Assignment 4: Trigonometry and Exponentials (0.4\&5)Name

\qquad Please provide a handwritten response.

1a. To graph trigonometric functions you want your calculator settings to be in radians and you need to use the zoom trig option.

PROBLEM	TI-83 Plus/TI-84 Plus	TI-86
Graph $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$	Set calculator in radians (MO	Se
	Set graphing window to ZOOM 7	Set graphing window to ZOOM
	ZTrig . The default window is	ZTRIG. The default window is
	$-1.958 \pi \leq x \leq 1.958 \pi,-4 \leq y \leq 4$	$-2.625 \pi \leq x \leq 2.625 \pi,-4 \leq y \leq 4$
	From the $\boldsymbol{y}=$ key enter	From GRAPH $\boldsymbol{y}(\boldsymbol{x})=$ enter
	$\mathbf{Y}_{1}=\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})$ and GRAPH	$y_{1}=\boldsymbol{\operatorname { s i n }} x$ and 2ND GRAPH (F5)

Sketch your graph on the appropriate set of axes below.

TI-83 Plus/TI-84 Plus

1b. More complicated trigonometric functions can be used but are not always written for the calculator as they would be in traditional mathematical notation. For example, graph the function $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }}^{2} \boldsymbol{x}$ on the axes below.

PROBLEM	TI-83 Plus/TI-84 Plus	TI-86
Graph $y=\sin ^{2} x$	$Y_{1}=(\sin (x))^{2}$ Watch the exponent	$y_{1}=(\boldsymbol{\operatorname { s i n }} \boldsymbol{x})^{2}$ Watch the exponent

TI-83 Plus/TI-84 Plus

TI-86

1c. The cosine function is represented on the calculator by $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ and the tangent function by $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$. Sketch the graph of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }}(5 x)+\boldsymbol{\operatorname { s i n }}(5 x)$ below.

TI-83 Plus/TI-84 Plus

TI-86
2. You can convert between degrees and radians on the calculator as you do by hand. To convert from degrees to radians (calculator mode set in degrees) multiply by $\frac{\boldsymbol{\pi}}{\mathbf{1 8 0}}$. You can find the fractional equivalent by dividing the result by π and using \%frac. You can convert from radians to degrees (calculator mode set in radians) by multiplying by $\frac{180^{\circ}}{\pi}$. Convert 60° to radians. Convert $\frac{4 \pi}{3}$ to degrees. Record both results below. You normally leave the calculator set in radians.

3a. Exponential functions are expressed on the TI calculators using the \wedge symbol just like any other exponent. For example you can graph $\boldsymbol{y}=\mathbf{2}^{\boldsymbol{x}}$ by entering $\boldsymbol{y}=\mathbf{2}^{\wedge} \boldsymbol{x}$ into the calculator. Graph this function and record your result below.

3b. The constant $\boldsymbol{e}=\mathbf{2 . 7 1 8 2 8} .$. is found on the keyboard as $\boldsymbol{e}^{\boldsymbol{x}}$. It is located above the $\mathbf{L N}$ key and is accessed by 2ND LN. The exponential function, $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$ is also found here. Graph the function $f(x)=10 e^{x}$ by entering $y=10 \boldsymbol{e}^{\wedge} \boldsymbol{x}$ and record the result below.

$-5 \leq x \leq 5,0 \leq y \leq 32$
$y=2^{x}$

$-2 \leq x \leq 2,0 \leq y \leq 20$
$y=10 e^{x}$
4. On your calculator the natural logarithm function $\ln \boldsymbol{x}$ is represented by $\boldsymbol{\operatorname { l n } \boldsymbol { x }}$ and the common logarithm $\log _{10} \boldsymbol{x}$ is represented by $\boldsymbol{\operatorname { l o g } \boldsymbol { x }}$. The logarithm of x with base b , $\boldsymbol{\operatorname { l o g }}_{\boldsymbol{b}} \boldsymbol{x}$ can be entered using the change of base formula $\boldsymbol{\operatorname { l o g }}_{\boldsymbol{b}} \boldsymbol{x}=\frac{\boldsymbol{\operatorname { l n } \boldsymbol { x }}}{\boldsymbol{\operatorname { l n } \boldsymbol { b }}}$. Now graph $\boldsymbol{y}=\boldsymbol{\operatorname { l o g }}_{1 / 2} \boldsymbol{x}$ and $\boldsymbol{y}=\boldsymbol{\operatorname { l n }} \boldsymbol{x}$ on the same axes and sketch the result below. Label which graph is which.

