Assignment 16: Integration Techniques (6.1-6) Name_____ Please provide a handwritten response.

1a. Using identities you can often show that two different-looking results for an integral are both correct. Evaluate $\int \cos^3 x \sin^2 x \, dx$ by hand and record the result below.

1b. Evaluate this integral on your calculator by evaluating $\int ((\cos(x))^3 (\sin(x))^2, x, c)$ and record the results below. Does your answer look the same as your answer in **1a**?

2a. Multiplication can be denoted by a * on your calculator. Some calculators will accept a space for multiplication (as will some computer algebra systems). Find $\int x \sin x \, dx$ by first evaluating $\int (x * \sin(x), x, c)$ and then as $\int (x \sin(x), x, c)$. Record the results below. Is there any difference between the two?

2b. Now repeat the last command without the space between the x and sin(x). Record the result below. What does this result mean?

3a. The inverse tangent function is denoted on your calculator by tan^{-1} . Execute $\int (e^{x}(x)*tan^{-1}(e^{x})), x, c)$ to evaluate $\int e^{x} tan^{-1}(e^{x}) dx$. Record the results below.

3b. The history screen on your calculator contains the last 30 entry/answer pairs. If you want to work with one of these previous expressions you can use the up arrow key to find and highlight the desired expression. Pressing **ENTER** will place the highlighted entry in the entry line. Highlight $\int (e^{(x)} \tan^{-1}(e^{(x)}), x, c))$ in the history area and press

ENTER. Execute the command by pressing **ENTER** again and compare the answer to the answer in part **3a**.

3c. You can differentiate the result in part **3a** using the *d* command. Enter *d*(. Place the answer to **3a** in the entry line by highlighting it and pressing enter. Finish by typing , *x*). The entire entry should be $d(-ln(e^{(2*x)+1})/2 + e^{(x)*tan^{-1}}(e^{(x)}), x))$. Execute this entry and record the result below.

4a. Evaluate $\int x^3 e^{5x} \cos(3x) dx$ by executing $\int (x \wedge 3^* e^{(5x)} \cos(3x), x, c)$ and record your answer below.

4b. Now check your result by evaluating d(ans(1), x). The *d* is accessed by **2nd 8** and the *ans*(1) is accessed by **2nd**(-). Record your answer below. Did you get what you expected?

5a. Your calculator will perform a partial fraction decomposition using the expand command. Perform a partial fraction decomposition on $\frac{x^2 + 2x - 1}{(x-1)^2(x^2+4)}$ by entering exp and $(((x \land 2) + 2x - 1) / ((x-1) \land 2((x \land 2) + 4))))$ and record the result below. Check your result by executing comDenom (ans (1), x). Does everything look correct?

5b. Use the \int command to find an antiderivative of the expression in **5a** and record the result below.

5c. Now proceed as in **4b** to check your result. Is it correct?

6. Repeat 5a-c through for $y = \frac{3x}{x^2 - 3x - 4}$. Are you able to confirm that your calculator's antiderivative is correct? Explain.