Ø True, r Ø False<

Out[14]= False

Representing Boolean Functions
You define a Boolean function in Mathematica in the same way as any other function.
Consider, for example, the Boolean function f Hx, y, zL = x y+ y z+ z x (written in the 0-1 notation).
This can be modeled in Mathematica by the function defined below.

In[15]:= f@x_, y_, z_D := Or@And@x, yD, And@y, zD, And@z, xDD

You can work with f in the usual way. The following applies f to p, q, and r.
In[16]:= f@p, q, rD

Out[16]= Hp && qL »» Hq && rL »» Hr && pL

When f is applied to truth values, it is evaluated.
In[17]:= f@True, False, TrueD

Out[17]= True

You can also mix truth values and symbols. In this case, Mathematica will simplify the expression,
given the partial information.

In[18]:= f@True, q, rD

Out[18]= q »» Hq && rL »» r

You may notice that this expression is logically equivalent to qÍ r. Applying the Simplify function
will ask Mathematica to more fully simplify the output.

Chapter12.nb 3

In[19]:= f@True, q, rD êê Simplify

Out[19]= q »» r

Values of Boolean Functions
Examples 4 and 5 of Section 12.1 illustrate how the values of a Boolean function, in the 0-1 format,
can be displayed in a table. In the logical form, this is equivalent to a truth table for the Boolean func-
tion. In Chapter 1 of this manual, we illustrated the use of the BooleanTable function for creating
truth tables.
Recall that BooleanTable accepts two arguments: a Boolean expression and a list of the variables.
The output is a list of the truth values for the expression obtained by substituting every possible combi-
nation of truth values into the variables.
For example, we will display the table of values for the Boolean function f defined above. The first
argument to BooleanTable will be a list containing the three variables and the function applied to
them. Giving the first argument as this list means that the output will indicate the values of the individ-
ual variables, and not just the result. The second argument will be the list of variables.

In[20]:= BooleanTable@8p, q, r, f@p, q, rD<, 8p, q, r<D êê TableForm
Out[20]//TableForm=

True True True True
True True False True
True False True True
True False False False
False True True True
False True False False
False False True False
False False False False

If you wish, you can use this function to produce output in the 0-1 form by applying the Boole func-
tion. Boole is a built-in function that transforms the truth values True and False into the values 1
and 0. Since it threads over lists, it can be applied to the output from BooleanTable.

In[21]:= Boole@BooleanTable@8p, q, r, f@p, q, rD<, 8p, q, r<DD êê TableForm

Out[21]//TableForm=
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

We can further refine the output by using the TableHeadings option for TableForm. Table-
Headings is assigned to a pair representing the row and column headings, with None used when a
group of headings is not wanted.

4 Chapter12.nb

In[22]:= TableForm@Boole@BooleanTable@8p, q, r, f@p, q, rD<, 8p, q, r<DD,
TableHeadings Ø 8None, 8p, q, r, f<<D

Out[22]//TableForm=
p q r f
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0

Operations on Boolean Functions
As with functions on real numbers, Boolean functions can be combined using basic operations. The
complement of a Boolean function and the Boolean sum and product of functions are defined in the
text.
To compute complements, sums, and products of Boolean functions, you must define a new function in
terms of the original. For example, consider the function GHx, yL = x ÿ y. In logical notation, this is
GHx, yL = xÏ y.

In[23]:= G@x_, y_D := x && y

The complement of G, which we'll call notG, is created as follows. The arguments of notG are the
same as G. The formula that defines notG is ! G@x, yD.

In[24]:= notG@x_, y_D := ! G@x, yD

Observe that if we evaluate notG at a pair of variables, Mathematica returns the expected result.
In[25]:= notG@x, yD

Out[25]= ! Hx && yL

Let us define another function, HHx, yL = x ÿ y.
In[26]:= H@x_, y_D := x && ! y

To compute the Boolean sum G+H, we combine the functions with the Or (||) operator. More pre-
cisely, we define a function GpH with the formula G[x,y]||H[x,y].

In[27]:= GpH@x_, y_D := G@x, yD »» H@x, yD

Applying this to a pair of variables and simplifying, we obtain the following formula for G+H.
In[28]:= GpH@x, yD êê Simplify

Out[28]= x

This result indicates that x ÿ y+ x ÿ y = x. This can also be verified using the identities in Table 5 of
Section 12.1.

Chapter12.nb 5

Identities of Boolean Algebra
We can check identities, equivalence of Boolean expressions, and equality of Boolean functions using
the Equivalent and TautologyQ functions.
We will use the distributive law xHy+ zL = x ÿ y+ x ÿ z as an example. First we must translate the state-
ment into a logical equivalence: xÏ HyÍ zL ª HxÏ yL Í Hxfl zL.
Now we will assign the expressions on either side of the equivalence to symbols. This is not necessary,
but it will make later expressions easier to read.

In[29]:= distributiveL = x && Hy »» zL;
distributiveR = Hx && yL »» Hx && zL;

To confirm the equivalence of the two Boolean expressions, we combine them into a biconditional
using the Equivalent function. We then apply the TautologyQ function to the biconditional and
a list of the Boolean variables appearing in the expression.

In[31]:= TautologyQ@Equivalent@distributiveL, distributiveRD, 8x, y, z<D

Out[31]= True

This verifies the given distributive law.
In the case that the two expressions are not equivalent, you can use the SatisfiabilityIn-
stances function to find a list of assignments of truth values to the variables in the expression that
demonstrates that the expressions are not equivalent.
Consider the non-equivalence x+ x ÿ y ¹≠ y. In logical form, this is xÍ HxÏ yL T y. First observe that
TautologyQ returns false.

In[32]:= TautologyQ@Equivalent@x »» Hx && yL, yD, 8x, y<D

Out[32]= False

Now apply SatisfiabilityInstances to the negation of the equivalence.
In[33]:= SatisfiabilityInstances@! Equivalent@x »» Hx && yL, yD, 8x, y<D

Out[33]= 88True, False<<

This output means that setting x equal to true and y equal to false provides a demonstration, by coun-
terexample, that xÍ HxÏ yL T y. Indeed, substituting x = true and y = false on the left hand side pro-
duces trueÍ HtrueÏ falseL ª trueÍ false ª true. That is not the same as the right hand side, y, which is
assigned false.
Note that the output from SatisfiabilityInstances is a list of assignments. Ordinarily only
one truth value assignment will be returned. But if you provide a positive integer as an optional third
argument, Mathematica will attempt to find that number of different assignments. Below, we ask for
three assignments, but only two exist and so two are returned.

In[34]:= SatisfiabilityInstances@! Equivalent@x »» Hx && yL, yD, 8x, y<, 3D

Out[34]= 88True, False<, 8False, True<<

Equality of Boolean functions can also be checked with the Equivalent and TautologyQ
functions.
Consider the following Boolean functions.

6 Chapter12.nb

f1Hx, yL = Hx ÿ yL

f2Hx, yL = x+ y

Define the corresponding functions:
In[35]:= f1@x_, y_D := ! Hx && yL;

f2@x_, y_D := ! x »» ! y;

We can test the assertion that f1Hx, yL = f2Hx, yL by applying the Equivalent and TautologyQ
functions as shown below.

In[37]:= TautologyQ@Equivalent@f1@x, yD, f2@x, yDD, 8x, y<D

Out[37]= True

Duality
We conclude this section by showing how Mathematica can be used to compute the dual of an expres-
sion. We will define a function, dual, to achieve this.
Recall that the dual of a Boolean expression is the expression obtained by interchanging conjunctions
and disjunctions and interchanging trues and falses. We can achieve this in Mathematica by applying
ReplaceAll (/.) with a list of rules effecting the interchanges.

In[38]:= dual@expr_D :=
expr ê. 8And Ø Or, Or Ø And, False Ø True, True Ø False<

Note that this will not produce an infinite loop, since ReplaceAll (/.) operates by looking at each
part of the expression only once applying the first rule in the list that is valid.
For example, consider the expression x ÿ y+ y ÿ z+ x ÿ z. As a logical expression, this can be written as
HxÏŸ yL Í HyÏŸ zL Í HŸ xfl zL. We calculate the dual by applying the dual function.

In[39]:= dual1 = dual@Hx && ! yL »» Hy && ! zL »» H! x && zLD

Out[39]= Hx »» ! yL && Hy »» ! zL && H! x »» zL

Similarly, the dual of x ÿ y+ y ÿ z+ x ÿ z can be computed by
In[40]:= dual2 = dual@H! x && yL »» H! y && zL »» Hx && ! zLD

Out[40]= H! x »» yL && H! y »» zL && Hx »» ! zL

Exercise 13 of Section 12.1 asks you to prove that the expressions x ÿ y+ y ÿ z+ x ÿ z and x ÿ y+ y ÿ z+ x ÿ z
are equivalent. The duality principle implies that the duals calculated above are also equivalent. This
can be verified by the Equivalent and TautologyQ functions.

In[41]:= TautologyQ@Equivalent@dual1, dual2D, 8x, y, z<D

Out[41]= True

12.2 Representing Boolean Functions
In this section we will see how to use Mathematica to express Boolean functions in the disjunctive
normal form (also called sum-of-products expansion). We will first look at the Mathematica function
for turning an expression in Boolean algebra into the disjunctive normal form. Then we will see the
function for finding an expression based on a table of values.

Chapter12.nb 7

In this section we will see how to use Mathematica to express Boolean functions in the disjunctive
normal form (also called sum-of-products expansion). We will first look at the Mathematica function
for turning an expression in Boolean algebra into the disjunctive normal form. Then we will see the
function for finding an expression based on a table of values.

Disjunctive Normal Form from an Expression
Given an expression written using the logical connectives, the BooleanConvert function can be
used to transform the expression into disjunctive normal form.
Consider Example 3: Hx+ yL z. In logical form, this is HxÍ yL ÏŸ z. We assign this logical expression to
a symbol.

In[42]:= example3 = Hx »» yL && ! z

Out[42]= Hx »» yL && ! z

The most common way to apply the BooleanConvert function involves two arguments: the expres-
sion to be converted and a string representing the desired form of the output. There are several possible
forms, as detailed by the help page, but the two we will be using are "DNF" for disjunctive normal
form (or equivalently "SOP" meaning sum of products) and "CNF" for conjunctive normal form (or
equivalently "POS" meaning product of sums). Be sure to include the quotation marks.
Below, we convert example3 to disjunctive normal form using "DNF” in the second argument.

In[43]:= BooleanConvert@example3, "DNF"D

Out[43]= Hx && ! zL »» Hy && ! zL

Note that this expression is different from the solution to Example 3 in the text. Mathematica produces
a reduced disjunctive normal form in which terms are not required to contain every variable.
BooleanConvert can also be applied with a single argument, in which case it defaults to disjunc-
tive normal form.

