Assignment 14: Solids of Revolution (5.1-4) Please provide a handwritten response.

1. When finding the volume of revolution of a graph like that of $f(x)=\sin x$ over $[0, \pi]$ you can use your calculator to sketch a graph of the area being revolved about the x-axis. Graph this function on the axes provided below.

2. Next sketch the graph of $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$ over $[\mathbf{0 , 4}]$ which is to be revolved about the x axis. Sketch this area on the axes provided below.

You can think of solids of revolution as using a certain amount of surface area to enclose a certain amount of volume. This leads to the question of what function \boldsymbol{f} over what interval leads to a solid of revolution enclosing as much volume V as possible while using as little surface area S as possible. We can make this precise by studying the ratio $\frac{\boldsymbol{V}}{\boldsymbol{S}^{3 / 2}}$. It turns out that this fraction never goes above a certain limit regardless of the function \boldsymbol{f} that is used. We can use the calculator to experiment with various possibilities for \boldsymbol{f} to see how much volume a solid of revolution can enclose using a certain amount of area.

3a. The assumption is made that $\boldsymbol{f}(\boldsymbol{x}) \geq \mathbf{0}$ over $\boldsymbol{a} \leq \boldsymbol{x} \leq \boldsymbol{b}$, and that the graph of \boldsymbol{f} over this interval is being revolved about the x -axis to form a solid of revolution. Since the disk method applies here, the volume is $\pi \int_{a}^{b}(f(x))^{2} d x$. You can now use $\pi \operatorname{fnInt}\left(\mathbf{Y}_{\mathbf{1}}{ }^{\mathbf{2}}, \mathbf{x}, \mathbf{a}, \mathbf{b}\right)$ to calculate the volume of the solid. Evaluate the volume of the solid in Question 2 and record the result in the table below.

$\mathbf{f}(\mathbf{x})$	$[a, b]$	V	\mathbf{S}	$\frac{V}{\mathbf{S}^{3 / 2}}$
\sqrt{x}	$[0,4]$			
$\sin x$	$[0, \pi]$			
$4-x^{2}$	$[-2,2]$			

3b. To find the total surface area, \boldsymbol{S}, for a given solid, you must include not only the "side" surface area given by $2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ but also the disks, if any, on the ends of the solids whose areas are $\pi(f(a))^{2}$ and $\pi(f(b))^{2}$. (For example, the solid in Question 2 has a disk with area $\pi(\sqrt{4})^{2}=4 \pi$ on the end where $x=4$. With
 "side" surface area of the function in Question 2 and record the total surface area in the table above.

3c. Next compute $\frac{\boldsymbol{V}}{\boldsymbol{S}^{3 / 2}}$ and record the result in the table.
4. Now repeat 3a-c for the function in question $\mathbf{1}, \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$, and record the results in the table. So far, which function gives the larger ratio?
5. Repeat 3a-c for the function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{4 - \boldsymbol { x } ^ { 2 }}$ over $-\mathbf{2} \leq \boldsymbol{x} \leq 2$ and record the results in the table. Examine the graph of $f(x)=4-x^{2}$ to help visualize the volume of revolution and surface area as it is revolved about the x-axis.
6. Invent some functions of your own that you think might be strong contenders and run them through Questions 3a-c and enter the results in the table above. What do you think the maximum possible value of $\frac{\boldsymbol{V}}{\boldsymbol{S}^{3 / 2}}$ is, and what shape of curve gives it?

