## Assignment 13: Numerical Integration (4.7)

Name Please provide a handwritten response.

1. Graph $\boldsymbol{y}=\sqrt[3]{\boldsymbol{x}^{2}+1}$ on the axes provided and estimate the area under $\int_{0}^{1} \sqrt[3]{\boldsymbol{x}^{2}+1} d \boldsymbol{x}$. (Be careful about where the origin is!) Record your answer in the space provided below.


2a. Run the program riemann( ) used in Assignment 12 with $a=\mathbf{0}, \boldsymbol{b}=\mathbf{1}, \boldsymbol{n}=10$.

2b. The midpoint of each interval $\left[x_{i-1}, x_{i}\right]$ is given by $c_{i}=\frac{x_{i-1}+x_{i}}{2}$. Find the Midpoint approximation $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x$ from riemann( ). Remember, it is result midsum. Is this result plausible? Enter it in the table below.
3. Calculate the Trapezoidal Rule approximation $\sum_{i=1}^{n} \frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2} \Delta x$ from the program riemann( ) by pressing ENTER after the midsum is found. Enter the result in the table below.
4. Calculate the Simpson's Rule approximation $\sum_{i=1}^{n} \frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2} \Delta x$ from the program riemann( ) by pressing ENTER after the Trapezoidal Rule is found. Enter the result in the table below.

| $n$ | MIDPOINT | TRAPEZOID | SIMPSON'S |
| :---: | :--- | :--- | :--- |
| 10 |  |  |  |
| 20 |  |  |  |
| 50 |  |  |  |

5. Rerun the program with $\boldsymbol{n}=\mathbf{2 0}$ answering questions $\mathbf{2 b} \mathbf{- 4}$ in order. Record your results in the table. Which of the three approximations did not change when $\boldsymbol{n}$ was increased.
6. Repeat Question $\mathbf{5}$ with $\boldsymbol{n}=50$ and enter the results in the table. Are the three approximations drawing closer together as $\boldsymbol{n}$ increases?
7. You can use the calculator to accurately calculate $\int_{0}^{1} \sqrt[3]{\boldsymbol{x}^{2}+1} d x$ using $\int(\boldsymbol{y} \mathbf{1}(\boldsymbol{x}), \boldsymbol{x}, \mathbf{0}, 1)$ or $\int\left(\sqrt[3]{\boldsymbol{x}^{2}+\mathbf{1}}, \boldsymbol{x}, \mathbf{0}, 1\right)$ and record the result below. Based on this, which of the three approximation methods applied above was the most accurate?

8a. You can almost always take the results of $\int$ to be accurate. However, there are some unusual situations that cause trouble for $\int$. For example, let $f(x)=\sin \frac{1}{x}$. Sketch the graph (as best you can) over $[\mathbf{0 , 1}]$ on the axes provided below.


8b. Evaluate $\int\left(\sin \frac{1}{x}, x, .001,1\right)$ to calculate $\int_{.001}^{1} \sin \frac{1}{x} d x$ and describe what happens below. Do you think the numerical result is trustworthy?