In[44]:= BooleanConvert@example3D

Out[44]= Hx && ! zL »» Hy && ! zL

To produce conjunctive normal form, "CNF" (or "POS") is required as the second argument.
In[45]:= BooleanConvert@example3, "CNF"D

Out[45]= Hx »» yL && ! z

Disjunctive Normal Form from a Table
Example 1 of Section 12.2 describes how to find an expression for a Boolean function represented by a
table of values. We will illustrate the built-in Mathematica functions that accomplish this task.
To define a Boolean function using truth values, we will use BooleanFunction. This function has
a variety of uses, including the ability to specify a Boolean function in terms of the number variables
and an index into the list of all Boolean functions on that number of variables, and the ability to specify
a Boolean function in terms of truth value assignments. We will focus on the latter.
For example, consider the function defined by the following table.

x y z F Hx, y, zL
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

8 Chapter12.nb

x y z F Hx, y, zL
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

There are two ways we can represent this function in Mathematica that will be usable as input to
BooleanFunction. The first is as rules that assign the truth value assignments to the value of the
function. For example, the third row in the table would correspond to the rule 81, 0, 1< Ø 0. Note that
BooleanFunction allows for the use of 0-1 notation for true and false. It will also accept the sym-
bols True and False, as in 8True, False, True< Ø False. We will use the 0-1 notation as it makes for
shorter input sequences.
Given a list of such rules, the BooleanFunction will output a Mathematica function object.

In[46]:= BFexample = BooleanFunction@
881, 1, 1< Ø 0, 81, 1, 0< Ø 1, 81, 0, 1< Ø 0, 81, 0, 0< Ø 1,
80, 1, 1< Ø 0, 80, 1, 0< Ø 1, 80, 0, 1< Ø 1, 80, 0, 0< Ø 0<D

Out[46]= BooleanFunction@ < 3 >D

Applying the function to truth values yields the appropriate result.
In[47]:= BFexample@True, False, TrueD

Out[47]= False

With a list of variable names as a second argument, BooleanFunction will output an expression
for the Boolean function instead of a BooleanFunction object.

In[48]:= BooleanFunction@881, 1, 1< Ø 0, 81, 1, 0< Ø 1,
81, 0, 1< Ø 0, 81, 0, 0< Ø 1, 80, 1, 1< Ø 0,
80, 1, 0< Ø 1, 80, 0, 1< Ø 1, 80, 0, 0< Ø 0<, 8x, y, z<D

Out[48]= Hx && ! zL »» H! x && ! y && zL »» Hy && ! zL

A third argument can be used to specify the form, e.g., “DNF” or “CNF”, for the output.
In[49]:= BooleanFunction@881, 1, 1< Ø 0, 81, 1, 0< Ø 1,

81, 0, 1< Ø 0, 81, 0, 0< Ø 1, 80, 1, 1< Ø 0, 80, 1, 0< Ø 1,
80, 0, 1< Ø 1, 80, 0, 0< Ø 0<, 8x, y, z<, "CNF"D

Out[49]= H! x »» ! zL && Hx »» y »» zL && H! y »» ! zL

You can simplify the input to BooleanFunction slightly by entering only those rules correspond-
ing to one of the possible function values, say true, and then use a BlankSequence (__) to assert
that all others have the other value. This is illustrated below for the same function,

Chapter12.nb 9

In[50]:= BooleanFunction@881, 1, 0< Ø 1, 81, 0, 0< Ø 1,
80, 1, 0< Ø 1, 80, 0, 1< Ø 1, 8__< Ø 0<, 8x, y, z<, "CNF"D

Out[50]= H! x »» ! zL && Hx »» y »» zL && H! y »» ! zL

Observe that this is identical to the output above.
You can simplify the input even further by entering only the output values of the function, provided
you enter them in standard order. The order the values must be entered in is the same as displayed in
the table above.

In[51]:= BooleanFunction@80, 1, 0, 1, 0, 1, 1, 0<, 8x, y, z<D

Out[51]= Hx && ! zL »» H! x && ! y && zL »» Hy && ! zL

If you are in doubt of the order in which to enter the function’s values, it is identical to the order used
by BooleanTable, the function used to display truth tables. Below we use BooleanTable to
display the canonical ordering of truth value assignments for two variables.

In[52]:= BooleanTable@8x, y<, 8x, y<D êê TableForm

Out[52]//TableForm=
True True
True False
False True
False False

12.3 Logic Gates
In this section, we will use Mathematica to work with logic gates, particularly circuit diagrams. First,
we will see how to use Mathematica to translate a circuit diagram into a Boolean expression. Then we
will do the reverse and see how to transform a logical expression into a circuit diagram (modeled as a
tree diagram).

Circuit Diagram to Logical Expression
Consider the circuit diagram shown below.

10 Chapter12.nb

Our goal in this subsection is to use Mathematica to produce a logical expression for the output of this
diagram.
To do this, we use the fact that Mathematica has functional forms for each of the logical expressions.
That is, Not, And, and Or can all be used as functions applied to expressions. For example, the follow-
ing forms the disjunction of x, y, and z.

In[53]:= Or@x, y, zD

Out[53]= x »» y »» z

We give each gate in the diagram a label. The specific names are not important. We chose to label the
gates using the capital letter G with subscripts numbered from the right to the left.

Interpret the labels as names for both the gates themselves and for their outputs. Note G1 is the name
for both the output of the final gate and also names the output of the circuit. The input of G1 is the
outputs from gates G2 and G3. That is to say, G1 = G2 orG3.We can write that in Mathematica as
shown below.

Chapter12.nb 11

Interpret the labels as names for both the gates themselves and for their outputs. Note G1 is the name
for both the output of the final gate and also names the output of the circuit. The input of G1 is the
outputs from gates G2 and G3. That is to say, G1 = G2 orG3.We can write that in Mathematica as
shown below.

In[54]:= G1 = Or@G2, G3D

Out[54]= G2 »» G3

For each gate, do the same. Note that the order in which the gates are specified is irrelevant. The gate
G2 is a and b.

In[55]:= G2 = And@a, bD

Out[55]= a && b

The output of G3 is the conjunction of G4, b, and G5.
In[56]:= G3 = And@G4, b, G5D

Out[56]= G4 && b && G5

And G4 and G5 are inversions on a and c, respectively.
In[57]:= G4 = Not@aD

Out[57]= ! a

In[58]:= G5 = Not@cD

Out[58]= ! c

Once all of the gates have been specified, inspect the value for the final gate, G1.
In[59]:= G1

Out[59]= Ha && bL »» H! a && b && ! cL

This tells us that the circuit's result is HaÏ bL Í HŸ aÏ bÏŸ cL. In 0-1 form, this is ab+ a b c.
The reason this works is that when we define the output of a gate in terms of unassigned names, such
as G2, Mathematica accepts the definition. When G2 is later assigned its own value and then the expres-
sion for G1 is evaluated, Mathematica resolves all assigned names into their definitions so that the
expression for G1 is in terms of unassigned names (a, b, and c) only.

Logical Expression to Circuit Diagram
We have just seen how to use Mathematica to transform a circuit diagram into a logical expression for
the result of the circuit. Now we consider the reverse. Given a logical expression, such as that for G1,
we will use Mathematica to transform the expression into a circuit diagram.
We will model a circuit diagram as a binary tree. While circuit diagrams are generally not necessarily
binary, this will serve for our purposes.
Recall that a binary tree has a number of vertices and directed edges. Vertices in the tree will corre-
spond to gates in the circuit. One of the vertices is distinguished as the root, which will correspond to
the output of the circuit. Each vertex has at most two children vertices. The edges between the vertex
and its child correspond to the inputs to the gate. Each vertex other than the root has a parent, and the
edge from the vertex to the parent corresponds to the output from the gate.
The assumption that a circuit can be modeled as a binary tree requires that the circuit satisfy the follow-
ing properties. First, the circuit has only one output. Second, each gate has only one output. Third, each
gate has at most two inputs.

12 Chapter12.nb

The assumption that a circuit can be modeled as a binary tree requires that the circuit satisfy the follow-
ing properties. First, the circuit has only one output. Second, each gate has only one output. Third, each
gate has at most two inputs.
Recall that in Chapter 11, we wrote the function expressionTree for converting an algebraic
expression in terms of the binary arithmetic operators into a tree representation. We will make use of
the functions from Chapter 11 here, so we load them. If you place the file Chapter11.mx from the
website in the same directory as this notebook is stored, the executing the following expression will
load the functions from Chapter 11.

In[60]:= << HNotebookDirectory@D <> "Chapter11.mx"L

Get::noopen : Cannot open
êUsersêDanêDropboxêRosenMathematicaêChapter12êChapter11.mx. à

Out[60]= $Failed

Recall that the functions written in each chapter of this manual are collected in packages. Please refer
to the Introduction if you need instructions on how to use the packages on your system.
Observe what happens if we apply the expressionTree function to the logical expression
aÏ HbÍ cL.

In[61]:= expressionTree@a && Hb »» cL, ImagePadding Ø 5D

Out[61]= expressionTree@a && Hb »» cL, ImagePadding Ø 5D

Compare the tree above to the circuit diagram below.

Observe that the diagram and the tree have the same structure. After reversing the arrows, rotating by
90°, and exchanging the symbols with the functions labeling the internal nodes, the two are identical.
As you can see, we nearly have a function for turning logical expressions into trees that correspond to
circuit diagrams. The only problem is that the expressionTree function does not allow for unary
operators such as Not.
In order to create a function like this that will work with expressions using the Boolean operators, we
need to allow for the possibility that there is only one operand.
The inner If statement below tests the number of operands of the expression using Length. This will
function similarly to the original function, except using the left hand side for the sole operand. We also
need to create a new function, addLeftBranch, to take the place of joinTrees for unary
operators.

Chapter12.nb 13

In[62]:= SetAttributes@logicTree, HoldFirstD;
logicTree@expr_, opts___D :=
Module@8e, lhs, rhs, operator, lhsTree, rhsTree, result<,
If@expr@@0DD === Hold,
e = expr,
e = Hold@exprD

D;
If@e@@1, 0DD === Integer »» e@@1, 0DD === Symbol,
result = newExpressionTree@ReleaseHold@eD, optsD,
operator = Extract@e, 81, 0<D;
If@Length@e@@1DDD ã 1,
lhs = Extract@e, 81, 1<, HoldD;
lhsTree = logicTree@lhsD;
result = addLeftBranch@operator, lhsTree, optsD,
H* else there are 2 operands *L
lhs = Extract@e, 81, 1<, HoldD;
rhs = Extract@e, 81, 2<, HoldD;
lhsTree = logicTree@lhsD;
rhsTree = logicTree@rhsD;
result = joinTrees@operator, lhsTree, rhsTree, optsD

D
D;
drawBinaryTree@resultD

D

To implement addLeftBranch, we essentially repeat the definition of joinTrees with the ele-
ments related to the right child removed.

