Assignment 1: Expressions and Functions (0.1) Name_____ Please provide a handwritten response.

1a. The TI calculators denote addition by +, subtraction by -, multiplication by *, and division by ÷. For example, $\frac{3.017(56+45.26)}{^{-97.3}}$ would be represented on the TI calculators by $3.017*(56+45.26)\div(^{-97.3})$. Execute this command and record the result below.

1b. Exponents are denoted on the TI calculators using the ^ symbol located on your keyboard for all powers higher than 3. You may indicate squares and cubes of numbers using either the built-in features of the calculator or by using the ^. Enter the following problems on your calculator, execute them by pushing **ENTER**, and record the results below

Problem	TI-83 Plus/TI-84 Plus	TI-86
4^2	^ is on the keyboard	^ is on the keyboard
4 ²	Use the x^2 key on the keyboard to enter	Use the x^2 key on the keyboard to enter
	the exponent.	the exponent.
5^3	^ is on the keyboard	^ is on the keyboard
5 ³	Use the 3 found in MATH 3	You must enter 5^3 as above
27 ^ (1/3)	You must use the parentheses	You must use the parentheses
∛27	Use the $\sqrt[3]{}$ found in MATH 4	∜ is found in MATH (2ND X) MISC
		MORE F4. Enter as $3\sqrt[3]{7}$ 27
$\sqrt{25}$	Use the $$ found above the x^2 key	Use the $$ found above the x^2 key
$\sqrt{26}$	Note the TI-83 Plus/TI-84 Plus returns 9	Note the TI-86 returns 11 decimal places
v = 0	decimal places when set on Float (find	when set on Float (found by pressing
	by pressing MODE). You can specify	MODE (2ND MORE). You can
	the number of decimal places by	specify the number of decimal places by
	arrowing to the desired number and	arrowing to the desired number and
	pressing ENTER.	pressing ENTER.

2a. These same operations can be applied to a variable, x, to create algebraic expressions for the TI-calculators. You enter these in the graphical menu as follows:

Problem	TI-83 Plus/TI-84 Plus	TI-86
$x^{2} + 7x - 11$	Use the Y= key to find Y_1 =. Enter	Find $y1 =$ from GRAPH F1
$Y_1 = \frac{1}{x^2 - 4}$	the expression using parentheses	Enter the expression using
	around both the numerator and the	parentheses around both the
	denominator	numerator and the denominator

Assignment 1: Expressions and Functions

1

2b. There are several ways a function like this one can be evaluated at a specific point using the TI calculators. Evaluate $f(x) = \frac{x^2 + 7x - 11}{x^2 - 4}$ as indicated in the following chart (you must have entered y1 = f(x) before you start. Record your results below.

Problem	TI-83 Plus/TI-84 Plus	TI-86
f(2.3)	From VARS Y-VARS 1 (function)	Type 2nd ALPHA 0 (the 'y' is
	get \mathbf{Y}_1 and add $\mathbf{Y}_1(2.3)$. Execute by	above the 0) to get the y . Then add
	pressing ENTER	y1(2.3) and press enter.
Evaluate at	From the CALC menu (2ND TRACE)	$2ND \div$ gives you the CALC menu.
x = 2.3	choose option 1 (value) and press	Choose F1 $evalF(y1, x, 2.3)$.
	ENTER . When the X = appears type in	Press FNTFR to evaluate
	2.3 and press ENTER	TIESS EITTER to evaluate.

3a. Now evaluate f(-2.3) in two ways and f(2) in two ways and record your results below. Why do you obtain an error message when you attempt to evaluate f(2)?

3b. For $f(x) = \sqrt{x+1}$ evaluate f(0), f(3), f(-1), $f\left(\frac{1}{2}\right)$ and record your results below.