Assignment 13: Numerical Integration (4.7) Name____ Please provide a handwritten response.

1. Graph $y = \sqrt[3]{x^2 + 1}$ on the axes provided and estimate the area under $\int_0^1 \sqrt[3]{x^2 + 1} dx$. (Be careful about where the origin is!) Record your answer in the space provided below.

F1+ F2+ F3 F4 F5+ F6+ F7+SII ToolsZoomTraceReGraphMathDrawPenI:C
MCGH RAD AUTO FUNC
$0 \le x \le 1, 1 \le y \le 1.26$

2a. Run the program **riemann**() used in **Assignment 12** with a = 0, b = 1, n = 10.

2b. The midpoint of each interval $[x_{i-1}, x_i]$ is given by $c_i = \frac{x_{i-1} + x_i}{2}$. Find the **Midpoint** approximation $\sum_{i=1}^{n} f(c_i) \Delta x$ from **riemann**(). Remember, it is result **midsum**. Is this result plausible? Enter it in the table below.

3. Calculate the **Trapezoidal Rule** approximation $\sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x$ from the

program **riemann()** by pressing **ENTER** after the **midsum** is found. Enter the result in the table below.

4. Calculate the Simpson's Rule approximation $\sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x$ from the

program **riemann()** by pressing **ENTER** after the **Trapezoidal Rule** is found. Enter the result in the table below.

п	MIDPOINT	TRAPEZOID	SIMPSON'S
10			
20			
50			

5. Rerun the program with n = 20 answering questions 2b-4 in order. Record your results in the table. Which of the three approximations did not change when n was increased.

1

6. Repeat Question 5 with n = 50 and enter the results in the table. Are the three approximations drawing closer together as *n* increases?

7. You can use the calculator to accurately calculate $\int_{0}^{1} \sqrt[3]{x^2 + 1} dx$ using

 $\int (y1(x), x, 0, 1)$ or $\int (\sqrt[3]{x^2 + 1}, x, 0, 1)$ and record the result below. Based on this, which of the three approximation methods applied above was the most accurate?

8a. You can almost always take the results of \int to be accurate. However, there are some unusual situations that cause trouble for \int . For example, let $f(x) = \sin \frac{1}{x}$. Sketch the graph (as best you can) over [0,1] on the axes provided below.

F1+ F2+ F3 F4 F5+ F6+ F7+S:: ToolsZoomTraceReGraphMathDrawPen:C
· · · · · · · · · · · · · · · · · · ·
MCGH RAD AUTO FUNC
$0 \le x \le 1, -1 \le y \le 1$

8b. Evaluate $\int \left(sin \frac{1}{x}, x, .001, 1 \right)$ to calculate $\int_{.001}^{1} sin \frac{1}{x} dx$ and describe what happens below. Do you think the numerical result is trustworthy?

2