Assignment 25: Vector-Valued Functions, Part 1 (11.1-3) Name Please provide a handwritten response.

1a. The vector function $\vec{r}(\boldsymbol{t})=\langle\boldsymbol{\operatorname { c o s }}(3 \boldsymbol{t}), \boldsymbol{\operatorname { s i n }}(2 \boldsymbol{t})\rangle, \quad \mathbf{0} \leq \boldsymbol{t} \leq 2 \pi$ can be defined by entering the command Define $\vec{r}(\boldsymbol{t})=[\boldsymbol{x t} \mathbf{1}(\boldsymbol{t}), \boldsymbol{y t 1}(\boldsymbol{t})]$ in the entry line of the home screen. You can graph this function by setting the MODE to PARAMETRIC and letting $\left\{\begin{array}{l}x t 1=\boldsymbol{\operatorname { c o s }}(3 t) \\ y t 1=\boldsymbol{\operatorname { s i n }}(2 t)\end{array}\right.$. Sketch the resulting curve, known as a "Lissajous curve" on the axes provided below.

1b. You can easily evaluate the points $\vec{r}(\mathbf{0}), \vec{r}\left(\frac{\pi}{4}\right), \ldots, \vec{r}\left(\frac{\boldsymbol{n} \pi}{4}\right) \quad \mathbf{0} \leq \boldsymbol{n} \leq \boldsymbol{8}$ from the graphing screen on your calculator by pressing F5 Math, 1 Value and entering the $\boldsymbol{\theta}$ value. Mark these coordinates on the graph above and draw arrows to show the orientation of the curve.

1c. The velocity vector $\vec{v}(t)=\vec{r}^{\prime}(\boldsymbol{t})$ can be defined as Define $\vec{v}(\boldsymbol{t})=\boldsymbol{d}(\vec{r}(\boldsymbol{t}), \boldsymbol{t})$. It can then be evaluated by entering $\vec{v}(\boldsymbol{t})$. Speed is given by $\|\vec{v}(t)\|=\sqrt{\vec{v}(t) \cdot \vec{v}(t)}=\operatorname{norm}(\vec{v}(t))$. (norm(is found from 2nd 5 MATH, 4 Matrix and selecting the Norm option. Find the speed and record the result below. Sketch the graph of $\|\vec{v}(t)\|=\left\{\begin{array}{l}x t 2=\boldsymbol{t} \\ \boldsymbol{y t 2}=\boldsymbol{n o r m}(\vec{v}(t))\end{array}\right.$ over $\mathbf{0} \leq \boldsymbol{t} \leq \mathbf{2 \pi}$ on the axes below. Based on this graph, does the moving point ever stop?

1d. Define the reparameterization of $\overrightarrow{\boldsymbol{r}}_{\mathbf{1}}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}(\boldsymbol{t}+\mathbf{3} \sin \boldsymbol{t}), \mathbf{0} \leq \boldsymbol{t} \leq \mathbf{2 \pi}$ and graph the $\overrightarrow{\boldsymbol{r}}_{1}(\boldsymbol{t})$ over $0 \leq t \leq 2 \pi$. Define $\left\{\begin{array}{l}\boldsymbol{x t} 3(t)=\boldsymbol{x t} 1(t+3 \sin t) \\ y t 3(t)=\boldsymbol{y t} \mathbf{1}(t+3 \sin t)\end{array}\right.$ as you defined $\vec{r}(t)$ in 1a and graph
them. What is the subtle difference between this graph and that in part a? Record the graphs on the axes provided.

1e. The velocity vector $\overrightarrow{\boldsymbol{v}}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}^{\prime}{ }_{\mathbf{1}}(\boldsymbol{t})$ is used to find the speed of a point moving under $\overrightarrow{\boldsymbol{r}}_{\mathbf{1}}(\boldsymbol{t})$. Plot the speed of $\vec{r}_{\mathbf{r}}(\boldsymbol{t})=\langle\boldsymbol{x t} \mathbf{1}(\boldsymbol{t}+\mathbf{3} \boldsymbol{\operatorname { s i n }} \boldsymbol{t}), \boldsymbol{y t} \mathbf{1}(\boldsymbol{t}+\mathbf{3} \boldsymbol{\operatorname { s i n }} \boldsymbol{t})\rangle$ by imitating part \mathbf{c}. Note the approximate values of \mathbf{t} where the speed is zero. Use the Solve command on your calculator to find more accurate values of $\overrightarrow{\boldsymbol{r}}(\boldsymbol{t})=\mathbf{0}$. What are the coordinates of the points where $\overrightarrow{\boldsymbol{r}}_{\mathbf{1}}(\boldsymbol{t})$ "stops"? Record your results below.

2a. Sketch the graph of $\vec{r}(t)=\langle 2 \cos t+\sin 2 t, 2 \sin t+\cos 2 t\rangle, 0 \leq t \leq 2 \pi$ on the axes provided below.

2b. Find and mark on the graph any stationary points of $\overrightarrow{\boldsymbol{r}}(\boldsymbol{t})$, as above.

2c. Define the reparameterization of $\overrightarrow{\boldsymbol{r}}_{\mathbf{1}}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}(\boldsymbol{t}+\sin \boldsymbol{t}), \mathbf{0} \leq \boldsymbol{t} \leq 2 \pi$ and graph $\overrightarrow{\boldsymbol{r}}_{1}(\boldsymbol{t})$ over $\mathbf{0} \leq \boldsymbol{t} \leq 2 \boldsymbol{\pi}$. Check for stationary points. How do the results compare with part \mathbf{b} ?

2d. Repeat part \mathbf{c} with $\vec{r}_{1}(\boldsymbol{t})=\overrightarrow{\boldsymbol{r}}\left(\boldsymbol{t}^{2}\right), \mathbf{0} \leq \boldsymbol{t} \leq \sqrt{2 \pi}$.

