Assignment 11: Curve Sketching (3.6) Please provide a handwritten response.

Name

1a. The TI calculators can be used to apply curve-sketching techniques to complicated functions such as $f(x)=\left(5-2 x^{3}\right) \boldsymbol{\operatorname { s i n }} x+5^{-x^{2}}$. Graph this function over the interval $-5 \leq x \leq 5$ and sketch the results below. You will be restricted to this interval although this function displays interesting behavior throughout the $\boldsymbol{x} \boldsymbol{y}$-plane.

$$
-5 \leq x \leq 5,-30 \leq y \leq 240
$$

1b. Based on this graph, tell how many local maxima, local minima and inflection points f appears to have over $-\mathbf{5} \leq \boldsymbol{x} \leq 5$.

2a. It is not possible to solve the equation $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{0}$ for \boldsymbol{x} algebraically. However, you can use a graph of \boldsymbol{f}^{\prime} together with numerical equation solving to find the zeros of \boldsymbol{f}^{\prime}. Sketch the graph of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ below.

$-4.5 \leq x \leq 4.5,-80 \leq y \leq 80$
2b. According to this graph, how many zeros does f^{\prime} have? Is this consistent with the number of local extrema you found in question 1b? Select \boldsymbol{f} and deselect \boldsymbol{f} '. Locate the local extrema.

	TI-83 Plus/TI-84 Plus	TI-86
FINDING EXTREMA ON	2ND TRACE (CALC)	GRAPH MORE F1 (MATH) YOUR CALCULATOR
	3 minimum	F4 fMIN
	4 maximum	F5 fMAX

For each local maximum or minimum you must specify a left bound, a right bound and a guess from the graph by tracing. Record these values below. Record the approximate values of the zeros of \boldsymbol{f}^{\prime}.

2c. Now use the SOLVER to find the exact value of the zero of \boldsymbol{f}^{\prime} near $\boldsymbol{x}=\mathbf{- 2 . 1}$ and record the result below. Repeat using each of your approximate values in part \mathbf{b} as starting values for the SOLVER.

2d. Using these results, record below the complete set of intervals on which \boldsymbol{f} is increasing and decreasing. (Remember that you are only considering $-5 \leq x \leq 5$.)

3a. You can study the concavity of the graph of \boldsymbol{f} in the same way. Graph $f^{\prime \prime}$ on the axes below where $\boldsymbol{y 1}=\boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y 2}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$. Also graph $\boldsymbol{y} \mathbf{3}=\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ as described below.

	TI-83 Plus/TI-84 Plus	TI-86
GRAPHING THE SECOND DERIVATIVE	MATH 8) nDeriv $\left(Y_{2}, X, X\right)$	2ND $\div($ CALC $)$ F4 der2 $(y 1, x, x)$

$$
-5 \leq x \leq 5,-300 \leq y \leq 150
$$

3b. Is it clear from this graph how many zeros $\boldsymbol{f}^{\prime \prime}$ has? Now graph the second derivative on $-\mathbf{2} \leq \boldsymbol{x} \leq \mathbf{1}$ to get a closer look at the graph of $\boldsymbol{f}^{\prime \prime}$ near the origin. Sketch the results below.

3c. Altogether, how many zeros does f ' seem to have over $-5 \leq x \leq 5$? Tell roughly where they are.

3d. Use the SOLVER to find the exact value of the zero of $\boldsymbol{f}^{\prime \prime}$ near $\boldsymbol{x}=\mathbf{- 4 . 2}$. Repeat for the other values you listed in part \mathbf{c} and record the results below.

3e. Using these results, record below the complete set of intervals on which the graph of f is concave up or concave down over $-\mathbf{5} \leq \boldsymbol{x} \leq 5$.

