Assignment 20: Fourier Series (8.9)

Name
Please provide a handwritten response.

1. The signum function $f(x)=\left\{\begin{array}{ll}\mathbf{1}, & \mathbf{x}>\mathbf{0} \\ \mathbf{0}, & \boldsymbol{x}=\mathbf{0} \\ \mathbf{- 1 ,}, & \boldsymbol{x}<\mathbf{0}\end{array}\right.$ can be graphed as follows:

	TI-83 Plus/TI-84 Plus	TI-86
	The signum function can be graphed as	The signum function can be graphed as
GRAPHING	a piecewise defined function:	a piecewise defined function:
THE	$\boldsymbol{Y}_{1}=(\boldsymbol{a b s}(\boldsymbol{X}) / \boldsymbol{X})$ or	$\boldsymbol{Y}_{1}=(\boldsymbol{a b s}(\boldsymbol{X}) / \boldsymbol{X})$ or
SIGNUM	$\boldsymbol{Y}_{1}=(-\mathbf{1})(\boldsymbol{X}<\mathbf{0})+\mathbf{1}(\boldsymbol{X}>\mathbf{0})$	
FUNCTION	$\boldsymbol{Y}_{1}=(\mathbf{- 1})(\boldsymbol{X}<\mathbf{0})+\mathbf{1}(\boldsymbol{X}>\mathbf{0})$	or as $\boldsymbol{Y}_{\mathbf{1}}=\boldsymbol{\operatorname { s i g } \boldsymbol { i g } \boldsymbol { X }}$

Sketch the graph of the signum function on the axes provided below.

2a. The Fourier coefficients of f, given by the Euler-Fourier formulas as $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x$, $a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x, b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x$ can be computed using fnInt on your calculator. Evaluate these coefficients for $\boldsymbol{k}=\mathbf{1}, \mathbf{2 , 3 , 4 , 5}$ and record the results in the table provided. Don't forget to use 2ND ENTRY to save yourself some typing.

	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$
a_{k}					
b_{k}					

2b. Run the program FOURIER using the signum function. Enter the period as $\boldsymbol{\pi}$ and the number of terms as 5. Enter the signum function as $\mathbf{- 1}$ for $-\boldsymbol{p} \leq \boldsymbol{x}<\mathbf{0}, \mathbf{1}$ for $\mathbf{0} \leq \boldsymbol{x}<\boldsymbol{p}$.
Record your results on the graph provided below.

2c. Without clearing the graphing screen at the end of the program, graph $\boldsymbol{Y}_{\mathbf{4}}=$ signum \mathbf{x}. Does the approximation seem close over $-\pi \leq x \leq \pi$?

2d. Rerun the program FOURIER for the signum function with $\boldsymbol{k}=\mathbf{1 5}$ and record the result below.

Is the approximation better? Graph the signum function with this approximation to see if it is.

3a. Graph the function $y=x-\lfloor x\rfloor$ over the interval $-\mathbf{2} \leq \boldsymbol{x} \leq \mathbf{2}$ where $y=\lfloor x\rfloor$ is the floor function. Enter $\boldsymbol{y}_{\mathbf{1}}=\boldsymbol{x}-\boldsymbol{\operatorname { i n t }}(\boldsymbol{x})$ and sketch the graph below. Do the vertical lines have any significance?

3b. The period P of this function is not $2 \boldsymbol{\pi}$. What is it? Formulate equations for $\boldsymbol{y}=\boldsymbol{x}-\lfloor\boldsymbol{x}\rfloor$, $\mathbf{- 1} \leq \boldsymbol{x}<\mathbf{0}$ (Hint: think of forming the equation of a line through two points) and $\mathbf{0} \leq \boldsymbol{x}<\mathbf{1}$. Run the program FOURIER with $\boldsymbol{k}=\mathbf{5}$ and sketch the results below.

3c. Now run the program FOURIER with $\boldsymbol{k}=\mathbf{1 5}$. Which graph gives the better approximation of $y=x-\lfloor x\rfloor$?

$-2 \leq x \leq 2,0 \leq y \leq 1$

