Assignment 26: Vector-Valued Functions, Part II (11.1-5) Name_ Please provide a handwritten response.

1a. The Cornu spiral can be drawn on your calculator by defining

 $xt1(t) = \int (cos(\pi u^2/2), u, 0, t)$ and $yt1(t) = \int (sin(\pi u^2/2), u, 0, t)$. Set your window to $-\pi \le t \le \pi, -.8 \le x \le .8, -.8 \le y \le .8$ and graph. Sketch the result on the axes below. These integrals are known as "Fresnel integrals" and are used in applied mathematics.

1b. To find the arc length of the curve from t = 0 to t = c you can use the formula

$$\int_{0}^{c} \sqrt{\left(\frac{dxt1}{dt}\right)^{2} + \left(\frac{dyt1}{dt}\right)^{2}} dt \text{ by entering } \int \left(\sqrt{\left(\left(d\left(xt1(t),t\right)\right)^{2} + \left(d\left(yt1(t),t\right)\right)^{2}\right), t, 0, c\right)} dt$$

Record the result below. What does this say about the parameterization of this curve?

1c. To find the curvature at t = c we can use the formula $\kappa = \frac{\|\vec{T}'(t)\|}{\|\vec{r}'(t)\|}$ where $\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$ is the unit tangent vector and define $\vec{v}(t) = d(\vec{r}(t), t)$. Then define the unit tangent vector as $\vec{u}(t) = \vec{v}(t) / norm(\vec{v}(t))$, its derivative as $\vec{s}(t) = d(\vec{u}(t), t)$ and define $k = norm(\vec{s}(t)) / norm(\vec{v}(t))$. Record the result below. What does this say about the curve?

2a. Given the vector valued function $\vec{r}(t) = \langle \cos t, \ln t, \sin t \rangle$. Find the unit tangent vector $\vec{T}(t)$ at $t = \frac{\pi}{2}$ and record your result below.

2b. Now find the curvature κ for this function at $t = \frac{\pi}{2}$ and record the result below. What does this say about the curve at this point?

3a. Find the unit tangent vector $\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$ for $\vec{r}(t) = \langle t, 2t, t^3 \rangle$ at t = 0 and at t = 1. Use the formulas from **1c.** Be sure to define $\vec{T}(t)$ so you can use it for later calculations. Record your results below.

3b. Compute the curvature κ as in **2b** for this function at t = 0 and at t = 1 and record your results below.

3c. The principal unit normal vector, $\vec{N}(t)$ can be found by computing $\vec{N}(t) = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|}$. Be sure to define $\vec{N}(t)$ so you can use it for later calculations. Compute $\vec{N}(t)$ at t = 0 and at t = 1 and record your results below.

3d. The binormal vector, $\vec{B}(t)$, is defined to be $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$ and is orthogonal to both $\vec{T}(t)$ and $\vec{N}(t)$. Calculate $\vec{B}(t) = crossP(\vec{T}(t), \vec{N}(t))$ at t = 0 and at t = 1 and record the results below.