Assignment 25: Vector-Valued Functions, Part 1 (11.1-3) Name Please provide a handwritten response.

1a. The vector function $\vec{r}(t) = \langle cos(3t), sin(2t) \rangle$, $0 \le t \le 2\pi$ can be defined by entering the command **Define** $\vec{r}(t) = [xt1(t), yt1(t)]$ in the entry line of the home screen. You can graph this function by setting the **MODE** to **PARAMETRIC** and letting $\begin{cases} xt1 = cos(3t) \\ yt1 = sin(2t) \end{cases}$. Sketch the

resulting curve, known as a "Lissajous curve" on the axes provided below

F1+ F2+ F3 F4 ToolsZoomTraceReGr	aph Math DrawPen C
. <u> </u>	
MCGH RAD AUTO	D PAR
$-1 \le x \le 1, -1 \le y \le 1$	

1b. You can easily evaluate the points $\vec{r}(0), \vec{r}\left(\frac{\pi}{4}\right), ..., \vec{r}\left(\frac{n\pi}{4}\right) \quad 0 \le n \le 8$ from the graphing screen on your calculator by pressing F5 Math, 1 Value and entering the θ value. Mark these coordinates on the graph above and draw arrows to show the orientation of the curve.

1c. The velocity vector $\vec{v}(t) = \vec{r}'(t)$ can be defined as **Define** $\vec{v}(t) = d(\vec{r}(t), t)$. It can then be evaluated by entering $\vec{v}(t)$. Speed is given by $\|\vec{v}(t)\| = \sqrt{\vec{v}(t) \cdot \vec{v}(t)} = norm(\vec{v}(t))$. (norm(is found from 2nd 5 MATH, 4 Matrix and selecting the Norm option. Find the speed and record the result below. Sketch the graph of $\|\vec{v}(t)\| = \begin{cases} xt \ 2 = t \\ yt \ 2 = norm(\vec{v}(t)) \end{cases}$ over

 $0 \le t \le 2\pi$ on the axes below. Based on this graph, does the moving point ever stop?

1d. Define the reparameterization of $\vec{r}_1(t) = \vec{r}(t+3\sin t)$, $0 \le t \le 2\pi$ and graph the $\vec{r}_1(t)$ over $0 \le t \le 2\pi$. Define $\begin{cases} xt3(t) = xt1(t+3sint) \\ yt3(t) = yt1(t+3sint) \end{cases}$ as you defined $\vec{r}(t)$ in 1a and graph

them. What is the subtle difference between this graph and that in part \mathbf{a} ? Record the graphs on the axes provided.

F1+ F2+ F3 F4 Tools Zoom Trace Regr	aph[Math]Draw[Pen]=C	
MCGH RAD AUTO	PAR	
$-1 \le x \le 1, -1 \le y \le 1$		
$0 \le t \le 2\pi$		

1e. The velocity vector $\vec{v}(t) = \vec{r'}_1(t)$ is used to find the speed of a point moving under $\vec{r}_1(t)$. Plot the speed of $\vec{r}_1(t) = \langle xt1(t+3sint), yt1(t+3sint) \rangle$ by imitating part c. Note the approximate values of t where the speed is zero. Use the Solve command on your calculator to find more accurate values of $\vec{r}(t) = 0$. What are the coordinates of the points where $\vec{r}_1(t)$ "stops"? Record your results below.

2a. Sketch the graph of $\vec{r}(t) = \langle 2\cos t + \sin 2t, 2\sin t + \cos 2t \rangle$, $0 \le t \le 2\pi$ on the axes provided below.

2b. Find and mark on the graph any stationary points of $\vec{r}(t)$, as above.

2c. Define the reparameterization of $\vec{r}_1(t) = \vec{r}(t + \sin t)$, $0 \le t \le 2\pi$ and graph $\vec{r}_1(t)$ over $0 \le t \le 2\pi$. Check for stationary points. How do the results compare with part b?

2d. Repeat part **c** with $\vec{r}_1(t) = \vec{r}(t^2)$, $0 \le t \le \sqrt{2\pi}$.