Assignment 8: Derivatives of Explicit Functions (2.1-9) Name_ Please provide a handwritten response.

1a. The TI calculators will graph both a function and its derivative. Graph $f(x) = 3x^3 + 2x - 1$ by entering the function as Y_1 and graph the derivative as Y_2 . The derivative is entered as follows.

	TI-83 Plus/TI-84 Plus	TI-86
	MATH 8 (nDeriv)	2ND CALC F3 (der1)
DERIVATIVE	Enter Y ₂ = nDeriv (Y ₁ , X , X) in the	Enter $y_2=der1(y_1,x,x)$ in the $y(x)=$
	Y = MENU. (Y ₁ is found in VARS	MENU. The resulting graph will be that
	Y-VARS menu) The resulting	of the derivative.
	graph will be that of the derivative.	

Graph $f(x) = 3x^3 + 2x - 1$ and its derivative and record the result below. Use different line styles for the function and its derivative.

 $-1.5 \le x \le 1.5, -10 \le y \le 10$

1b. The slope m_{tan} line tangent to the graph of f at, say, x = 1 is given by $Y_2(1)$. Execute $Y_2(1)$ to see that $m_{tan} = 11$ in this case. Also execute $Y_1(1)$ to see that y = 4 when x = 1. The equation of the tangent line at x = 1 is y = 11(x-1) + 4 = 11x - 7. Now, graph both

 $y_1 = 3x^3 + 2x - 1$ and $y_3 = 11x - 7$ together on the same set of axes (select y_1 and y_3). You can also draw the tangent line using the **DRAW** menu. Does the tangent line really look as though its slope is **11**? Why?

	TI-83 Plus/TI-84 Plus	TI-86
DRAW TANGENT	Graph $Y_1 = 3x^3 + 2x - 1$	Graph $y1 = 3x^3 + 2x - 1$
LINE TO	2ND PGRM (DRAW) 5 Tangent(GRAPH MORE F2(DRAW)
$f(x) = 3x^3 + 2x - 1$	Calculator will return the graph with	MORE MORE MORE
USING THE DRAW	the equation of the tangent line in the	F2(TanLn) Calculator will return
MENU	upper left hand corner of the screen.	TanLn (Type y1,1) and press
	Type 1, press ENTER and the	enter. The calculator will draw the
	calculator will draw the graph of the	tangent line to the curve at $x = 1$.
	tangent line to the curve at $x = 1$.	

1

2. Graph $y = sin \frac{2x}{x+1}$ and its first and second derivatives on the axes provided. To find the

graph of second derivative f'' of $y_1 = f(x) = sin \frac{2x}{x+1}$, $y_2 = f'(x)$ use

	TI-83 Plus/TI-84 Plus	TI-86
	From MATH menu select 8	From 2ND ÷ (CALC) select
	(nDeriv () and obtain	F4 (der2) and obtain
SECOND DERIVATIVES	nDeriv (Y ₂ , X , X). At x=1 you	der2(y1,x,x). At x=1 you
	would enter nDeriv (Y ₂ , X , 1)	would enter der2 (y1,x,1)

Label which is which. Differentiate $y = sin \frac{2x}{x+1}$ by hand and record the results below.

3a. Given $f(x) = x^2 e^{\sin x}$. What rules would you have to use to differentiate this function by hand? Record your results below.

3b. Plot the first derivative of $f(x) = x^2 e^{\sin x}$ on the axes (on the left) provided below (Enter $y_1 = f(x), y_2 = f'(x)$. Turn y_1 off.)

3c. According to the definition of derivative, if *h* is a small fixed number, then the difference quotient $\frac{f(x+h)-f(x)}{h}$ should be close to f'(x), and so their graphs should lie close together. For the moment let's choose h = 0.5. Now plot f'(x) and the difference quotient on the same set of axes (on the right) below. Enter $y_1 = x^2 e^{\sin x}$, $y_2 =$ derivative of y_1 , and $y_3 = (y_1(x+0.5) - y_1)/(0.5)$. Do not plot y_1 . Use different line styles for y_2 and y_3 .

3d. Change the 0.5 to 0.4 in the difference quotient in part c. Repeat parts b and c again. Are the two graphs closer? Can you still tell them apart?

3e. Experiment with smaller and smaller values of h until the graphs of f'(x) and the difference quotient over $-4 \le x \le 4$ become indistinguishable on your calculator screen. How small does **h** have to be for this to happen?