Assignment 20: Fourier Series (8.9) Please provide a handwritten response.

Name_____

1. The signum function
$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$
 can be graphed as follows:

	TI-83 Plus/TI-84 Plus	TI-86
GRAPHING THE SIGNUM FUNCTION	The signum function can be graphed as a piecewise defined function: $Y_1 = (abs(X) / X)$ or $Y_1 = (-1)(X < 0) + 1(X > 0)$	The signum function can be graphed as a piecewise defined function: $Y_1 = (abs(X) / X)$ or $Y_1 = (-1)(X < 0) + 1(X > 0)$
		or as $Y_1 = sign x$

Sketch the graph of the signum function on the axes provided below.

	- - -
$-5 \le x \le 5,$	$-5 \le y \le 5$

2a. The Fourier coefficients of f, given by the Euler-Fourier formulas as $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$,

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \ b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx \ \text{can be computed using fnInt} \ \text{on}$$

your calculator. Evaluate these coefficients for k = 1, 2, 3, 4, 5 and record the results in the table provided. Don't forget to use **2ND ENTRY** to save yourself some typing.

	<i>k</i> =1	<i>k</i> =2	k=3	<i>k</i> =4	<i>k</i> =5
a_k					
b_k					

2b. Run the program FOURIER using the signum function. Enter the period as π and the number of terms as 5. Enter the signum function as -1 for $-p \le x < 0$, 1 for $0 \le x < p$. Record your results on the graph provided below.

	[
	· · · · ·
$-\pi \le x \le \pi$	$z, -2 \le y \le 2$

2c. Without clearing the graphing screen at the end of the program, graph $Y_4 = \text{signum } x$. Does the approximation seem close over $-\pi \le x \le \pi$?

2d. Rerun the program **FOURIER** for the signum function with k = 15 and record the result below.

Is the approximation better? Graph the signum function with this approximation to see if it is.

3a. Graph the function $y = x - \lfloor x \rfloor$ over the interval $-2 \le x \le 2$ where $y = \lfloor x \rfloor$ is the floor function. Enter $y_1 = x - int(x)$ and sketch the graph below. Do the vertical lines have any significance?

3b. The period P of this function is not 2π . What is it? Formulate equations for $y = x - \lfloor x \rfloor$, $-1 \le x < 0$ (Hint: think of forming the equation of a line through two points) and $0 \le x < 1$. Run the program **FOURIER** with k = 5 and sketch the results below.

3c. Now run the program FOURIER with k = 15. Which graph gives the better approximation of $y = x - \lfloor x \rfloor$?

2