Assignment 4: Trigonometry and Exponentials (0.4&5)Name_ Please provide a handwritten response.

1a. To graph trigonometric functions you want your calculator settings to be in radians and you need to use the **zoom trig** option.

PROBLEM	TI-83 Plus/TI-84 Plus	TI-86
	Set calculator in radians (MODE)	Set calculator in radians (MODE)
	Set graphing window to ZOOM 7	Set graphing window to ZOOM
Graph $y = sin x$	ZTrig . The default window is	ZTRIG. The default window is
	$-1.958\pi \le x \le 1.958\pi, -4 \le y \le 4$	$-2.625\pi \le x \le 2.625\pi, \ -4 \le y \le 4$
	From the $y =$ key enter	From GRAPH $y(x) =$ enter
	$Y_1 = sin(x)$ and GRAPH	$y_1 = sin x$ and 2ND GRAPH (F5)

Sketch your graph on the appropriate set of axes below.

TI-83 Plus/TI-84 Plus

1b. More complicated trigonometric functions can be used but are not always written for the calculator as they would be in traditional mathematical notation. For example, graph the function $y = sin^2 x$ on the axes below.

PROBLEM	TI-83 Plus/TI-84 Plus	TI-86
Graph $y = sin^2 x$	$Y_1 = (sin(x))^2$ Watch the exponent	$y_1 = (sin x)^2$ Watch the exponent

1c. The cosine function is represented on the calculator by $y = \cos x$ and the tangent function by y = tan x. Sketch the graph of y = cos(5x) + sin(5x) below.

1

2. You can convert between degrees and radians on the calculator as you do by hand. To convert from degrees to radians (calculator mode set in degrees) multiply by $\frac{\pi}{180^{\circ}}$. You can find the fractional equivalent by dividing the result by π and using % frac. You can convert from radians to degrees (calculator mode set in radians) by multiplying by $\frac{180^{\circ}}{\pi}$. Convert 60° to radians. Convert $\frac{4\pi}{3}$ to degrees. Record both results below. You normally leave the calculator set in radians.

3a. Exponential functions are expressed on the TI calculators using the ^ symbol just like any other exponent. For example you can graph $y = 2^x$ by entering $y = 2^x x$ into the calculator. Graph this function and record your result below.

3b. The constant e = 2.71828... is found on the keyboard as e^x . It is located above the LN key and is accessed by 2ND LN. The exponential function, $y = e^x$ is also found here. Graph the function $f(x) = 10e^x$ by entering $y = 10e^x$ and record the result below.

4. On your calculator the natural logarithm function $\ln x$ is represented by $\ln x$ and the common logarithm $\log_{10} x$ is represented by $\log x$. The logarithm of x with base b,

 $log_b x$ can be entered using the change of base formula $log_b x = \frac{ln x}{ln b}$. Now graph $y = log_{1/2} x$ and y = ln x on the same axes and sketch the result below. Label which graph is which.

$0 \le x \le 4, -2 \le y \le 3$