ERRATA

for

Modern Flight Dynamics, 1st Ed.

by

David K. Schmidt

ERRATA

5/24/18

1. Corrected Eqn. (1.44) on Page 18.

$$C = ml\dot{\theta}^2 + mg\cos\theta \tag{1.44}$$

- 2. Corrected equation on Page 43. Term in last equation on page should be f_{A_X} instead of $f_{A_{X_0}}$.
- 3. Additional text under Eqn. (4.14) on Page 132, the sentence should read

"If d_E is sufficiently small that only linear effects are considered, or if the elastic deformation and deformation rate are co-linear as is the case for beam- and plate-like structures, the third integral above may be neglected."

- 4. Corrected equations (4.63), Page 141. Each term on LHS of equations must be multiplied by mass *m*.
- 5. Corrected second equation in Eqns. (4.72) on Page 144.

$$\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{\theta}} \right) - \frac{\partial \mathbf{T}}{\partial \theta} = C_2 \cos \phi - C_3 \sin \phi$$

6. Corrected second equation in Eqns. (4.74) on Page 145.

$$\frac{d}{dt} \left(\frac{\partial \mathbf{T}}{\partial \dot{\theta}} \right) - \frac{\partial \mathbf{T}}{\partial \theta} + \frac{\partial \mathbf{U}}{\partial \theta} = C_2 \cos \phi - C_3 \sin \phi = Q_{\theta}$$

7. Corrected second equation in Eqns. (4.79) on Page 145.

$$C_2 \cos \phi - C_3 \sin \phi = M \cos \phi - N \sin \phi$$

8. Corrected Eqn. (5.92), Page 215.

$$\alpha_{H} = \left(1 - \frac{d\varepsilon}{d\alpha_{W}}\right) \alpha_{W} + \Delta i_{H} + \frac{d\varepsilon}{d\alpha_{W}} \alpha_{0_{W}}$$
 (5.92)

9. Corrected first equation in Eqns. (7.94, cont'd) on page 366.

$$Q_{i_{p}} = C_{Q_{i_{p}}} q_{\infty} S_{W} \overline{c}_{W} = -\frac{q_{\infty}}{V_{\infty}} \int_{-b_{W}/2}^{b_{W}/2} c_{l_{\alpha_{W}}}(y) v_{Z_{i_{W}}}(y) c_{W}(y) y \, dy$$

$$-\frac{q_{H}}{V_{\infty}} \int_{-b_{H}/2}^{b_{H}/2} c_{l_{\alpha_{H}}}(y) \left(v_{Z_{i_{H}}}(y) - \frac{d\varepsilon_{H}}{d\alpha_{W}} v_{Z_{i_{W}}}(y) \right) c_{H}(y) y \, dy$$

$$-\frac{q_{H}}{V_{\infty}} \int_{0}^{b_{V}} c_{l_{\alpha_{V}}}(z) z_{AC}(z) v_{Y_{i_{V}}}(z) c_{V}(z) \, dz$$

10. Corrected last equation in Eqns. (7.94, cont'd) on page 366.

$$Q_{i_{\delta_{A}}} = C_{Q_{i_{\delta_{A}}}} q_{\infty} S_{W} \overline{c}_{W} = q_{\infty} \left(- \int_{-b_{O}/2}^{-b_{I}/2} c_{l_{\alpha_{W}}}(y) \alpha_{\delta_{A}}(y) v_{Z_{i_{W}}}(y) c_{W}(y) dy + \int_{b_{I}/2}^{b_{O}/2} c_{l_{\alpha_{W}}}(y) \alpha_{\delta_{A}}(y) v_{Z_{i_{W}}}(y) dy \right)$$

11. Corrected Eqn. (8.53), Page 417.

$$q_{local}(x,t) = q(t) - \sum_{i=1}^{n} v'_{Z_i}(x)\dot{\eta}_i(t)$$
(8.53)

12. Corrected A matrix, and associated matrices, in Example 8.5, Pages 433-434. First, the (1,1) elements of A and of term1, given at the bottom of Page 433, should be negative, or A(1,1) = -4.5100e-02 and term1(1,1) = -2.2550e-03. Second, the M matrix given at the top of Page 434 should be as given below. Note that only the (1,1) element has changed here.

