Assignment 11: Curve Sketching (3.6)
Please provide a handwritten response.

Name____

1a. The TI calculators can be used to apply curve-sketching techniques to complicated functions such as $f(x) = (5 - 2x^3) \sin x + 5^{-x^2}$. Graph this function over the interval $-5 \le x \le 5$ and sketch the results below. You will be restricted to this interval although this function displays interesting behavior throughout the xy-plane.

$$-5 \le x \le 5, -30 \le y \le 240$$

1b. Based on this graph, tell how many local maxima, local minima and inflection points f appears to have over $-5 \le x \le 5$.

2a. It is not possible to solve the equation f'(x) = 0 for x algebraically. However, you can use a graph of f' together with numerical equation solving to find the zeros of f'. Sketch the graph of f'(x) below.

$$-4.5 \le x \le 4.5, -80 \le y \le 80$$

2b. According to this graph, how many zeros does f' have? Is this consistent with the number of local extrema you found in question **1b?** Select f and deselect f'. Locate the local extrema.

	TI-83 Plus/TI-84 Plus	TI-86
FINDING EXTREMA ON	2ND TRACE (CALC)	GRAPH MORE F1 (MATH)
YOUR CALCULATOR	3 minimum	F4 fMIN
	4 maximum	F5 fMAX

For each local maximum or minimum you must specify a left bound, a right bound and a guess from the graph by tracing. Record these values below. Record the approximate values of the zeros of f'.

- 2c. Now use the **SOLVER** to find the exact value of the zero of f' near x = -2.1 and record the result below. Repeat using each of your approximate values in part **b** as starting values for the **SOLVER**.
- **2d.** Using these results, record below the complete set of intervals on which f is increasing and decreasing. (Remember that you are only considering $-5 \le x \le 5$.)
- **3a.** You can study the concavity of the graph of f in the same way. Graph f'' on the axes below where y1 = f(x), y2 = f'(x). Also graph y3 = f''(x) as described below.

	TI-83 Plus/TI-84 Plus	TI-86
GRAPHING THE SECOND	MATH 8)	2ND ÷ (CALC) F4
DERIVATIVE	$nDeriv(Y_2, X, X)$	der2(y1,x,x)
	_	

$$-5 \le x \le 5, -300 \le y \le 150$$

3b. Is it clear from this graph how many zeros f'' has? Now graph the second derivative on $-2 \le x \le 1$ to get a closer look at the graph of f'' near the origin. Sketch the results below.

- **3c.** Altogether, how many zeros does f'' seem to have over $-5 \le x \le 5$? Tell roughly where they are.
- **3d.** Use the **SOLVER** to find the exact value of the zero of f'' near x = -4.2. Repeat for the other values you listed in part **c** and record the results below.
- 3e. Using these results, record below the complete set of intervals on which the graph of f is concave up or concave down over $-5 \le x \le 5$.