Assignment 23: Vectors (10.1-5) Please provide a handwritten response.

Name____

	TI-83 Plus/TI-84 Plus	T1-86
ENTERING VECTORS	Press 2ND x^{-1} (MATRIX) EDIT and choose a matrix. Depending on size enter either 1×2 or 1×3 for the dimensions. Then edit the entries to the desired numbers.	Press 2ND 8 (VECTOR) To enter a vector press F2 EDIT Enter a name (A,B,C,) for the vector and press ENTER Enter a dimension (2 or 3) and press enter. Then edit the entries to the desired numbers.
VECTOR ARITHMETIC	From the homescreen you can enter 3 [A] for scalar multiplication ([A] came from the matrix names menu) or 2 [A]- 3 [B] for vector addition.	From the home screen you can enter 3A for scalar multiplication or 2A-3B for vector addition.

1a. Vectors are readily represented on your calculator. You enter them as follows:

Calculate $5\vec{A} - 3\vec{B}$ when $\vec{A} = \langle 3, -2 \rangle$ and $\vec{B} = \langle 4, 1 \rangle$ and record the result below.

Vector operations can readily be done on your calculator.

	TI-83 Plus/TI-84 Plus	TI-86
	Run the program VECTOR	Once the vectors are entered choose
	following the prompts.	F3 (MATH) and choose the
VECTOR	Enter vector dimension (2 or 3)	appropriate option.
OPERATIONS	Enter the vectors being used.	Svntax: $cross(\vec{A}, \vec{B})$
	When the vector operations menu appears choose the	$dot(\vec{A}, \vec{B})$
	appropriate option	norm <i>A</i>
		unitV <i>A</i>

1b. Calculate $\vec{A} \cdot \vec{B}$ and record the result below.

1c. Calculate the magnitude of the vector \vec{A} , $\|\vec{A}\|$, and record the result below.

2a. For $\vec{C} = \langle 4, -1, 7 \rangle$, $\vec{D} = \langle 3, 3, -5 \rangle$ calculate $4\vec{C} + \vec{D}$ and $(4\vec{C} + \vec{D}) \cdot \vec{C}$. Record the results below.

2b. Evaluate $\vec{A} \cdot \vec{C}$ and record the result below. What do you think the problem is?

1

2c. Evaluate the cross product, $\vec{C} \times \vec{D}$ and record the result below. Are \vec{C} and \vec{D} parallel?

3. Given
$$\vec{A} = \langle -1, 0, 2 \rangle$$
 parallel to

$$\begin{cases} x = 3 - t \\ y = 4 \\ z = -2 + 2t \end{cases}$$
and $\vec{B} = \langle 2, -3, 1 \rangle$ parallel to
$$\begin{cases} x = 1 + 2s \\ y = 7 - 3s \\ z = -3 + s \end{cases}$$
Find $\vec{A} = \vec{R}$ and $\vec{A} \times \vec{R}$. Are the lines perallel perpendicular or peither?

Find $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$. Are the lines parallel, perpendicular or neither?

4a. Define \vec{A} and \vec{B} to be vectors parallel to $\begin{cases} x = 3 + t \\ y = 3 + 3t \\ z = 4 - t \end{cases}$ and $\begin{cases} x = 2 - s \\ y = 1 - 2s \\ z = 6 + 2s \end{cases}$ Use the

cross product to show that the lines are not parallel. They are either skew or intersect. Record the cross product below.

4b. To find the point of intersection you will need to set x = x, y = y, z = z and solve the resulting equations simultaneously for s and t. Find the point of intersection for **4a**. Be sure to give the point in space, (x, y, z), not just values for s and t.

4c. Repeat 4a with the lines
$$\begin{cases} x = 1 - 2t \\ y = 2t \\ z = 5 - t \end{cases}$$
 and
$$\begin{cases} x = 3 + 2s \\ y = -2 \\ z = 3 + 2s \end{cases}$$
.