M =

Third, the matrix term5 near the middle of Page 434 should be as given below. Here all the elements of the matrix except the last column have been modified.

term5 =

```
5.8690e-07 5.6646e-04 2.9163e-06 -2.7607e-04 0
1.1560e-07 1.0625e-04 5.9920e-07 -5.5582e-05 0
7.7737e-08 -4.0041e-06 7.0094e-07 -5.4623e-05 0
-1.0981e-07 3.8867e-04 -2.5031e-06 1.6470e-04 0
-5.5610e-07 4.6271e-03 -2.3068e-05 1.4420e-03 0
```

Finally, the final result for the M matrix, given at the middle of Page 434 should be

```
»M=M+(1/120)*term5
```

```
M =
```

```
9.9773e-01 3.0505e-01 -1.6082e+00 -3.0905e-02 0
-9.7061e-05 8.9601e-01 8.0247e-05 4.3893e-02 0
2.7754e-06 -7.9812e-03 1.0000e+00 4.6214e-02 0
1.1369e-04 -3.0538e-01 -8.9367e-05 8.4988e-01 0
4.4666e-04 -8.3698e+00 8.7998e+00 6.9591e-03 1.0000e+00
```

Also note that due to the above errors, the surge velocity u and the altitude h time histories in Figs. 8.3(a) and 8.5(b) are slightly in error. The time histories should agree closely with those shown in Fig. 8.15.

13. Corrected commands for defining the control-input time history in Example 8.5, at the top of Page 435. These commands should be

```
»t=0;.05;10;
»u(1:40)=-1/57.3;
»u(41:80)=1/57.3;
»u(81:201)=0;
»k=200;
```

The control-input time history shown in Fig. 8.3(*b*) is correct.

14. Corrected the **A** and **M** matrices in Example 8.6, Pages 437-439. The (1,1) element of **A**, shown in both the command line and the result below it on Page 437, should be negative, or A(1,1) = -0.0451. Likewise for the **A** matrix shown on Page 438. As a result, the **M** matrix given at the top of Page 439 should be

a =

	x1	x2 x3	x4	x5	
х1	0.99773	0.30505	-1.6082	-0.030905	0
x2	-9.7061e-05	0.89601	8.0247e-05	0.043893	0
хЗ	2.7754e-06	-0.0079812	1	0.046214	0
х4	0.00011369	-0.30538	-8.9367e-05	0.84988	0
х5	0.00044666	-8.3698	8.7998	0.0069591	1

15. Corrected A matrix in Example 8.7, Page 440. The (1,1) element of A should be negative, or A(1,1) = -0.0451. Also note that due to this sign error, the surge velocity u and the altitude h time histories in Fig. 8.6 are slightly in error. The time histories should agree closely with those shown in Fig. 8.15.

16. Corrected first of Eqns. (8.135), Page 454.

$$Q_{local}(x,t) = Q(t) - \sum_{i=1}^{n} v'_{Z_i}(x)\dot{\eta}_i(t)$$
(8.135)

- 17. Corrected problem statement on Page 465, Example 8.10. Problem should read "... simulate the longitudinal dynamics of the Navion for 10 seconds..."
- 18. Corrected line of code on Page 468, Example 8.10. Last line of code on the page, above Figure 8.20, should be

 $([x,u,t] \rightarrow navNLsim(x0,0,10);$

19. Corrected Eqns. (9.12), Page 484. Equations are for the case of climbing turns, for which $\gamma_0 \neq 0$. Therefore,

$$\begin{split} -m\big(V_{0}R_{0}\big) + mg\sin\gamma_{0} &= F_{A_{x_{0}}} + F_{P_{x_{0}}} \\ m\big(R_{0}U_{0}\big) - mg\cos\gamma_{0}\sin\Phi_{0} &= F_{A_{y_{0}}} + F_{P_{y_{0}}} \\ m\big(P_{0}V_{0} - Q_{0}U_{0}\big) - mg\cos\gamma_{0}\cos\Phi_{0} &= F_{A_{y_{0}}} + F_{P_{y_{0}}} \\ m\big(P_{0}V_{0} - Q_{0}U_{0}\big) - mg\cos\gamma_{0}\cos\Phi_{0} &= F_{A_{z_{0}}} + F_{P_{z_{0}}} \\ \dot{\Phi}_{0} &= P_{0} + \tan\gamma_{0}\big(Q_{0}\sin\Phi_{0} + R_{0}\cos\Phi_{0}\big) \\ \dot{\Phi}_{0} &= Q_{0}\cos\Phi_{0} - R_{0}\sin\Phi_{0} &= 0 \\ \dot{\Psi}_{0} &= \big(Q_{0}\sin\Phi_{0} + R_{0}\cos\Phi_{0}\big) \sec\Phi_{0} &= \text{constant} \\ R_{0} &= \dot{\Psi}_{0}\cos\gamma_{0}\cos\Phi_{0} \end{aligned}$$

