Assignment 22: Polar Cöordinates (9.4-7)

1. Graph the limaçon $r=f(\theta)=4 \cos \theta-2$ and the ellipse $r=g(\theta)=\frac{4}{2+\cos \theta}$ and sketch the results below.

	TI-83 Plus/TI-84 Plus	TI-86
	set MODE to Pol	set MODE to POLARC and POL
GRAPHING	set FORMAT to PolarGC	Set FORMAT (get from GRAPH
POLAR	Press Y= and enter $\boldsymbol{r}=\boldsymbol{r}(\boldsymbol{\theta})$	MORE F3) to PolarGC
FUNCTIONS	Set $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{2} \boldsymbol{\pi}, \boldsymbol{\theta}$ step $=\boldsymbol{\pi} / \mathbf{2 4}$	From GRAPH press $\boldsymbol{r}(\boldsymbol{\theta})=$ and
	Press GRAPH to graph.	enter $\boldsymbol{r}=\boldsymbol{r}(\boldsymbol{\theta})$
		Set $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{2} \boldsymbol{\pi}, \boldsymbol{\theta}$ step $=\boldsymbol{\pi} / \mathbf{2 4}$

How many points of intersection do these two curves have?

2a. You can use the Solver (see assignment 3) on your calculator to find the points of intersection between these two curves. It will be helpful to trace near the points of intersection to identify a value of $\boldsymbol{\theta}$ 'close' to each point of intersection to enter in the Solver. Record the values returned by your Solver below. Now, find all points of intersection as ordered pairs $(\boldsymbol{r}, \boldsymbol{\theta})$ corresponding to these values (remember you can evaluate $\boldsymbol{r}_{\mathbf{1}}(\boldsymbol{\theta})$ to find a corresponding \boldsymbol{r}). List these points below.

2b. To be absolutely certain you have all points of intersection you will want to solve both $\boldsymbol{r}_{1}(\boldsymbol{\theta})=\boldsymbol{r}_{2}(\boldsymbol{\theta})$ and $\boldsymbol{r}_{1}(\boldsymbol{\theta})=-\boldsymbol{r}_{2}(\boldsymbol{\theta}+\pi)$. Now solve the second of these equations and record the results below. Also list all points of intersection (from 2a and $\mathbf{2 b}$) on the graph above.

3a. Write down a sum of definite integrals that gives the area of the region lying both inside the ellipse and outside the limaçon. Also shade this area on the graph above.

3b. Use fnInt to evaluate these integrals and record the total area below. Based on the graph, is your answer plausible?

3c. Repeat parts a and \mathbf{b} for the region lying inside the large loop of the limaçon (ignore the small loop) but outside the ellipse Be sure to keep track of what parts of each curve correspond to which values of $\boldsymbol{\theta}$.

4a. The slope of a line tangent to a polar curve at $\boldsymbol{\theta}=\boldsymbol{a}$ is given by the formula: $\left.\frac{d y}{d x}\right|_{\theta=a}=\frac{f^{\prime}(a) \sin a+f(a) \cos a}{f^{\prime}(a) \cos a-f(a) \sin a}$. Use this formula with your Solver to find all values at which the tangent line to the limaçon is horizontal. Record your results below and mark these points on the graph.

4b. The graph suggests that the two curves might be orthogonal at two of their intersection points. Use the formula above to decide whether this is the case. You may also use your calculator to find the required slopes. (Recall that perpendicular lines have negative reciprocal slopes unless they are horizontal and vertical.)

	TI-83 Plus/TI-84 Plus	TI-86
	From the polar graph press	From the polar graph press
FINDING THE SLOPE	2ND CALC $\mathbf{2} \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}$	GRAPH MORE F1
OF A LINE TANGENT	to get to MATH and	
TO A POLAR GRAPH in values of $\boldsymbol{\theta}$ from 2c	choose the F2 $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}$	
	(one at a time).	Type in values of $\boldsymbol{\theta}$ from 2c (one at a time).

At which points of intersection (if any) are the two curves orthogonal? Record your answer below.

