Assignment 27: Functions of Two Variables (12.1-2) Name______Please provide a handwritten response.

1a. To graph the function $f(x,y) = sin(y-x^2)$ change the MODE to 3D and enter $z1 = sin(y-x^2)$ from $\phi Y = sin(y-x^2)$ the still in the $\phi Y = sin(y-x^2)$ from $\phi Y = sin$

1b. Graph f(x, y) over a wider range and describe the general appearance of the resulting surface.

1c. Draw a contour plot of this function by going to Format (F1 Tools 9) and changing Style to CONTOUR LEVELS. Set $eye\theta = -90$, $eye\phi = 0$, $eye\Psi = 0$ in the window. Sketch the result on the axes below.

2a. Contour plots can be used to show that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$ and that $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ does not exist. Enter $z\mathbf{1} = x \wedge 2y / (x \wedge 2 + y \wedge 2)$ for $-.1 \le x \le .1$, $-.1 \le y \le .1$ and record the result below. Repeat with the window changed to $-.07 \le x \le .07$, $-.07 \le y \le .07$.

2b. How do these graphs support the conclusion that $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$ exists?

2c. Now examine $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ by graphing a contour plot of $z3 = x^2/(x^2+y^2)$. Set your window to $-.01 \le x \le .01$, $-.01 \le y \le .01$. Repeat with the window changed to $-.001 \le x \le .001$, $-.001 \le y \le .001$. Record your results below.

2d. How do these graphs support the conclusion that $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ does not exist?

2e. Based on contour plots, do you think that $\lim_{(x,y)\to(0,0)} \frac{x \sin y}{x^2 + y^2}$ exists? Explain your answer.