Assignment 18: Euler's Method (7.3) Please provide a handwritten response.

Name_

1a. In this assignment you will look at applying Euler's Method to the differential equation $y' = \sin y - x^2$. If you want to find the value of y' at the point $\left(-3, \frac{\pi}{2}\right)$ you can use the **SOLVER** (see assignment 3) to enter $z = \sin y - x^2$ (TI-86) or $0 = Z - \sin(Y) + X^2$ (TI-83 Plus/TI-84 Plus). Assign x = -3, $y = \frac{\pi}{2}$. Solve for z = y' by placing the cursor on z and pressing **SOLVE**. Find this value for z = y' and record your result below.

	TI-83 Plus/TI-84 Plus	TI-86
		Set MODE to DifEq and enter the
DRAWING A DIRECTION FIELD		equation using t for x and
	Put Y' in Y_1 . Specifically put	Q1 for y. GRAPH $Q'(t)$
	$Y_1 = \sin(Y) - X^2$	Specifically put
	Move cursor to on top of $=$ and	$Q'1 = sin(Q1) - t^2$
	press enter to deselect it.	Set FORMAT (GRAPH MORE
	Set window values. Here set 0 < X < 2, $1 < Y < 3$	FORMAT (F1)) to Euler SlpFld
	Run the program FLDPLOT	Set initial conditions INITC (F3)
	Save the picture. 2ND PRGM	to U Set WINDOW tMin=0 tMax = 2
	(DRAW) STO 1:StorePic 1	tStep=1 tPlot=0 xMin=0,
	ENTER	xMax=2,xScl=1,yMin=1,
		yMax=3,yScl=1,Estep=1
		GRAPH (F5)

1b. Your calculator will draw a direction field for this differential equation as follows:

Roughly sketch the resulting direction field on the axes supplied below.

$0 \le x \le 2, 1 \le y \le 3$

1c. You can generate a table of ordered pairs using Euler's Method to solve the differential equation $y' = sin y - x^2$ on your calculator.

	TI-83 Plus/TI-84 Plus	TI-86
	Put Y' in Y_1 . Specifically put	Set MODE to DifEq and enter the
	$Y_1 = \sin(Y) - X^2$	equation using t for x and
GENERATING	Run the program EULTBL .	Q1 for y. GRAPH $Q'(t)$
AN EULER TABLE	Enter an initial value for X	Put $Q'1 = sin(Q1) - t^2$
	and Y at the prompts. In	

this case enter X=0 and	Set FORMAT (GRAPH
Y=2.	MORE FORMAT (F1))
Enter a step size of .1 at the	to Euler FldOff
prompt to give you 20	Set Axes : <i>x=t</i> , <i>y=Q</i>
steps starting from X=0.	Set initial conditions INITC (F3)
Enter 20 when asked for the	tMin=0, QI1=2
number of points.	Set up table TABLE TBLST
	(F2) TblStart $=0$
	ΔTbl=.1
	Indpnt: Auto
	TABLE (F1)

According to this table, what is the value of y(1) using this approximation? What is the value of y(2) using this approximation? Record your results below.

1d. This list can be plotted on your calculator as follows.

	TI-83 Plus/TI-84 Plus	TI-86
GRAPHING AN EULER PLOT	Put Y' in Y_1 . Specifically put	Set MODE to DifEq and enter the
	$Y_1 = \sin(Y) - X^2$	equation using t for x and
	Run the program EULGRPH .	Q1 for y. GRAPH $Q'(t)$
	Enter an initial value for X	Specifically put
	and Y at the prompts. In	$Q'1 = sin(Q1) - t^2$
	this case enter $X=0$ and $X=2$	Set FORMAT to Euler FldOff
	$\mathbf{Y} = \mathbf{Z}.$	GRAPH MORE
	prompt	FORMAT (F1)
		Set WINDOW tMin=0,tMax = 2,
		tStep=.1,tPlot=0,xMin=0,
		xMax=2,xScl=1,yMin=1,
		yMax=3,yScl=1,Estep=1
		GRAPH (F5)

Record your results on the graph below.

 $0 \le x \le 2, 1 \le y \le 3$

1e. Repeat 1c. and 1d. using a step of 0.05 and compute the first 40 iterations. Record the values of y(1) and y(2).

1f. Now plot both the field plot and the Euler function together and record your result on the graph in **1b**.

	TI-83 Plus/TI-84 Plus	TI-86
GRAPHING THE EULER	Edit EULGRPH by adding the	GRAPH MORE FORMAT
FUNCTION ON THE	line RecallPic 1 as line 4 of the	and turn on SlpFld. Now press
FIELD PLOT	program (immediately	GRAPH (F5).
	following ClrDraw)	