14 Chapter12.nb

In[64]:= addLeftBranch@newR_, A_?binaryTreeQ, opts___D :=
Module@8newRI, newT, newVerts, Aroot, newEdges, v, e, p, w<,
newRI = ToString@newRID;
newVerts = Join@8newRI<, VertexList@ADD;
Aroot = findRoot@AD;
newEdges = Join@EdgeList@AD, 8DirectedEdge@newRI, ArootD<D;
newT = Graph@newVerts, newEdges, optsD;
Do@PropertyValue@8newT, v<, "order"D =

PropertyValue@8A, v<, "order"D
, 8v, VertexList@AD<D;

PropertyValue@8newT, Aroot<, "order"D = 1;
PropertyValue@8newT, newRI<, "order"D = 0;
Do@PropertyValue@8newT, v<, VertexLabelsD =

PropertyValue@8A, v<, VertexLabelsD
, 8v, VertexList@AD<D;

PropertyValue@8newT, newRI<, VertexLabelsD = newR;
drawBinaryTree@newTD

D

With these in place, let's look at the result for an example. Consider Hx+ yL x, the subject of Example
1(a) from the text.

In[65]:= logicTree@Hx »» yL && ! x, ImagePadding Ø 10D

Out[65]= drawBinaryTree@joinTrees@And, drawBinaryTree@
joinTrees@Or, drawBinaryTree@newExpressionTree@xDD,
drawBinaryTree@newExpressionTree@yDDDD, drawBinaryTree@

addLeftBranch@Not, drawBinaryTree@newExpressionTree@xDDDD,
ImagePadding Ø 10DD

Compare this diagram to Figure 4(a) in the text.
Note that the function above will not work correctly on expressions, such as the expression G1, that
Mathematica interprets as applications of And or Or with more than two arguments. Observe that the
FullForm of G1 reveals that Mathematica considers it to include an And applied to three arguments.

In[66]:= FullForm@G1D
Out[66]//FullForm=

Or@And@a, bD, And@Not@aD, b, Not@cDDD

It is left as an exercise for the reader to alter the logicTree function to handle this case.

12.4 Minimization of Circuits
In this section we will discuss the use of the BooleanMinimize function for minimizing circuits,
and we will provide an implementation of the Quine-McCluskey method.

Chapter12.nb 15

The BooleanMinimize Function
The BooleanMinimize function, applied to a Boolean expression, finds a minimal representation
of the expression in disjunctive normal form.
For example, we apply BooleanMinimize to the expression we obtained for the output of the
circuit diagram at the beginning of Section 12.3.

In[67]:= BooleanMinimize@Ha && bL »» H! a && b && ! cLD

Out[67]= Ha && bL »» Hb && ! cL

The result indicates that Ÿ a can be removed as an input to the second AND gate.
The result of BooleanMinimize is guaranteed to be of minimal length among all possible disjunc-
tive normal form representations of the input, however, such a minimal expression is not unique. Note
that if you don’t care that the expression be in disjunctive normal form, the Simplify function will
produce a shorter expression.

In[68]:= Simplify@Ha && bL »» H! a && b && ! cLD

Out[68]= Ha »» ! cL && b

The BooleanMinimize function can also accept, as a second argument, all the same forms as
BooleanConvert in order to produce minimal expressions of different forms. For example, to find
a minimal conjunctive normal form expression for G1, you enter the following.

In[69]:= BooleanMinimize@Ha && bL »» H! a && b && ! cL, "CNF"D

Out[69]= Ha »» ! cL && b

Don’t Care conditions
Informally, a set of don't care conditions for a Boolean function F is a set of points in the domain of F
whose images do not concern us.
If F is a function on n variables, then its domain is 8true, false<n. Let A be the subset of 8true, false<n
for which the value of F is specified. If we think of F as fully defined on this subset A, then we are
interested in the family of all extensions of F to all of 8true, false<n. In other words, the set of all G
defined on 8true, false<n that agree with F on A. The goal is to choose the particular G that is simplest.
That is, the G that has the smallest sum of products expansion.

We should pause to consider the size of this problem. If there are d don't care points, then there are 2d
possible extensions G. Considering every possible extension can become rather time consuming.
Consider the Boolean function F defined by the following table of values, in which “d” in the final
column indicates a don't care condition.

x y z F(x,y,z)
true true true true
true true false false
true false true false
true false false true
false true true d
false true false d
false false true false
false false false true

16 Chapter12.nb

x y z F(x,y,z)
true true true true
true true false false
true false true false
true false false true
false true true d
false true false d
false false true false
false false false true

The points that must evaluate to true are: 8Hfalse, false, falseL, Htrue, false, falseL, Htrue, true, trueL< and
the don’t care conditions are 8Hfalse, true, falseL, Hfalse, true, trueL<.
In Section 12.2, we showed how to use BooleanFunction to define a Boolean function in terms of
a table. We also saw above that you can specify a default output by using a BlankSequence (__).
For example, the following returns the Boolean expression that is true on Htrue, false, true, falseL and
false otherwise.

In[70]:= BooleanFunction@
88True, False, True, False< Ø True, 8__< Ø False<, 8x, y, z, w<D

Out[70]= ! w && x && ! y && z

We can specify a don’t care condition within a call to BooleanFunction by identifying a don’t
care condition, e.g., Hfalse, true, falseL, with a blank.
So we can determine a Boolean function defined by the table above as follows. (Note that we could use
a BlankSequence (__) to simplify the input, but in this example we list all the elements of the
domain for clarity.)

In[71]:= BooleanFunction@88True, True, True< Ø True,
8True, True, False< Ø False,
8True, False, True< Ø False,
8True, False, False< Ø True,
8False, True, True< Ø _,
8False, True, False< Ø _,
8False, False, True< Ø False,
8False, False, False< Ø True<,

8x, y, z<D

Out[71]= Hx && y && zL »» H! x && ! zL »» H! y && ! zL

Quine-McCluskey
We conclude with an implementation of the Quine-McCluskey method. This method is fairly involved
and it will take considerable effort to implement it correctly, but understanding this algorithm is
worthwhile.
It will be helpful to have an example that we can use to illustrate the method as we build the function.
The expression we use for the example is

Chapter12.nb 17

It will be helpful to have an example that we can use to illustrate the method as we build the function.
The expression we use for the example is

w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z+w x y z

We assign this to the symbol F.
In[72]:= F = Hw && x && ! y && ! zL »» Hw && ! x && y && zL »»

Hw && ! x && y && ! zL »» Hw && ! x && ! y && ! zL »»

H! w && x && y && zL »» H! w && x && ! y && zL »»

H! w && x && ! y && ! zL »» H! w && ! x && y && zL »»

H! w && ! x && ! y && zL »» H! w && ! x && ! y && ! zL;

Let us begin by (very) briefly outlining the approach. More details will be given as we proceed.
1. Transform the minterms into bit strings.
2. Group the bit strings by the number of 1s.
3. Combine bit strings that differ in exactly one location.
4. Repeat steps 2 and 3 until no additional combinations are possible.
5. Identify the prime implicants (those bit strings not used in a simplification) and form the coverage

table.
6. Identify the essential prime implicants and update the table.
7. Process the remaining prime implicants using a heuristic approach in order to achieve complete

coverage.
Implementing this will require several different functions that will come together to achieve the goal of
minimizing the expression for F.
Modifying Arguments
Before we begin implementing the method, we take a moment to explain the HoldRest attribute.
Earlier in this manual, we have seen how to use a held argument to allow modification of an argument
to a function. We will need to do this again here in order to avoid the need to copy data structures that
must be modified by a function.
Holding parameters to a function means that, when you call the function on a symbol, instead of apply-
ing the function to the object stored in that symbol, the function is given the name of the symbol itself.
This allows the symbol name to be reassigned and otherwise modified within the function.
The HoldRest attribute causes all but the first argument to a function to be held. For example, the
following function updates the symbol given as the second argument to be the sum of what it previ-
ously stored and the first argument, and appends the result to the list associated to the symbol given as
the third argument.

In[73]:= exampleHold1 = 5;
exampleHold2 = 12;
exampleHold3 = 81, 2, 3<;
SetAttributes@exampleHoldFunction, 8HoldRest<D;
exampleHoldFunction@a_, b_, c_D := Module@8<,

b = a + b;
AppendTo@c, bD

D

18 Chapter12.nb

In[78]:= exampleHoldFunction@exampleHold1, exampleHold2, exampleHold3D

Out[78]= 81, 2, 3, 17<

Observe that the values stored in the last two arguments have changed. Without the HoldRest
attribute, both expressions in the body of the Module would have produced errors.

In[79]:= exampleHold2

Out[79]= 17

In[80]:= exampleHold3

Out[80]= 81, 2, 3, 17<

Other attributes that can be used to hold arguments are HoldFirst and HoldAll.
Transforming Minterms Into Bit Strings
The first task is to process the input. That is, F must be transformed into a list of bit strings. This is not
strictly necessary, but it makes working with the minterms more convenient. We represent bit strings
as lists of 0s and 1s.
We begin by creating a function to transform a single minterm into a bit string. We assume that the
input to this function will be a properly formed minterm, that is, a conjunction of variables and nega-
tions of variables. We require that a list of variables be provided to the function, so that the bit string
can be formed in the proper order.
Consider the following minterm, which is the fourth minterm in our example F.

In[81]:= minterm = w && ! x && y && ! z

Out[81]= w && ! x && y && ! z

Fortunately, Mathematica automatically transforms a series of conjunctions into a single application of
the And (&&) function with multiple arguments. Applying FullForm illustrates.

In[82]:= FullForm@mintermD
Out[82]//FullForm=

And@w, Not@xD, y, Not@zDD

MemberQ’s first argument can have any head, not just a List. So, we can determine that w is part of
the conjunction but that x is not by applying MemberQ to minterm and the variables.

In[83]:= MemberQ@minterm, wD

Out[83]= True

In[84]:= MemberQ@minterm, xD

Out[84]= False

But of course, the negation of x is part of minterm.
In[85]:= MemberQ@minterm, Not@xDD

Out[85]= True

To transform the minterm into a bit string, we only need to check, for each variable, whether the vari-
able or its negation is in the list. Recall that we will insist that the function be given the list of variables
as an argument to maintain the proper order of the variables.

Chapter12.nb 19

To transform the minterm into a bit string, we only need to check, for each variable, whether the vari-
able or its negation is in the list. Recall that we will insist that the function be given the list of variables
as an argument to maintain the proper order of the variables.
We first assign the list of variables to a symbol.

In[86]:= variableList = 8w, x, y, z<

Out[86]= 8w, x, y, z<

Now create a list, initialized to the proper length, for the bit string.
In[87]:= bitstring = ConstantArray@Null, 4D

Out[87]= 8Null, Null, Null, Null<

Finally, we use a For loop to check, for each variable in the variable list, whether the variable is in the
minterm. If the variable is a member of minterm, then we change the bit to 1. If the negation is in
minterm, we set the value in the bit string to 0. Otherwise, we place the character “-“ in the list, to
indicate the absence of the variable in the string.

