Assignment 6: Limits, Part II (1.5) Please provide a handwritten response.

Name_____

1. We can use the calculators to conjecture limits even when the answer is $\pm \infty$. Even though $\lim_{x \to 0} \frac{1}{x}$ does not exist, it is nonetheless true that $\lim_{x \to 0^+} \frac{1}{x} = \infty$ and that $\lim_{x \to 0^-} \frac{1}{x} = -\infty$. Graph $y = \frac{1}{x}$ below. Does your calculator support the result?

2a. Find the value of $\lim_{x \to 2^+} \frac{4-x}{(x-2)^2}$ by hand. Graph the function on the axes provided to see the graph near x = 2.

$1.5 \le x \le 2.5, 0 \le y \le 14000$

2b. Based on this graph, what do you think $\lim_{x \to 2^+} \frac{4-x}{(x-2)^2}$ is?

2c. Based on this graph, do you think that $\lim_{x\to 2} \frac{4-x}{(x-2)^2}$ exists? If so, then what is its value?

3. You can also use the calculator to conjecture limits when $x \to \infty$ or $x \to -\infty$ by examining the end behavior of the graph of the function. For example, conjecture $\lim_{x\to\infty} \frac{5x-7}{4x+3}$ and record the graph below. Trace to the right and hold the arrow key

down to form your conjecture. Record the conjecture below. Is this answer correct?

1

4a. Find the value of $\lim_{x \to -\infty} \frac{x + \cos x}{3x + 2}$. Sketch the graph of $y = \frac{x + \cos x}{3x + 2}$ below.

4b. Based on this graph, how accurately can you tell the value of $\lim_{x \to -\infty} \frac{x + \cos x}{3x + 2}$? What do you think it is?

4c. Now sketch the graph on the axes below. Can you now be more specific about the value of $\lim_{x \to -\infty} \frac{x + \cos x}{3x + 2}$? Why was the graph in part **a** so much smoother than this one?

4d. Trace to the left and hold the arrow key down and let the screen move. What do you think the limit is now? Is this result surprising?