\qquad Please provide a handwritten response.

1. The double integral $\int_{0}^{1} \int_{0}^{y^{2}} \frac{\mathbf{3}}{4+\boldsymbol{y}^{3}} \boldsymbol{d} \boldsymbol{x} \boldsymbol{d} \boldsymbol{y}$ is evaluated on your calculator as $\int\left(\int\left(3 /\left(4+y^{\wedge} 3\right), x, 0, y^{\wedge} 2\right), y, 0,1\right)$. Evaluate this integral and record the result below.

2a. Sketch the graph of $\mathbf{z}=\boldsymbol{x}^{2} \sin \left(\frac{\pi y}{6}\right)$ over $\mathbf{0} \leq x \leq 6,0 \leq y \leq 6,0 \leq z \leq 40$ from a standard view of eye $\boldsymbol{\theta}=\mathbf{7 0}$, eye $\boldsymbol{\phi}=\mathbf{2 0}$, eye $\Psi=\mathbf{0}$ on the axes provided. Be sure that you have $\boldsymbol{x} \boldsymbol{g r i d}=\mathbf{1 4}, \mathbf{y g r i d}=14$. From the format screen set the Axes to BOX.

Now regraph the function changing the window setting to еуе $\theta=135$, еуе $\phi=35$, еуе $\Psi=0$. Sketch the resulting graph in the box provided below.

2b. Riemann sums for the volume can be found using $4,9,16,25$, etc. squares. If you partition the region R into \boldsymbol{n}^{2} then $\Delta A_{i}=\frac{\mathbf{3 6}}{\boldsymbol{n}^{2}}$ for all \boldsymbol{i}. For convenience you can label the center of each square as $\left(\boldsymbol{u}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{i}}\right), \mathbf{1} \leq \boldsymbol{i}, \boldsymbol{j} \leq \boldsymbol{n}$ so that $\boldsymbol{u}_{i}=\frac{\mathbf{3}}{\boldsymbol{n}}+(\boldsymbol{i}-\mathbf{1}) \frac{\mathbf{6}}{\boldsymbol{n}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$ and $v_{j}=\frac{3}{n}+(j-1) \frac{6}{n}, 1 \leq j \leq n$. Thus $V \approx \sum_{j=1}^{n} \sum_{i=1}^{n} f\left(u_{i}, v_{j}\right) \Delta A_{i}=\sum_{j=1}^{n} \sum_{i=1}^{n} u_{i}^{2} \sin \frac{\pi v_{j}}{6}$. On your calculator you will want to Define $u=3 / n+(i-1) 6 / n$ and Define $v=3 / n+(j-1) 6 / n$. Then enter $\left(36 / n^{\wedge} 2\right) * \sum\left(\sum\left(u^{\wedge} 2^{*} \sin \left(\pi^{*} v / 6\right), i, 1, n\right), j, 1, n\right)$ and record your result below.

2c. You can readily compute this summation for various values of \boldsymbol{n} by adding the $\boldsymbol{n}=$ \qquad to the statement in $\mathbf{2 b}$. Fill in the table below by calculating the summation for the indicated values of \boldsymbol{n}.

n	$\sum_{j=1}^{n} \sum_{i=1}^{n} f\left(u_{i}, v_{j}\right) \Delta A_{i}$
2	
3	
6	
12	

2d. How large a value of \boldsymbol{n} is needed to make the Riemann sum less than 275.03?

2e. The exact volume is given by $\int_{0}^{6} \int_{0}^{6} f(x, y) d x d y$. Evaluate this integral by entering $\int\left(\int\left(x^{\wedge} 2^{*} \sin \left(\pi^{*} y / 6\right), x, 0,6\right), y, 0,6\right)$. Record your result below.

3a. Graph $z=\sin \left(x^{2}+y^{2}\right)$ over $-2 \leq x \leq 2,-2 \leq y \leq 2,-1 \leq z \leq 1$. How would you describe the resulting surface? What part of the surface corresponds to $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x$?

3b. Compute the double integral given in 3a and record the results below. Be careful of the order of integration.

3c. Transform the integral to polar coordinates as $\int_{0}^{2} \int_{0}^{\pi} r \boldsymbol{\operatorname { s i n }}\left(\boldsymbol{r}^{2}\right) d \theta d r$ and evaluate the resulting double integral. Record the answer below. Are the answers the same? Which method was easier for your calculator?