In[88]:= For@i = 1, i § Length@variableListD, i++,
Which@MemberQ@minterm, variableList@@iDDD,
bitstring@@iDD = 1,
MemberQ@minterm, Not@variableList@@iDDDD,
bitstring@@iDD = 0,
True, bitstring@@iDD = "-"D

D

This has created the bit string associated to minterm.
In[89]:= bitstring

Out[89]= 81, 0, 1, 0<

We condense this process into a single function.
In[90]:= mtToBitstring@minterm_, variableList_D :=

Module@8i, bitstring<,
bitstring = ConstantArray@Null, Length@variableListDD;
For@i = 1, i § Length@variableListD, i++,
Which@MemberQ@minterm, variableList@@iDDD,
bitstring@@iDD = 1,
MemberQ@minterm, Not@variableList@@iDDDD,
bitstring@@iDD = 0,
True,
bitstring@@iDD = "-"

D
D;
bitstring

D

In[91]:= mtToBitstring@minterm, 8w, x, y, z<D

Out[91]= 81, 0, 1, 0<

20 Chapter12.nb

Transforming the Original Expression Into Bit Strings
Now that we have the means for transforming a single minterm into a bit string, we are ready to trans-
form an expression in disjunctive normal form into a list of bit strings.
Observe that an expression in disjunctive normal form is the Or (||) function applied to minterms.
Again, FullForm reveals this convenient structure.

In[92]:= FullForm@FD
Out[92]//FullForm=

Or@And@w, x, Not@yD, Not@zDD,
And@w, Not@xD, y, zD, And@w, Not@xD, y, Not@zDD,
And@w, Not@xD, Not@yD, Not@zDD, And@Not@wD, x, y, zD,
And@Not@wD, x, Not@yD, zD, And@Not@wD, x, Not@yD, Not@zDD,
And@Not@wD, Not@xD, y, zD, And@Not@wD, Not@xD, Not@yD, zD,
And@Not@wD, Not@xD, Not@yD, Not@zDDD

Our goal is to produce a list of the bit strings obtained from the minterms. We can transform the disjunc-
tion into a list by using the Apply (@@) function to replace the Or (||) head with a List head.

In[93]:= List üü F

Out[93]= 8w && x && ! y && ! z, w && ! x && y && z,
w && ! x && y && ! z, w && ! x && ! y && ! z, ! w && x && y && z,
! w && x && ! y && z, ! w && x && ! y && ! z, ! w && ! x && y && z,
! w && ! x && ! y && z, ! w && ! x && ! y && ! z<

Then we just need to apply the mtToBitstring function to each member of the list. We can do this
by using the Map (/@) function, which applies a function (given as the first argument) to a list (given
as the second argument) and returns the list obtained by applying the function to each element of the
list. Since the mtToBitstring requires two arguments, not just one, the first argument to Map (/@)
will be a pure Function (&) obtained by calling mtToBitstring on a Slot (#) and the list of
variables.

In[94]:= Map@mtToBitstring@Ò, 8w, x, y, z<D &, List üü FD

Out[94]= 881, 1, 0, 0<, 81, 0, 1, 1<, 81, 0, 1, 0<, 81, 0, 0, 0<, 80, 1, 1, 1<,
80, 1, 0, 1<, 80, 1, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<

We define a function based on this model.
In[95]:= dnfToBitList@dnfExpr_, variableList_D :=

Map@mtToBitstring@Ò, variableListD &, List üü dnfExprD

We now apply this function to the example expression and store the result as the symbol Fbits.
In[96]:= Fbits = dnfToBitList@F, 8w, x, y, z<D

Out[96]= 881, 1, 0, 0<, 81, 0, 1, 1<, 81, 0, 1, 0<, 81, 0, 0, 0<, 80, 1, 1, 1<,
80, 1, 0, 1<, 80, 1, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<

Transforming Bit Strings Into Minterms
At the conclusion of the Quine-McCluskey process, we will want to display the result in disjunctive
normal form. This will require that we turn bit strings back into minterms.

Chapter12.nb 21

At the conclusion of the Quine-McCluskey process, we will want to display the result in disjunctive
normal form. This will require that we turn bit strings back into minterms.
Note that since this function will be applied at the end of the process, it may be that some of the vari-
ables have been removed. We will be using the string “-“ in a bit string to indicate the elimination of a
variable.
This function will require the bit string and a list of variable names as its input. It operates in two
stages. First, it processes the variable list based on the content of the bit string. It initializes an empty
list and, for each variable, appends the variable or its negation or does nothing, depending on the
content of the bit string.

In[97]:= bitstr = 80, 1, "-", 0<

Out[97]= 80, 1, -, 0<

In[98]:= outList = 8<

Out[98]= 8<

In[99]:= For@i = 1, i § Length@variableListD, i++,
Switch@bitstr@@iDD,
1, AppendTo@outList, variableList@@iDDD,
0, AppendTo@outList, Not@variableList@@iDDDD,
"-", NullD

D

In[100]:= outList

Out[100]= 8! w, x, ! z<

Note the use of the Switch function. Recall that Switch evaluates its first argument, and then com-
pares that result to the arguments with even index, executing the argument following the first of the
even-indexed arguments that matches the result of the first argument.
Once this list is formed, we form the conjunction of the elements by using Apply (@@) to change the
List head into And (&&).
In[101]:= And üü outList

Out[101]= ! w && x && ! z

Here is the function based on this process.
In[102]:= bitStringToMT@bitstring_, variableList_D :=

Module@8outList, i<,
outList = 8<;
For@i = 1, i § Length@variableListD, i++,
Switch@bitstring@@iDD,
1, AppendTo@outList, variableList@@iDDD,
0, AppendTo@outList, Not@variableList@@iDDDD,
"-", NullD

D;
And üü outList

D

Applied to 80, 1, 0, 1< and 8w, x, y, z<, we see that bitStringToMT reproduces the original minterm
example.

22 Chapter12.nb

Applied to 80, 1, 0, 1< and 8w, x, y, z<, we see that bitStringToMT reproduces the original minterm
example.
In[103]:= bitStringToMT@80, 1, 0, 1<, 8w, x, y, z<D

Out[103]= ! w && x && ! y && z

And applied to 80, 1, "-", 1<, it removes the y and negates w.
In[104]:= bitStringToMT@80, 1, "-", 1<, 8w, x, y, z<D

Out[104]= ! w && x && z

The final result of our Quine-McCluskey process will be a list of bit strings. To produce the associated
disjunctive normal form expression, we only need to apply bitStringToMT to each element of the
list and then join the elements of the list in a disjunction.
In[105]:= bitListToDNF@bitList_, variableList_D :=

Map@bitStringToMT@Ò, variableListD &, Or üü bitListD

Initializing the Source Table
In order to form the coverage table in the second part of the method, we need to know which of the
original minterms are covered by which of the prime implicants. Refer to Tables 3 and 6 in the text.
Notice that each bit string in those tables is associated with either a single number, in the case of the
original minterms, or lists of numbers, for the derived products.
We will store this information as an indexed symbol whose indices are the bit strings and whose values
are lists of integers. Given the Fbits list, we initialize this indexed symbol with the elements of
Fbits as the indices. The corresponding entries will be the whose sole element is the bit string's
position in Fbits.
We will refer to this as the “coverage dictionary,” since it allows us to look up any bit string and deter-
mine all of the original minterms covered by it. The following function accepts the name of a symbol
and the Fbits list as arguments and assigns the coverage dictionary to the symbol. Note that we must
set the HoldFirst attribute in order to pass the symbol name as an argument. We apply Clear so
as to remove anything already associated to the symbol.
In[106]:= SetAttributes@initCoverDict, 8HoldFirst<D;

initCoverDict@symbol_, L_D := Module@8i<,
Clear@symbolD;
For@i = 1, i § Length@LD, i++,
symbol@L@@iDDD = 8i<

D
D

Applying this function to a symbol and Fbits produces the initial coverage dictionary.
In[108]:= initCoverDict@coverageDict, FbitsD

We can check what is stored in the indexed symbol coverageDict as shown below. Remember that
the indices are the elements of the list of bit strings Fbits.
In[109]:= coverageDict@80, 1, 0, 1<D

Out[109]= 86<

Chapter12.nb 23

The value, after initialization, is the location within Fbits where the bit string is stored.
In[110]:= Fbits@@6DD

Out[110]= 80, 1, 0, 1<

Grouping by the Number of 1s
Step 2 in our outline is to group the bit strings by the number of 1s.
The reason for this step is to improve the efficiency of finding simplifications to make. Since two bit
strings can be combined only when they are identical except for one location, the only possible combi-
nations are when one bit string has n 1s and the other has n- 1.
After step 1 is concluded, we have a list of bit strings. That will be the starting point for the function
we create for this step. The result of this step will be to turn the list of bit strings into a list of lists of bit
strings, which we'll call groups. In location i of groups will be the set of all bit strings with i- 1
1s. So location 1 will have the bit strings with no 1s, location 2 will contain the bit strings with a single
1, etc.
We know that the number of 1s in any bit string must be between 0 and the length of the bit string. We
initialize groups to be the list of empty lists. The maximum number of 1s in equal to the length of a
bit string, which we can obtain from the size of the first element of Fbits.
In[111]:= groups = ConstantArray@8<, Length@First@FbitsDD + 1D

Out[111]= 88<, 8<, 8<, 8<, 8<<

Since the bit strings had four entries, groups now consists of five copies of the empty list.
For each member of Fbits, we need to count the number of 1s. We will create a small function to do
this.
In[112]:= count1s@bitstring_D := Module@8c = 0, i<,

Do@If@i ã 1, c++D
, 8i, bitstring<D;

c
D

We test this function on a small example.
In[113]:= count1s@81, 0, 1, 1, 0, 0, 1<D

Out[113]= 4

We use count1s to sort the members of Fbits into groups. Using a loop to step through the
Fbits list, we apply count1s and add 1 to the result (since the bit strings with no 1s are in the first
position) to obtain the correct location for that bit string in groups. We then add that bit string to the
correct sublist in groups.
Here is the function implementing this.

24 Chapter12.nb

In[114]:= sortGroups@bitstringList_D := Module@8groups, bitstring, c<,
groups = ConstantArray@8<, Length@First@bitstringListDD + 1D;
Do@c = count1s@bitstringD;
groups@@c + 1DD = Append@groups@@c + 1DD, bitstringD
, 8bitstring, bitstringList<D;

groups
D

Here is the result of sorting Fbits.
In[115]:= groups = sortGroups@FbitsD

Out[115]= 8880, 0, 0, 0<<, 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<<,
881, 1, 0, 0<, 81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<<,
881, 0, 1, 1<, 80, 1, 1, 1<<, 8<<

Applying TableForm will make the output easier to read. The TableDepth option prevents Table-
Form from splitting the sublists into subtables.
In[116]:= TableForm@groups, TableDepth Ø 1D

Out[116]//TableForm=
880, 0, 0, 0<<
881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<<
881, 1, 0, 0<, 81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<<
881, 0, 1, 1<, 80, 1, 1, 1<<
8<

Combining Bit Strings
Step 3 is to combine all of the bit strings that differ in exactly one location. We first write a function
that takes as input two bit strings and either combines them if, in fact, they do differ in exactly one
location, or returns False if they do not.
This function needs to do two tasks. First, it has to check to see whether or not the two bit strings differ
in more than one location. Second, it needs to combine them if they are allowed to be combined.
Combining two bit strings is easy, provided we know the one location in which they differ. For
example,
In[117]:= bit1 = 81, "-", 0, 1, 1<

Out[117]= 81, -, 0, 1, 1<

In[118]:= bit2 = 81, "-", 0, 0, 1<

Out[118]= 81, -, 0, 0, 1<

You can see that these are identical except in position 4.
To merge them, we take either one and replace position 4 with “-“.
In[119]:= bit1@@4DD = "-";

bit1

Out[120]= 81, -, 0, -, 1<

We determine that they differ only in position 4 using a Catch and Throw with a For loop. Inside a
Catch block, initialize a symbol pos, for position, to 0. Now begin a For loop to compare each pair
of entries in the two bit strings. If we find a difference, check the value of pos. If it is still 0, then this
is the first difference that has been encountered, so set pos to the position of this difference and con-
tinue the loop. If pos is not 0, however, then we know that this is the second time a difference was
found. In this case, we immediately Throw False, terminating the loop. Once the loop is complete, if
pos is still 0, then there was no difference, so again we Throw False. Otherwise, pos stores the
location of the sole difference, and we modify one of the bit strings and return it.

