## Assignment 17: Separable Differential Equations (7.2) Name Please provide a handwritten response.

1a. The separable differential equation $y^{\prime}=\frac{x^{2}+\sqrt{x}}{\boldsymbol{e}^{2 y}+y-\sin \boldsymbol{y}}$ is written as $\int\left(e^{2 y}+y-\sin y\right) d y=\int\left(x^{2}+\sqrt{x}\right) d x$ with the variables separated. Integrate by hand to obtain an equation of the form $\boldsymbol{G}(\boldsymbol{y})=\boldsymbol{H}(\boldsymbol{x})+\boldsymbol{C}$ and record the result below.

1b. You can form an IVP (Initial Value Problem) by adding the initial condition $\boldsymbol{y}(\mathbf{1 . 5})=\mathbf{1}$ to the differential equation in 1a. Use the SOLVER (see assignment 3) on your calculator to solve for the constant $\boldsymbol{C}$. Enter your result from 1a. and enter $\boldsymbol{x}=\mathbf{1 . 5}, \boldsymbol{y}=\mathbf{1}$. Place the cursor on $\boldsymbol{C}$ and solve. Record the result below.

Now rewrite the general solution substituting the above value for $\boldsymbol{C}$ and record the solution below.

1c. It would be impossible to solve this particular solution for $y$. To graph this solution you can resort to the IMPGRAPH program used in Assignment 9. Remember to put the IVP in Y1 as $Y_{1}=\left(e^{\wedge}(2 y)\right) / 2+y^{2} / 2+\cos (y)-\left(x^{\wedge} 3\right) / 3-\left(2 x^{\wedge}(3 / 2)\right) / 3-2.385$ (don't forget to deselect Y1) and to set the WINDOW to $\mathbf{0} \leq \boldsymbol{x} \leq 5,-\mathbf{6} \leq \boldsymbol{y} \leq \mathbf{2}$ before starting. Record your results on the graph below. (Remember, this program graphs VERY SLOWLY!)


1d. If there were no initial condition attached to the differential equation, then you could create a family of particular solutions by letting $C$ range, say, from -2 to 2 . All these solutions could then be graphed on the same axes showing how the solutions vary with $\boldsymbol{C}$. Enter $\boldsymbol{Y} 1=e^{\wedge}(2 Y) / 2+Y^{2} / 2+\cos Y-x^{\wedge} 3 / 3-\left(2 x^{\wedge}(3 / 2) / 3\right)+C$. Run this program with $\mathbf{C}=\mathbf{- 2 , 0}, \mathbf{2}$. Do not clear your graph between different runs of the program and the results will appear together on your calculator. (Again, remember this program graphs exceedingly slowly!!!!) Record your result below.


