Assignment 18: Euler's Method (7.3)

Name

Please provide a handwritten response.

1a. In this assignment you will look at applying Euler's Method to the differential equation $y^{\prime}=\sin y-x^{2}$. If you want to find the value of y^{\prime} at the point $\left(-3, \frac{\pi}{2}\right)$ you can use the SOLVER (see assignment 3) to enter $\mathbf{z}=\boldsymbol{\operatorname { s i n }} \boldsymbol{y}-\boldsymbol{x}^{2}$ (TI-86) or $\mathbf{0}=Z-\sin (\boldsymbol{Y})+X^{2}$ (TI-83 Plus/TI-84 Plus). Assign $x=-3, y=\frac{\pi}{2}$. Solve for $z=y^{\prime}$ by placing the cursor on \mathbf{z} and pressing SOLVE. Find this value for $\boldsymbol{z}=\boldsymbol{y}^{\prime}$ and record your result below.

1b. Your calculator will draw a direction field for this differential equation as follows:

	TI-83 Plus/TI-84 Plus	TI-86
DRAWING A DIRECTION FIELD	Put \boldsymbol{Y}^{\prime} in $\mathbf{Y}_{\mathbf{1}}$. Specifically put $Y_{1}=\sin (Y)-X^{2}$ Move cursor to on top of = and press enter to deselect it. Set WINDOW values. Here set $0 \leq X \leq 2,1 \leq Y \leq 3$ Run the program FLDPLOT Save the picture. 2ND PRGM (DRAW) STO 1:StorePic 1 ENTER	Set MODE to DifEq and enter the equation using \mathbf{t} for \mathbf{x} and Q1 for \mathbf{y}. GRAPH $Q^{\prime}(t)$ Specifically put $Q^{\prime} 1=\sin (Q 1)-t^{2}$ Set FORMAT (GRAPH MORE FORMAT (F1)) to Euler SlpFld Set initial conditions INITC (F3) to 0 Set WINDOW tMin=0,tMax = 2, $\begin{aligned} & \text { tStep }=1, \text { tPlot }=0, \mathrm{xMin}=0, \\ & \mathrm{xMax}=2, \mathrm{xScl}=1, \mathrm{yMin}=1, \\ & \mathrm{yMax}=3, \mathrm{yScl}=1, \mathrm{Estep}=1 \end{aligned}$ GRAPH (F5)

Roughly sketch the resulting direction field on the axes supplied below.

$$
0 \leq x \leq 2,1 \leq y \leq 3
$$

1c. You can generate a table of ordered pairs using Euler's Method to solve the differential equation $\boldsymbol{y}^{\prime}=\boldsymbol{\operatorname { s i n }} \boldsymbol{y}-\boldsymbol{x}^{2}$ on your calculator.

	TI-83 Plus/TI-84 Plus	TI-86
	Put \boldsymbol{Y}^{\prime} in $\mathbf{Y}_{\mathbf{1}} \cdot$ Specifically put	Set MODE to DifEq and enter the
GENERATING	$\boldsymbol{Y}_{\mathbf{1}}=\sin (\boldsymbol{Y})-\boldsymbol{X}^{\mathbf{2}}$	equation using \mathbf{t} for \mathbf{x} and
AN	Run the program EULTBL.	Q1 for \mathbf{y}. GRAPH $Q^{\prime}(\boldsymbol{t})$
EULER TABLE	Enter an initial value for \mathbf{X} and \mathbf{Y} at the prompts. In	Put $\boldsymbol{Q}^{\prime} \mathbf{1}=\sin (\boldsymbol{Q 1})-\boldsymbol{t}^{2}$

According to this table, what is the value of $\boldsymbol{y}(\mathbf{1})$ using this approximation? What is the value of $\boldsymbol{y}(2)$ using this approximation? Record your results below.

1d. This list can be plotted on your calculator as follows.

	TI-83 Plus/TI-84 Plus	TI-86
$\begin{gathered} \text { GRAPHING } \\ \text { AN } \\ \text { EULER PLOT } \end{gathered}$	Put \boldsymbol{Y}^{\prime} in $\mathbf{Y}_{\mathbf{1}}$. Specifically put $Y_{1}=\sin (Y)-X^{2}$ Run the program EULGRPH. Enter an initial value for \mathbf{X} and \mathbf{Y} at the prompts. In	Set MODE to DifEq and enter the equation using \mathbf{t} for \mathbf{x} and Q1 for \mathbf{y}. GRAPH $Q^{\prime}(t)$ Specifically put $Q^{\prime} 1=\sin (Q 1)-t^{2}$
	this case enter $\mathbf{X = 0}$ and $\mathbf{Y}=2$ Enter a step size of $\mathbf{. 1}$ at the prompt	$\begin{aligned} & \text { Set FORMAT to Euler FldOff } \\ & \text { GRAPH MORE } \\ & \text { FORMAT (F1) } \\ & \text { Set WINDOW tMin=0,tMax = 2, } \\ & \text { tStep=.1,tPlot=0,xMin=0, } \\ & \text { xMax=2,xScl=1,yMin=1, } \\ & \text { yMax=3,yScl=1,Estep=1 } \\ & \text { GRAPH (F5) } \end{aligned}$

Record your results on the graph below.

$$
0 \leq x \leq 2,1 \leq y \leq 3
$$

1e. Repeat 1c. and 1d. using a step of 0.05 and compute the first 40 iterations. Record the values of $\boldsymbol{y}(\mathbf{1})$ and $\boldsymbol{y}(\mathbf{2})$.

1f. Now plot both the field plot and the Euler function together and record your result on the graph in $\mathbf{1 b}$.

	TI-83 Plus/TI-84 Plus	TI-86
GRAPHING THE EULER FUNCTION ON THE FIELD PLOT	Edit EULGRPH by adding the line RecallPic 1 as line 4 of the program (immediately following ClrDraw)	GRAPH MORE FORMAT and turn on SIpFld. Now press GRAPH (F5).