Chapter12.nb 25

We determine that they differ only in position 4 using a Catch and Throw with a For loop. Inside a
Catch block, initialize a symbol pos, for position, to 0. Now begin a For loop to compare each pair
of entries in the two bit strings. If we find a difference, check the value of pos. If it is still 0, then this
is the first difference that has been encountered, so set pos to the position of this difference and con-
tinue the loop. If pos is not 0, however, then we know that this is the second time a difference was
found. In this case, we immediately Throw False, terminating the loop. Once the loop is complete, if
pos is still 0, then there was no difference, so again we Throw False. Otherwise, pos stores the
location of the sole difference, and we modify one of the bit strings and return it.
Here is the function
In[121]:= mergeBitstrings@bit1_, bit2_D := Module@8i, pos, result<,

Catch@
pos = 0;
For@i = 1, i § Length@bit1D, i++,
If@bit1@@iDD ¹≠ bit2@@iDD,
If@pos ã 0, pos = i, Throw@FalseDD

D
D;
If@pos ã 0, Throw@FalseDD;
result = bit1;
result@@posDD = "-";
Throw@resultD

D
D

We see that it works correctly on our two example bit strings.
In[122]:= mergeBitstrings@81, "-", 0, 1, 1<, 81, "-", 0, 0, 1<D

Out[122]= 81, -, 0, -, 1<

Searching for Combinations to Make
The mergeBitstrings function will do the work of checking to see if bit strings can be merged
and returning the result if they can. However, we need to give mergeBitstrings the bit strings to
test.
Recall that, in our example, we have successfully grouped the minterms by the number of 1s they
contain.
In[123]:= TableForm@groups, TableDepth Ø 1D

Out[123]//TableForm=
880, 0, 0, 0<<
881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<<
881, 1, 0, 0<, 81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<<
881, 0, 1, 1<, 80, 1, 1, 1<<
8<

Next we will produce a list containing all the bit strings formed by merging two members of groups.
Note there may be multiple ways to obtain the same bit string, so we will think of this collection as a
set. We initialize to the empty set.

26 Chapter12.nb

Next we will produce a list containing all the bit strings formed by merging two members of groups.
Note there may be multiple ways to obtain the same bit string, so we will think of this collection as a
set. We initialize to the empty set.
In[124]:= Fbits1 = 8<

Out[124]= 8<

Also recall that it is only possible to merge bit strings that are in successive locations in groups. In
other words, we only need to check bit strings when one has n 1s and one has n- 1 1s. This suggests a
loop with n ranging from 1 to one less than the size of groups. Within the body of the loop, we will
consider the lists with n- 1 1s (index n) and with n 1s (index n+ 1). (Remember that groups[[1]]
is the set of bit strings with 0 1s.)
The loop is structured as follows.

For@n = 1, n § Length@groupsD - 1, n++,
A = groups@@nDD;
B = groups@@n + 1DD;
H* search for bit strings from A and B to merge *L

D

After A and B have been defined, we need to compare every possible pair. We use a Do loop with
indices for the members of A and another for members of B. Within the Do loop, we use
mergeBitstrings and store the result. If it is not false, we add it to the new list of bit strings,
Fbits1.
In[125]:= For@n = 1, n § Length@groupsD - 1, n++,

A = groups@@nDD;
B = groups@@n + 1DD;
Do@m = mergeBitstrings@a, bD;
If@m =!= False, Fbits1 = Union@Fbits1, 8m<DD
, 8a, A<, 8b, B<

D
D

In[126]:= Fbits1

Out[126]= 880, 0, 0, -<, 80, 0, -, 1<, 80, 1, 0, -<, 80, 1, -, 1<, 80, -, 0, 0<,
80, -, 0, 1<, 80, -, 1, 1<, 81, 0, 1, -<, 81, 0, -, 0<,
81, -, 0, 0<, 8-, 0, 0, 0<, 8-, 0, 1, 1<, 8-, 1, 0, 0<<

This is close to the function we want, but we need to think ahead a bit. Recall from the description of
the Quine-McCluskey process in the text that, in order to proceed with the second half of the method,
we need to know which of the bit strings are prime implicants. That is, which bit strings are never used
in a simplification.
We will track which bit strings are used as follows. Before the first loop, we create a set consisting of
all of the bit strings in groups. We can do this by applying Flatten to groups, removing the
sublist structure. To obtain the elements of the sublists of groups rather than just all the 0s and 1s, we
need to use the option second argument of Flatten to specify that we wish to flatten only the first
level.

Chapter12.nb 27

In[127]:= Flatten@groups, 1D

Out[127]= 880, 0, 0, 0<, 81, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 0, 1<, 81, 1, 0, 0<,
81, 0, 1, 0<, 80, 1, 0, 1<, 80, 0, 1, 1<, 81, 0, 1, 1<, 80, 1, 1, 1<<

Then each time mergeBitstrings is successful, we remove the pair of bit strings from this set,
using the Complement set operator. For example, to remove 80, 0, 0, 0< and 81, 0, 0, 0<, we would
execute the following expression.
In[128]:= Complement@Flatten@groups, 1D, 880, 0, 0, 0<, 81, 0, 0, 0<<D

Out[128]= 880, 0, 0, 1<, 80, 0, 1, 1<, 80, 1, 0, 0<, 80, 1, 0, 1<,
80, 1, 1, 1<, 81, 0, 1, 0<, 81, 0, 1, 1<, 81, 1, 0, 0<<

The function will return the list consisting of the next level of bit strings and the prime implicants from
this stage. Here is our next attempt at the function.
In[129]:= nextBitList1@lastgroups_ListD :=

Module@8nextL = 8<, primeImps, n, A, B, a, b, m<,
primeImps = Flatten@lastgroups, 1D;
For@n = 1, n § Length@lastgroupsD - 1, n++,
A = lastgroups@@nDD;
B = lastgroups@@n + 1DD;
Do@m = mergeBitstrings@a, bD;
If@m =!= False,
nextL = Union@nextL, 8m<D;
primeImps = Complement@primeImps, 8a, b<D

D
, 8a, A<, 8b, B<

D
D;
8nextL, primeImps<

D

This still isn't sufficient, however, because we also need to update the coverage dictionary as we create
new bit strings. Recall that “coverage dictionary” is the name we gave to the table that records, for
each bit string, which of the original minterms are covered by that bit string. The coverage dictionary
was initialized with the bit strings formed from the minterms.
We can inspect the values stored with the Definition function.
In[130]:= Definition@coverageDictD

Out[130]= coverageDict@80, 0, 0, 0<D = 810<

coverageDict@80, 0, 0, 1<D = 89<

coverageDict@80, 0, 1, 1<D = 88<

coverageDict@80, 1, 0, 0<D = 87<

28 Chapter12.nb

Out[130]=

coverageDict@80, 1, 0, 1<D = 86<

coverageDict@80, 1, 1, 1<D = 85<

coverageDict@81, 0, 0, 0<D = 84<

coverageDict@81, 0, 1, 0<D = 83<

coverageDict@81, 0, 1, 1<D = 82<

coverageDict@81, 1, 0, 0<D = 81<

Within our function, we need to update the coverage dictionary. To do this, we will pass it as an argu-
ment to the function. The function will be able to update the indexed variable as if it were global with-
out it needing to be held. Consider the following, for example.
In[131]:= indexedExample@"a"D = 1;

indexedExample@"b"D = 2;

In[133]:= Definition@indexedExampleD

Out[133]= indexedExample@aD = 1

indexedExample@bD = 2

In[134]:= functionToChangeIndexed@
indexedVar_Symbol, i_, v_D := Module@8<,
indexedVar@iD = v;

D

The intent of this function is to add the index i with value v to the indexed variable passed as the first
argument. If the first argument were a list, for example, this function would not have the desired effect,
as the list would be passed to the function, modified within the Module, but remain unchanged out-
side the function. For an indexed symbol, however, when we call this function with first argument
indexedExample, the argument variable indexedVar is assigned to the symbol
indexedExample. It is like assigning indexedVar to the name of the indexed variable. Inside the
function, the variable indexedVar is resolved to the symbol indexedExample, making the assign-
ment within the function a “global” assignment.
In[135]:= functionToChangeIndexed@indexedExample, "c", 3D

Chapter12.nb 29

In[136]:= Definition@indexedExampleD

Out[136]= indexedExample@aD = 1

indexedExample@bD = 2

indexedExample@cD = 3

We update the dictionary within the m=!=False If statement. When we form a new bit string m, we
obtain the set of minterms it covers by taking the union of the sets of minterms covered by the two bit
strings that were merged. That is, coverDict[m] is the union of coverDict[a] and
coverDict[b]. Note that bit strings formed beyond the first step are typically generated multiple
times. However, each time they are generated they always cover the same set of original minterms.
Here is the final version of nextBitList.
In[137]:= nextBitList@lastgroups_List, coverDict_SymbolD :=

Module@8nextL = 8<, primeImps, n, A, B, a, b, m<,
primeImps = Flatten@lastgroups, 1D;
For@n = 1, n § Length@lastgroupsD - 1, n++,
A = lastgroups@@nDD;
B = lastgroups@@n + 1DD;
Do@m = mergeBitstrings@a, bD;
If@m =!= False,
nextL = Union@nextL, 8m<D;
primeImps = Complement@primeImps, 8a, b<D;
coverDict@mD = Union@coverDict@aD, coverDict@bDD;

D
, 8a, A<, 8b, B<

D
D;
8nextL, primeImps<

D

We apply it to groups to obtain Fbits1 and primes1.
In[138]:= 8Fbits1, primes1< = nextBitList@groups, coverageDictD

Out[138]= 8880, 0, 0, -<, 80, 0, -, 1<, 80, 1, 0, -<,
80, 1, -, 1<, 80, -, 0, 0<, 80, -, 0, 1<,
80, -, 1, 1<, 81, 0, 1, -<, 81, 0, -, 0<, 81, -, 0, 0<,
8-, 0, 0, 0<, 8-, 0, 1, 1<, 8-, 1, 0, 0<<, 8<<

We see that there are
In[139]:= Length@Fbits1D

Out[139]= 13

bit strings in the second level, but no prime implicants coming from the first pass.