20. Corrected Eqns. (9.71) on Page 524, to be consistent with corrected Eqns. (9.12).

$$(0 \text{ if } \beta_{0} = 0) = -m(V_{0}R_{0}) = -mg\sin\gamma_{0} + F_{A_{x_{0}}} + F_{P_{x_{0}}}$$

$$(-mQ_{0}U_{0} \text{ if } \beta_{0} = 0)) = m(P_{0}V_{0} - Q_{0}U_{0})$$

$$= mg\cos\gamma_{0}\cos\varphi_{0} + F_{A_{z_{0}}} + F_{P_{z_{0}}}$$

$$(I_{xx} - I_{zz})P_{0}R_{0} + I_{xz}(P_{0}^{2} + R_{0}^{2}) = M_{A_{0}} + M_{P_{0}}$$

$$I_{xz}Q_{0}R_{0} + (I_{yy} - I_{xx})P_{0}Q_{0} = N_{A_{0}} + N_{P_{0}}$$

$$(9.71)$$

21. Corrected Eqns. (9.72) on Page 524, to be consistent with corrected Eqns. (9.12).

$$P_{0} = -\dot{\Psi}_{0} \sin \gamma_{0}$$

$$Q_{0} = \dot{\Psi}_{0} \cos \gamma_{0} \sin \Phi_{0}$$

$$R_{0} = \dot{\Psi}_{0} \cos \gamma_{0} \cos \Phi_{0}$$

22. Corrected equation in Eqns. (10.77), Page 574.

$$\frac{a_Z(s)}{\bullet(s)} = U_0 s \frac{\alpha(s)}{\bullet(s)} - \left(xs^2 + U_0 s\right) \frac{\theta(s)}{\bullet(s)}$$
(10.77)

23. Corrected Eqn. (11.33), Page 653.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B} \begin{cases} -\delta_{E} \\ \delta T \end{cases}, \quad -\delta_{E} = \delta_{Stick} - K_{q}q$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B} \begin{bmatrix} \delta_{Stick} - K_{q}q \\ \delta T \end{bmatrix} = \left(\mathbf{A} - \mathbf{b}_{-\delta_{E}} K_{q} \mathbf{c}_{q}\right) \mathbf{x} + \mathbf{B} \begin{cases} \delta_{Stick} \\ \delta T \end{bmatrix}$$

$$\triangleq \mathbf{A}_{aug} \mathbf{x} + \mathbf{B} \begin{cases} \delta_{Stick} \\ \delta T \end{cases}$$
(11.33)

24. Corrected Eqn. (11.40), Page 658.

$$1 - K_{\alpha} \frac{N_{\delta_{E} \delta T}^{\alpha u}(s)}{N_{\delta T}^{u}(s)} = 1 + K_{\alpha} \frac{0.383s(s + 101.7)}{2.73s(s^{2} + 1.214s + 3.707)} = 0$$
 (11.40)

25. Corrected Eqn. (11.46), Page 661.

$$\delta_{E}(s) = -\delta_{Stick} - K_{a_{Z}} a_{Z cg} \approx \left(-\delta_{Stick}\right) - K_{a_{Z}} \left(Z_{\alpha} \alpha(s) + Z_{\delta_{E}} \delta_{E}(s)\right)$$
(11.46)

- 26. Corrected data for Problem 11.5, Page 684. The washout time constant should be $T_W = 1$ sec.
- 27. Second-to-last line on Page 711 should read "... in Example 11.3, ...", instead of "... Example 11.3.1...".
- 28. Corrected third MABLAB equation on Page 715.

bcl=ba*3.16 Final asterisk in equation shown in book should be deleted.

29. Corrected code on Page 764 (Section 12.6.1 Longitudinal Path Guidance, *Glide Slope Coupler w. Auto-Throttle*). First two lines of code should be interchanged to read

ckg(5,:)=[0 -1 1 0 0 0];dkg=[dkg;0]; Add γ to responses of system w. AT sysacAT=ss(aclat,bcl,ckg,dkg); System w. attitude control and auto-throttle, θ_c input

• • •

30. Correct Eqns. (12.81) and prior text, on Page 772.

"... mode's excitation may be represented as (see Eqn, (8.53) and Fig. 8.2)"

$$z_{E}(t) = v_{Z}(x, y, z)\eta_{i}(t)$$

$$\theta_{E}(t) = -v_{Z}'(x, y, z)\eta_{i}(t)$$
(12.81)

31. In Example 12.7, on Page 785, the first sentence in parentheses in the third paragraph should read "(There are <u>eight</u> large loops because four correspond to positive frequencies and four correspond to negative frequencies. ...)". Also, later in the same paragraph another phrase in parentheses should read "(moving the open-loop short-period poles in Figure 12.86 farther to the left).