Assignment 24: Vector-Valued Functions (11.1-3)Name Please provide a handwritten response.

1a. You can graph the vector-valued function $\vec{r}(t)=\langle\boldsymbol{\operatorname { c o s }}(3 t), \sin (2 t)\rangle, \quad 0 \leq t \leq 2 \pi$ by putting your calculator in parametric mode and letting $\left\{\begin{array}{l}x=\boldsymbol{\operatorname { c o s }}(3 t) \\ y=\boldsymbol{\operatorname { s i n }}(2 t)\end{array}\right.$. Sketch the resulting curve, known as a "Lissajous curve" on the axes provided below.

$-1 \leq x \leq 1,-1 \leq y \leq 1$

1b. You can easily list the points $\vec{r}(\mathbf{0}), \vec{r}\left(\frac{\pi}{4}\right), \ldots, \vec{r}\left(\frac{n \pi}{4}\right) \quad \mathbf{0} \leq \boldsymbol{n} \leq \mathbf{8}$ using the table feature on your calculator. Press (TABLE) TBLST and set $\Delta \boldsymbol{T b l}=\frac{\boldsymbol{\pi}}{\mathbf{4}}$. Then press TABLE to find the points and their corresponding \boldsymbol{t} value. Mark these coordinates on the graph and draw arrows to show the orientation of the curve.

1c. The velocity vector $\vec{v}(t)=\vec{r}^{\prime}(t)=\langle-3 \sin (3 t), 2 \boldsymbol{\operatorname { c o s }}(2 \boldsymbol{t})\rangle$ is readily found by hand. The speed is given by $\|\vec{v}(t)\|=\sqrt{\vec{v}(t) \cdot \vec{v}(t)}$. Find the speed and record the result below. Sketch the graph of $\|\vec{v}(t)\|= \begin{cases}x=t \\ y=\sqrt{9(\sin (3 t))^{2}+4(\cos (2 t))^{2}} & \text { over }\end{cases}$ $\mathbf{0} \leq \boldsymbol{t} \leq 2 \pi$ on the axes below. Based on this graph, does the moving point ever stop?

1d. Define the reparameterization of $\overrightarrow{\boldsymbol{r}}_{1}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}(\boldsymbol{t}+\mathbf{3} \sin \boldsymbol{t}), \mathbf{0} \leq \boldsymbol{t} \leq \mathbf{2 \pi}$ and graph the $\vec{r}_{1}(t)$ over $0 \leq t \leq 2 \pi$. Achieve this by graphing $\left\{\begin{array}{l}\boldsymbol{X}_{2 T}=\boldsymbol{X}_{1 T}(t+3 \sin t) \\ Y_{2 T}=\boldsymbol{Y}_{1 T}(t+3 \sin t)\end{array}\right.$. What is the
subtle difference between this graph and that in part a? Record the graph on the axes provided.

1e. The velocity vector $\overrightarrow{\boldsymbol{v}}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}^{\prime}{ }_{1}(\boldsymbol{t})$ is used to find the speed of a point moving under $\vec{r}_{\mathbf{1}}(\boldsymbol{t})$. Plot the speed of $\vec{r}_{1}(t)=\langle-\sin (3 t+9 \sin (t))(3+9 \cos (t)), \cos (2 t+6 \sin (t))(2+6 \cos (t))\rangle$ by imitating part c. Note the approximate values of \mathbf{t} where the speed is zero and use the Solver on your calculator setting speed=0 to find more accurate values. What are the coordinates of these points where $\overrightarrow{\boldsymbol{r}}_{1}(\boldsymbol{t})$ "stops"? Record your results below.

2a. Sketch the graph of $\vec{r}(t)=\langle 2 \cos t+\sin 2 t, 2 \sin t+\cos 2 t\rangle, 0 \leq t \leq 2 \pi$ on the axes provided below.

2b. Find and mark on the graph any stationary points of $\overrightarrow{\boldsymbol{r}}(\boldsymbol{t})$, as above.

2c. Define the reparameterization of $\overrightarrow{\boldsymbol{r}}_{\mathbf{1}}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}(\boldsymbol{t}+\sin \boldsymbol{t}), \mathbf{0} \leq \boldsymbol{t} \leq 2 \pi$ and graph $\overrightarrow{\boldsymbol{r}}_{1}(\boldsymbol{t})$ over $\mathbf{0} \leq \boldsymbol{t} \leq 2 \boldsymbol{\pi}$. Check for stationary points. How do the results compare with part \mathbf{b} ?

2d. Repeat part \mathbf{c} with $\vec{r}_{1}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}\left(\boldsymbol{t}^{2}\right), \mathbf{0} \leq \boldsymbol{t} \leq \sqrt{2 \pi}$.