30 Chapter12.nb

In[140]:= Length@primes1D

Out[140]= 0

Also, almost as a side effect, the function has updated coverageDict.
In[141]:= Definition@coverageDictD

Out[141]= coverageDict@80, 0, 0, 0<D = 810<

coverageDict@80, 0, 0, 1<D = 89<

coverageDict@80, 0, 0, -<D = 89, 10<

coverageDict@80, 0, 1, 1<D = 88<

coverageDict@80, 0, -, 1<D = 88, 9<

coverageDict@80, 1, 0, 0<D = 87<

coverageDict@80, 1, 0, 1<D = 86<

coverageDict@80, 1, 0, -<D = 86, 7<

coverageDict@80, 1, 1, 1<D = 85<

coverageDict@80, 1, -, 1<D = 85, 6<

coverageDict@80, -, 0, 0<D = 87, 10<

coverageDict@80, -, 0, 1<D = 86, 9<

coverageDict@80, -, 1, 1<D = 85, 8<

coverageDict@81, 0, 0, 0<D = 84<

coverageDict@81, 0, 1, 0<D = 83<

coverageDict@81, 0, 1, 1<D = 82<

coverageDict@81, 0, 1, -<D = 82, 3<

coverageDict@81, 0, -, 0<D = 83, 4<

Chapter12.nb 31

Out[141]=

coverageDict@81, 1, 0, 0<D = 81<

coverageDict@81, -, 0, 0<D = 81, 4<

coverageDict@8-, 0, 0, 0<D = 84, 10<

coverageDict@8-, 0, 1, 1<D = 82, 8<

coverageDict@8-, 1, 0, 0<D = 81, 7<

Repeating
Step 4 is to repeat steps 2 and 3.
The Fbits1 list takes the place of Fbits. We apply sortGroups to produce groups1.
In[142]:= groups1 = sortGroups@Fbits1D

Out[142]= 8880, 0, 0, -<, 80, -, 0, 0<, 8-, 0, 0, 0<<,
880, 0, -, 1<, 80, 1, 0, -<, 80, -, 0, 1<,
81, 0, -, 0<, 81, -, 0, 0<, 8-, 1, 0, 0<<,

880, 1, -, 1<, 80, -, 1, 1<, 81, 0, 1, -<, 8-, 0, 1, 1<<, 8<, 8<<

Then applying nextBitList to groups1 produces Fbits2 and primes2.
In[143]:= 8Fbits2, primes2< = nextBitList@groups1, coverageDictD

Out[143]= 8880, -, 0, -<, 80, -, -, 1<, 8-, -, 0, 0<<,
881, 0, 1, -<, 81, 0, -, 0<, 8-, 0, 1, 1<<<

We see that we have found three prime implicants. The coverage dictionary was further expanded to
include the new bit strings.
Do the same thing again with Fbits2.
In[144]:= groups2 = sortGroups@Fbits2D

Out[144]= 8880, -, 0, -<, 8-, -, 0, 0<<, 880, -, -, 1<<, 8<, 8<, 8<<

In[145]:= 8Fbits3, primes3< = nextBitList@groups2, coverageDictD

Out[145]= 88<, 880, -, 0, -<, 8-, -, 0, 0<, 80, -, -, 1<<<

This time, Fbits3 was empty, which indicates that no more merging is possible and all prime impli-
cants have been found.
This part of the process concludes by forming the list of all the prime implicants.
In[146]:= allprimeImps = Union@primes1, primes2, primes3D

Out[146]= 880, -, 0, -<, 80, -, -, 1<, 81, 0, 1, -<,
81, 0, -, 0<, 8-, 0, 1, 1<, 8-, -, 0, 0<<

Forming the Coverage Table
Now that we have identified all of the prime implicants, we will use the coverage dictionary to create
the coverage table.

32 Chapter12.nb

Take a look at the final state of the coverage dictionary.
In[147]:= Definition@coverageDictD

Out[147]= coverageDict@80, 0, 0, 0<D = 810<

coverageDict@80, 0, 0, 1<D = 89<

coverageDict@80, 0, 0, -<D = 89, 10<

coverageDict@80, 0, 1, 1<D = 88<

coverageDict@80, 0, -, 1<D = 88, 9<

coverageDict@80, 1, 0, 0<D = 87<

coverageDict@80, 1, 0, 1<D = 86<

coverageDict@80, 1, 0, -<D = 86, 7<

coverageDict@80, 1, 1, 1<D = 85<

coverageDict@80, 1, -, 1<D = 85, 6<

coverageDict@80, -, 0, 0<D = 87, 10<

coverageDict@80, -, 0, 1<D = 86, 9<

coverageDict@80, -, 0, -<D = 86, 7, 9, 10<

coverageDict@80, -, 1, 1<D = 85, 8<

coverageDict@80, -, -, 1<D = 85, 6, 8, 9<

coverageDict@81, 0, 0, 0<D = 84<

coverageDict@81, 0, 1, 0<D = 83<

coverageDict@81, 0, 1, 1<D = 82<

coverageDict@81, 0, 1, -<D = 82, 3<

coverageDict@81, 0, -, 0<D = 83, 4<

Chapter12.nb 33

Out[147]=

coverageDict@81, 1, 0, 0<D = 81<

coverageDict@81, -, 0, 0<D = 81, 4<

coverageDict@8-, 0, 0, 0<D = 84, 10<

coverageDict@8-, 0, 1, 1<D = 82, 8<

coverageDict@8-, 1, 0, 0<D = 81, 7<

coverageDict@8-, -, 0, 0<D = 81, 4, 7, 10<

Each bit string, and in particular each prime implicant, is an index in this table. The corresponding
entry is the set of integers which are the indices to the original minterms in Fbits. Thus, to determine
which of the original minterms are covered by each prime implicant, we just look it up in the table.
We will model the coverage table as a matrix. Each row corresponds to a prime implicant, so there will
be
In[148]:= Length@allprimeImpsD

Out[148]= 6

rows. And each column corresponds to a minterm, so there are
In[149]:= Length@FbitsD

Out[149]= 10

columns. The entries in the matrix will be 0s and 1s with 1 in position Hi, jL indicating that the prime
implicant at position i in allprimeImps covers the minterm at position j in Fbits.
We use ConstantArray with first argument 0 and second argument a list consisting of the number
of rows and columns to form a matrix of all 0s of the appropriate size.
In[150]:= ConstantArray@0, 86, 10<D êê MatrixForm

Out[150]//MatrixForm=
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

To enter 1s in the appropriate positions, we loop over the rows, considering each prime implicant in
turn. For each prime implicant, we look up its entry in the coverage dictionary to obtain the set of
minterms it covers. For each of those minterms, we place a 1 in the matrix.
The following function initializes the coverage table.

34 Chapter12.nb

In[151]:= initCoverageMatrix@minterms_List, primeImps_List,
coverDict_SymbolD := Module@8M, i, C, j<,
M = ConstantArray@0, 8Length@primeImpsD, Length@mintermsD<D;
For@i = 1, i § Length@primeImpsD, i++,
C = coverDict@primeImps@@iDDD;
Do@M@@i, jDD = 1, 8j, C<D

D;
M

D

Applied to our example, this produces the following coverage table.
In[152]:= coverageTable =

initCoverageMatrix@Fbits, allprimeImps, coverageDictD;
MatrixForm@coverageTableD

Out[153]//MatrixForm=
0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 1

Manipulating the Matrix
Once the coverage table is set up, we move to steps 6 and 7, determining which prime implicants to
include in the minimal expression. In step 6, we identify the essential prime implicants and in step 7
we identify which of the non-essential prime implicants we will include. We will see how to identify
the prime implicants to use in a moment.
To aid in performing both steps 6 and 7, we will be manipulating the coverage table. Once we have
decided to include a particular prime implicant in the minimal expression, we take three actions.
First, record the decision by adding the prime implicant to a new list, say minBits, the list of bit
strings to be included in the minimal expression.
Second, delete that prime implicant's row from the coverage table and delete the columns correspond-
ing to the minterms it covered. We know the prime implicant will be in the expression and thus the
minterms it covers are satisfied. Hence, there is no longer any need to keep track of that information.
Third, delete the prime implicant and the minterms it covers from the lists storing them
(allprimeImps and Fbits). This is to ensure that the indices of allprimeImps and Fbits
continue to match the row and column numbers of the matrix.
We will now write a function that implements these actions. Its input will be the index to the prime
implicant that has been chosen. It will also accept the names of the coverage matrix, the list of
minterms, and the list of prime implicants. All of these will be modified in the function (refer to the
subsection on “Modifying arguments” above). The function will return the bit string of the prime
implicant that was chosen.
Our function will be called updateCT, for “update coverage table.” The minBits list, the list of
chosen prime implicants, will be updated via the return value. This accomplishes the first task for this
function.

Chapter12.nb 35

Our function will be called updateCT, for “update coverage table.” The minBits list, the list of
chosen prime implicants, will be updated via the return value. This accomplishes the first task for this
function.
Second, we must delete the row corresponding to the chosen prime implicant and the columns corre-
sponding to the minterms covered by that implicant. Suppose, in our example, that we have decided to
include the fourth prime implicant in the final result. This is:
In[154]:= allprimeImps@@4DD

Out[154]= 81, 0, -, 0<

From coverageTable, we need to remove row 4 (since this corresponds to the prime implicant).
We also need to remove the columns corresponding to the minterms covered by this prime implicant.
To determine which columns are to be removed, we find the locations of the 1s in the row of the matrix.
To determine the locations of the 1s, we'll loop over the columns checking each position in row 4 to
see if it is 1 or not. We use the Dimensions function to determine the number of columns. For a
matrix, Dimensions returns a list whose elements are the number of rows and columns.
In[155]:= covered = 8<;

For@i = 1, i § Dimensions@coverageTableD@@2DD, i++,
If@coverageTable@@4, iDD ã 1, AppendTo@covered, iDD

D;
covered

Out[157]= 83, 4<

We now know that we need to remove row 4 and columns 3 and 4. To do this, we will use a compli-
cated selection. Recall that Part ([[…]]) can be used with a list within the double brackets to select
specific elements. For example,
In[158]:= 8"a", "b", "c", "d", "e", "f", "g"<@@81, 2, 4, 5, 6<DD

Out[158]= 8a, b, d, e, f<

The same is true for matrices. Given a matrix, a list of rows, and a list of columns, you can obtain the
submatrix containing only the specified rows and columns as illustrated below.
In[159]:= exampleMatrix = Table@a8i,j<, 8i, 7<, 8j, 6<D;

exampleMatrix êê MatrixForm
Out[160]//MatrixForm=

a81,1< a81,2< a81,3< a81,4< a81,5< a81,6<
a82,1< a82,2< a82,3< a82,4< a82,5< a82,6<
a83,1< a83,2< a83,3< a83,4< a83,5< a83,6<
a84,1< a84,2< a84,3< a84,4< a84,5< a84,6<
a85,1< a85,2< a85,3< a85,4< a85,5< a85,6<
a86,1< a86,2< a86,3< a86,4< a86,5< a86,6<
a87,1< a87,2< a87,3< a87,4< a87,5< a87,6<

