Assignment 3: Solving Equations (0.1\&2)

Name Please provide a handwritten response.

1a. One way to solve equations on TI calculators is to use the SOLVER. For example you can find the zeros of $f(x)=x^{2}-3 x+2$ using the solver.

PROBLEM	TI-83 Plus/Ti-84 Plus	TI-86
FIND ALL ZEROS OF:$f(x)=x^{2}-3 x+2$	To access Solver press MATH 0 ENTER The calculator will show: Eqn: 0= Enter $x^{2}-3 x+2$ ENTER. BEWARE: The calculator will show the results of the last problem solved at this point. To find the first zero press ALPHA ENTER (SOLVE). To find another zero you must enter a 'guess' in the $\boldsymbol{x}=$ line and press ENTER. A good way to estimate a zero is to graph the function (Use the $\boldsymbol{y}=\mathrm{key}$) and look at where the graph crosses the x-axis.	To access SOLVER press 2ND GRAPH The calculator will show: eqn: Enter $\boldsymbol{x}^{2}-3 \boldsymbol{x}+\mathbf{2}=\mathbf{0}$ ENTER. BEWARE: The calculator will show the results of the last problem solved at this point. To find the first zero press F5 (SOLVE). To find another zero you must enter a 'guess' in the $\boldsymbol{x}=$ line and press ENTER. You can use the GRAPH (F1) to obtain the graph from the solver menu. You will have to EXIT the graph and re-enter the SOLVER. This process will need to be repeated for each zero.
	graph and re-enter the Solver. This process will need to be repeated for each zero.	Use the polynomial solver 2ND PRGM (POLY) The calculator will show POLY order $=$ When you enter 2 ENTER the calculator will show $\boldsymbol{a} 2 x^{\wedge} \mathbf{2}+\boldsymbol{a} \mathbf{x} \boldsymbol{x}+\boldsymbol{a 0}=\mathbf{0}$ and you enter the coefficients as $1,-3,2$ and press F5 (SOLVE)

Record the results below.

1b. Now solve $y=x^{3}-x^{2}-2 x+2$ (enter as $0=x^{\wedge} 3-x^{2}-2 x+2$) and record the result below.

2a. Use the SOLVER to solve the equation $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2} \mathbf{- 1}$ and record the results below. You may want to look at the graph to determine the number of zeros the function has. Enter your equation as follows:

PROBLEM	TI-83 Plus/TI-84 Plus	TI-86
Solve $\boldsymbol{\operatorname { c o s } \boldsymbol { x } = \boldsymbol { x } ^ { 2 } - \mathbf { 1 }}$	Enter your equation as	Enter your equation as
	$\emptyset=\boldsymbol{\operatorname { c o s } (\boldsymbol { x }) - \boldsymbol { x } ^ { 2 } + \mathbf { 1 } \text { and the }}$$\boldsymbol{\operatorname { c o s } \boldsymbol { x } = \boldsymbol { x } ^ { 2 } - \mathbf { 1 } \text { and use the }}$ graph as $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{x})-\boldsymbol{x}^{2}+\mathbf{1}$	graph option as above to estimate the second zero.

Record the output below.
2b. We can find all the zeros of $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2}-\mathbf{1}$ by starting from a graph.

PROBLEM	TI-83 Plus/TI-84 Plus	TI-86
Solve $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2}-1$ from a graph.	$\text { Graph } y=\cos (x)-x^{2}+1$	$\text { Graph } y=\cos x-x^{2}+1$
	Go to CALC (2ND TRACE) and select 2 zero. Use arrow	From the GRAPH menu MORE MATH ROOT (F1)
	keys to move the cursor left of the zero for a Left Bound and	Use arrow keys to move the cursor left of the zero for a Left
	then use them to find a Right	Bound and then use them to find a Right Bound. Press
	Bound. Press ENTER to set each bound. You can just press	ENTER to set each bound.
	ENTER for Guess and the calculator will give you the zero.	You can just press ENTER for Guess and the calculator will give you the zero.

Sketch the graph and record the results below. Do they agree with the results from 2a?

$-10 \leq x \leq 10,-10 \leq y \leq 10$
2c. Now change parts \mathbf{a} and \mathbf{b} to solve the equation $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2}-\mathbf{5}$. Remember to replace the $\boldsymbol{x}=$ with an appropriate value suggested by your graph. Record your solution below.