36 Chapter12.nb

In[161]:= exampleMatrix@@81, 2, 4, 6, 7<, 81, 2, 3, 6<DD êê MatrixForm

Out[161]//MatrixForm=
a81,1< a81,2< a81,3< a81,6<
a82,1< a82,2< a82,3< a82,6<
a84,1< a84,2< a84,3< a84,6<
a86,1< a86,2< a86,3< a86,6<
a87,1< a87,2< a87,3< a87,6<

This is the matrix that results from deleting the 3rd and 5th rows, and the 4th and 5th columns.
So for the coverage table, we can obtain the modified matrix by forming the lists of row and column
numbers that should remain and then apply Part ([[…]]).
In[162]:= remainingRows = 81, 2, 3, 5, 6<

Out[162]= 81, 2, 3, 5, 6<

In[163]:= remainingColumns = Complement@Range@Length@FbitsDD, coveredD

Out[163]= 81, 2, 5, 6, 7, 8, 9, 10<

In[164]:= coverageTable@@remainingRows, remainingColumnsDD êê MatrixForm
Out[164]//MatrixForm=

0 0 0 1 1 0 1 1
0 0 1 1 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1

The reader is encouraged to compare this to the original matrix. Note that in this example, we have not
actually modified coverageTable.
The last tasks are to remove the selected prime implicant from the list of prime implicants, and remove
the covered minterms from its list. Note that remainingRows and remainingColumns are
indices into the allprimeImps list and the list of minterms. Applying Part ([[…]]) produces the
desired outcome.
In[165]:= allprimeImps@@remainingRowsDD

Out[165]= 880, -, 0, -<, 80, -, -, 1<, 81, 0, 1, -<, 8-, 0, 1, 1<, 8-, -, 0, 0<<

In[166]:= Fbits@@remainingColumnsDD

Out[166]= 881, 1, 0, 0<, 81, 0, 1, 1<, 80, 1, 1, 1<, 80, 1, 0, 1<,
80, 1, 0, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<

Here is the function.

Chapter12.nb 37

In[167]:= SetAttributes@updateCT, 8HoldRest<D;
updateCT@newPI_, coverTable_, minterms_, primeImps_D :=
Module@8newPIbitstring, numRows, numCols,

covered, i, remainingRows, remainingCols<,
newPIbitstring = primeImps@@newPIDD;
8numRows, numCols< = Dimensions@coverTableD;
covered = 8<;
For@i = 1, i § numCols, i++,
If@coverTable@@newPI, iDD ã 1, AppendTo@covered, iDD

D;
remainingRows = Delete@Range@numRowsD, newPID;
remainingCols = Complement@Range@numColsD, coveredD;
coverTable = coverTable@@remainingRows, remainingColsDD;
primeImps = primeImps@@remainingRowsDD;
minterms = minterms@@remainingColsDD;
newPIbitstring

D

Finding Essential Prime Implicants
Next we write a function to identify the essential prime implicants. Recall that a prime implicant is
essential when it is the only prime implicant to cover some minterm. In terms of the coverage table,
this is equivalent to the existence of a column with only one 1.
We will locate the essential prime implicants as follows. First, we initialize the set of essential prime
implicants to the empty list.
We proceed in a manner similar to the mergeBitstrings function. We use a For loop to step
through the columns of the coverage table. Within this loop, we initialize a symbol, rowhas1, to 0.
We then enter a second loop to step through the entries in the columns. When a 1 entry has been found,
we check rowhas1. If that symbol is 0, then it is assigned to the current row number. If it is not 0,
then we have found a second 1 in the column and we assign rowhas1 to -1 and use Break to termi-
nate the inner loop. After the inner loop, we test rowhas1. If it is positive, then we know that only
one 1 was located in that column, and hence the row the solitary 1 was found in corresponds to an
essential prime implicant. In this case, we add the row number (rowhas1) to essentials.
The following function implements this algorithm and returns the list of essential prime implicants.

38 Chapter12.nb

In[169]:= findEssentials@coverTable_ListD :=
Module@8essentials = 8<, r, c, i, j, rowhas1<,
8r, c< = Dimensions@coverTableD;
For@i = 1, i § c, i++,
rowhas1 = 0;
For@j = 1, j § r, j++,
If@coverTable@@j, iDD ã 1,
If@rowhas1 ã 0,
rowhas1 = j,
rowhas1 = -1; Break@D

D
D

D;
If@rowhas1 > 0,
AppendTo@essentials, rowhas1D

D
D;
Sort@Union@essentialsD, GreaterD

D

The Sort applied with the comparison function Greater ensures that the output will be in decreas-
ing order. This will allow us to update the coverage table and other lists without affecting the index of
smaller-indexed essential prime implicants.
We use this to determine the essential prime implicants of our example.
In[170]:= essentialPIs = findEssentials@coverageTableD

Out[170]= 86, 2<

Now that we have the essential prime implicants, we can initialize minBits and apply updateCT to
the essential prime implicants.
In[171]:= minBits = 8<

Out[171]= 8<

In[172]:= Do@AppendTo@minBits,
updateCT@i, coverageTable, Fbits, allprimeImpsDD

, 8i, essentialPIs<D

In[173]:= minBits

Out[173]= 88-, -, 0, 0<, 80, -, -, 1<<

Chapter12.nb 39

In[174]:= coverageTable êê MatrixForm

Out[174]//MatrixForm=
0 0
1 1
0 1
1 0

Completing the Coverage
Provided that the essential prime implicants did not completely cover the original minterms, we must
complete the coverage with non-essential prime implicants. First, we ensure that the coverage is not
complete by checking the column dimension.
In[175]:= Dimensions@coverageTableD@@2DD > 0

Out[175]= True

We will use a heuristic approach to find a minimal set of prime implicants rather than using an exhaus-
tive search to determine the minimum. The heuristic we use will be to choose the prime implicant with
the most extensive coverage of the remaining minterms.
To find such a prime implicant, we will do the following. First, initialize maxCoverage and
bestImp both to 0. Then loop over each row of the (modified) coverage table. For each row, we will
compute the sum of the entries. If this sum is greater than maxCoverage, then set maxCoverage to
the sum and set bestImp to the row number. Once the loop is complete, bestImp will be the index
to a row with maximum coverage and will be the next prime implicant added to the minBits list.
Here is the function that implements this strategy.
In[176]:= findBestImp@coverTable_D :=

Module@8maxCoverage = 0, bestImp = 0, i, j, sum<,
For@i = 1, i § Dimensions@coverTableD@@1DD, i++,
sum = Plus üü coverTable@@iDD;
If@sum > maxCoverage,
maxCoverage = sum;
bestImp = i

D
D;
bestImp

D

As long as the coverage table is not empty, we apply this function to it to obtain the next implicant. We
add the implicant to the list minBits representing the minimal expression and update the coverage
table using updateCT.
In[177]:= While@Dimensions@coverageTableD@@2DD > 0,

nextPI = findBestImp@coverageTableD;
AppendTo@minBits,
updateCT@nextPI, coverageTable, Fbits, allprimeImpsDD

D

40 Chapter12.nb

In[178]:= minBits

Out[178]= 88-, -, 0, 0<, 80, -, -, 1<, 81, 0, 1, -<<

All that's left is to translate minBits back into a logical expression. This can be done using
bitListToDNF created earlier.
In[179]:= bitListToDNF@minBits, 8w, x, y, z<D

Out[179]= H! y && ! zL »» H! w && zL »» Hw && ! x && yL

Putting It All Together
Finally, we assemble the pieces into a single function, which accepts a logical expression in disjunctive
normal form and a list of its variables. It returns a minimal equivalent expression.

Chapter12.nb 41

In[180]:= quineMcCluskey@F_, variables_D :=
Module@8fBits, fBitsL, coverageDict, groupsL,

primesL, newFbits, newprimes, i, allprimeImps, j,
coverageTable, essentialPIs, minBits, nextPI<,

fBits = dnfToBitList@F, variablesD;
initCoverDict@coverageDict, fBitsD;
i = 0;
fBitsL = 8fBits<;
groupsL = 8<;
primesL = 8<;
While@fBitsL@@-1DD =!= 8<,
AppendTo@groupsL, sortGroups@fBitsL@@-1DDDD;
8newFbits, newprimes< =
nextBitList@groupsL@@-1DD, coverageDictD;

AppendTo@fBitsL, newFbitsD;
AppendTo@primesL, newprimesD;

D;
allprimeImps = Union üü primesL;
coverageTable =
initCoverageMatrix@fBits, allprimeImps, coverageDictD;

essentialPIs = findEssentials@coverageTableD;
minBits = 8<;
Do@AppendTo@minBits,

updateCT@i, coverageTable, fBits, allprimeImpsDD
, 8i, essentialPIs<D;

While@MatrixQ@coverageTableD &&
Dimensions@coverageTableD@@2DD > 0,

nextPI = findBestImp@coverageTableD;
AppendTo@minBits,
updateCT@nextPI, coverageTable, fBits, allprimeImpsDD

D;
bitListToDNF@minBits, variablesD

D

Define ex10 to be the expression in Example 10 from Section 12.4 of the text.
In[181]:= ex10 = Hw && x && y && ! zL »» Hw && ! x && y && zL »»

Hw && ! x && y && ! zL »» H! w && x && y && zL »» H! w && x && ! y && zL »»

H! w && ! x && y && zL »» H! w && ! x && ! y && zL

Out[181]= Hw && x && y && ! zL »» Hw && ! x && y && zL »»

Hw && ! x && y && ! zL »» H! w && x && y && zL »» H! w && x && ! y && zL »»

H! w && ! x && y && zL »» H! w && ! x && ! y && zL

42 Chapter12.nb

In[182]:= quineMcCluskey@ex10, 8w, x, y, z<D

Out[182]= Hw && y && ! zL »» H! w && zL »» Hw && ! x && yL

Note that this is the first of the two answers given in the solution to Example 10.

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 2

Construct a table listing the set of values of all 256 Boolean functions of degree three.

Solution: The Boolean functions of degree three are in one-to-one correspondence with the subsets of
8true, false<3. This is because each subset S of 8true, false<3 can be identified with the unique Boolean
function of degree three that returns true on the members of S and false on all other inputs.

The set 8true, false<3 consists of 8 elements: Htrue, true, trueL, Htrue, true, falseL, Htrue, false, trueL,...,
Hfalse, false, falseL. The power set can therefore be identified with bit strings of length 8, with a 1
indicating inclusion of the corresponding member of 8true, false<3. For example, “10100000” would
correspond to the set 8Htrue, true, trueL, Htrue, false, trueL< which in turn corresponds to the Boolean
function that returns true on Htrue, true, trueL and Htrue, false, trueL and false for all other input. The bit
strings, in turn, can be identified with integers between 0 and 255, based on their binary representation.
Mathematica’s BooleanFunction function takes advantage of this correspondence between inte-
gers and Boolean functions. Given two integers k and n as arguments, BooleanFunction produces
the Boolean function, as a pure Function, on n variables corresponding to the binary representation
of k.
In[183]:= BooleanFunction@132, 3D

Out[183]= BooleanFunction@ < 3 >D

The resulting BooleanFunction can be applied to truth values.
In[184]:= BooleanFunction@132, 3D@True, False, TrueD

Out[184]= False

With a list of variables passed as a third argument, the output will be an expression for the Boolean
function.
In[185]:= BooleanFunction@132, 3, 8x, y, z<D

Out[185]= Hx && y && zL »» H! x && y && ! zL

Applying BooleanTable, described in the first section of this chapter, to the output of Boolean-
Function produces the functions’ truth table.
In[186]:= BooleanTable@BooleanFunction@132, 3DD

Out[186]= 8True, False, False, False, False, True, False, False<

We prefer a table that shows the input values along with the output. For this, we apply
BooleanTable to a list consisting of variables as the second argument. Then in the first argument,
we can use the variables.

Chapter12.nb 43

We prefer a table that shows the input values along with the output. For this, we apply
BooleanTable to a list consisting of variables as the second argument. Then in the first argument,
we can use the variables.
In[187]:= BooleanTable@

8x, y, z, BooleanFunction@132, 3D@x, y, zD<, 8x, y, z<D

Out[187]= 88True, True, True, True<, 8True, True, False, False<,
8True, False, True, False<, 8True, False, False, False<,
8False, True, True, False<, 8False, True, False, True<,
8False, False, True, False<, 8False, False, False, False<<

The third element of the output indicates that the function 132 returns false on Htrue, false, trueL.
We can now replace the specific application of BooleanFunction with a Table to allow the
integer to range. For demonstration purposes, we restrict the range to 100 to 105. We also apply Table-
Form with the TableDepth option set to 1 to make the output readable.
In[188]:= TableForm@BooleanTable@

8x, y, z, Table@BooleanFunction@k, 3D@x, y, zD, 8k, 100, 105<D<,
8x, y, z<D, TableDepth Ø 1D

Out[188]//TableForm=
8True, True, True, 8False, False, False, False, False, False<<
8True, True, False, 8True, True, True, True, True, True<<
8True, False, True, 8True, True, True, True, True, True<<
8True, False, False, 8False, False, False, False, False, False<<
8False, True, True, 8False, False, False, False, True, True<<
8False, True, False, 8True, True, True, True, False, False<<
8False, False, True, 8False, False, True, True, False, False<<
8False, False, False, 8False, True, False, True, False, True<<

The output above indicates that, on the input HTrue, False, TrueL, all 6 Boolean functions associated to
the integers 100 through 105 output true.

Computations and Explorations 6

Randomly generate 10 different Boolean expressions in four variables and determine the
average number of steps required to minimize them using the Quine-McCluskey method.

Solution: To solve this problem, we need to find a way to generate random Boolean expressions, and
then we must find a method of examining the minimization process so that we can count the number of
steps.
Using what we learned about BooleanFunction in the solution to Computer Projects 2 above, we
can produce random Boolean functions by applying BooleanFunction to random integers. For an
expression in four variables, there are 224 = 65 536 different Boolean functions. So we choose 10
different integers between 0 and 65535 using RandomSample. Recall that RandomSample accepts
a list of elements, which in this case will be obtained from Range, and a positive integer. It returns a
list of the specified number of elements randomly selected from the list of objects.

44 Chapter12.nb

Using what we learned about BooleanFunction in the solution to Computer Projects 2 above, we
can produce random Boolean functions by applying BooleanFunction to random integers. For an
expression in four variables, there are 224 = 65 536 different Boolean functions. So we choose 10
different integers between 0 and 65535 using RandomSample. Recall that RandomSample accepts
a list of elements, which in this case will be obtained from Range, and a positive integer. It returns a
list of the specified number of elements randomly selected from the list of objects.
In[189]:= RandomSample@Range@0, 65 535D, 10D

Out[189]= 86993, 6632, 36 964, 58 324,
61 650, 17 988, 9289, 28 671, 21 165, 4861<

Applying BooleanFunction to each of the values output by RandomSample will produce a list
of 10 randomly chosen Boolean expressions.
In[190]:= Table@BooleanFunction@k, 4, 8x, y, z, w<D,

8k, RandomSample@Range@0, 65 535D, 10D<D êê TableForm

Out[190]//TableForm=
Hw && ! x && ! y && ! zL »» H! w && y && ! zL »» H! w && ! y && zL »» Hx && y &&
Hw && yL »» H! w && ! yL »» Hx && ! yL »» Hy && zL
Hw && yL »» Hw && zL »» H! w && ! x && ! zL »» Hx && ! y && zL
Hx && ! yL »» Hx && ! zL »» H! y && ! zL
Hw && x && ! y && zL »» Hw && ! x && ! zL »» H! w && ! y && ! zL »» H! x && ! y &&
Hw && yL »» H! x && ! yL »» ! z
Hw && ! zL »» x »» y
Hw && ! x && zL »» H! w && x && yL »» H! w && ! y && ! zL »» Hx && y && ! zL
Hw && ! x && y && zL »» H! w && ! x && ! yL »» H! w && ! x && ! zL »» Hx && ! y &&
Hw && ! xL »» H! w && xL »» Hx && ! yL »» H! y && zL

Having determined how to generate random expressions, we need to find a way to count the number of
steps taken during the minimization process. There are several approaches we could take to this part of
the problem.
The first is to measure the time taken to execute the procedure. We have done this many times before.
In[191]:= QMtimes = 8<;

randExprs = Table@BooleanFunction@k, 4, 8x, y, z, w<D,
8k, RandomSample@Range@0, 65 535D, 10D<D;

For@i = 1, i § 10, i++,
AppendTo@QMtimes,
Timing@quineMcCluskey@randExprs@@iDD, 8x, y, z, w<DD@@1DDD

D;
Mean@QMtimesD

Out[194]= 0.000904

The second approach is to modify the implementation of Quine-McCluskey to count the number of
times certain operations are called. For example, we may be interested in the number of times that the
updateCT procedure is executed. In this case, we can alter quineMcCluskey to include a variable
that is incremented at the start of every execution of updateCT.

Chapter12.nb 45

In[195]:= quineMcCluskeycountCT@F_, variables_D :=
Module@8fBits, fBitsL, coverageDict, groupsL,

primesL, newFbits, newprimes, i, allprimeImps, j,
coverageTable, essentialPIs, minBits, nextPI, count = 0<,

fBits = dnfToBitList@F, variablesD;
initCoverDict@coverageDict, fBitsD;
i = 0;
fBitsL = 8fBits<;
groupsL = 8<;
primesL = 8<;
While@fBitsL@@-1DD =!= 8<,
AppendTo@groupsL, sortGroups@fBitsL@@-1DDDD;
8newFbits, newprimes< =
nextBitList@groupsL@@-1DD, coverageDictD;

AppendTo@fBitsL, newFbitsD;
AppendTo@primesL, newprimesD;

D;
allprimeImps = Union üü primesL;
coverageTable =
initCoverageMatrix@fBits, allprimeImps, coverageDictD;

essentialPIs = findEssentials@coverageTableD;
minBits = 8<;
Do@AppendTo@minBits,

updateCT@i, coverageTable, fBits, allprimeImpsDD;
count++
, 8i, essentialPIs<D;

While@MatrixQ@coverageTableD &&
Dimensions@coverageTableD@@2DD > 0,

nextPI = findBestImp@coverageTableD;
AppendTo@minBits,
updateCT@nextPI, coverageTable, fBits, allprimeImpsDD

D;
bitListToDNF@minBits, variablesD;
count

D

Now execute quineMcCluskeycountCT on 10 random expressions.

46 Chapter12.nb

In[196]:= QMtotal = 0;
randExprs = Table@BooleanFunction@k, 4, 8x, y, z, w<D,

8k, RandomSample@Range@0, 65 535D, 10D<D;
For@i = 1, i § 10, i++,

QMtotal = QMtotal +
quineMcCluskeycountCT@randExprs@@iDD, 8x, y, z, w<D;

D;
N@QMtotalê10D

Out[199]= 4.9

Exercises
1. Use Mathematica to verify De Morgan's Laws and the commutative and associative laws.

(See Table 5 of Section 12.1.)
2. Construct truth tables for each of the following pairs of Boolean expressions and decide

whether they are logically equivalent.
a. a Ø b and b Ø a
b. a Ø b and b Ø a
c. a+ b c and Ha+ b+ dL Ha+ c+ dL

3. Write a Mathematica function that, given a Boolean function, represents this function using
only the Nand operator.

4. Use the function in the previous exercise to represent the following Boolean functions using
only the Nand operator.
a. FHx, y, zL = x y+ y z
b. GHx, y, zL = x+ x y+ y z
c. HHx, y, zL = x y z+ x y z

5. Write a Mathematica function that, given a Boolean function, represents this function using
only the Nor operator.

6. Use the function in the previous exercise to represent the Boolean functions in Exercise 4
using only the Nor operator.

7. Write a Mathematica function for determining the output of a threshold gate, given the values
of n Boolean variables as input, and given the threshold value and a set of weights for the
threshold gate. (See the Supplementary Exercises of Chapter 12 for information on threshold
gates.)

8. Develop a Mathematica function that, given a Boolean function in four variables, determines
whether it is a threshold function, and if so, finds the appropriate threshold gate representing
this function. (See the Supplementary Exercises of Chapter 12.)

9. A Boolean expression e is called self dual if it is logically equivalent to its dual ed. Write a
Mathematica function to test whether a given expression is self dual.

Chapter12.nb 47

10. Determine, for each integer n œ 81, 2, 3, 4, 5, 6<, the total number of Boolean functions of n
variables and the number of those functions that are self dual.

11. Write a Mathematica function that, given a positive integer n, constructs a list of all Boolean
functions of degree n. Use your function to find all Boolean functions of degree 4. Do not use
BooleanFunction.

12. At the end of Section 12.3 of this manual, it was suggested that the procedure for producing
tree representations of logical circuits could be improved by combining successive and or or
gates into gates accepting multiple inputs. Implement this.

13. Use BooleanFunction to compute a minimal sum of products expansion for the Boolean
functions with don't care conditions specified by the Karnaugh maps shown in Exercises 30
through 32 of Section 12.4.

14. Use the function you wrote in Exercise 9 to write a Mathematica function to generate random
Boolean expressions in 4 variables and stop when it is has found one that is self dual. Run the
program several times and time it. Find the average number of random expressions needed
before stopping. Repeat for Boolean expressions in 5 and 6 variables. Can you make any
conjectures from this information?

15. Modify quineMcCluskey to allow for don't care conditions.
16. Modify quineMcCluskey to use backtracking instead of the heuristic approach in order to

determine the expression with the minimum number of terms. Use a large number of
randomly generated expressions to compare the old function with the new and determine how
often the heuristic produces non-optimal output.

48 Chapter12.nb

