Assignment 29: Double Integrals (13.1-3) Please provide a handwritten response.

Name_____

1. The double integral $\int_{0}^{1} \int_{0}^{y^{2}} \frac{3}{4+y^{3}} dx dy$ is evaluated on your calculator as $\int \left(\int (3/(4+y^{3}), x, 0, y^{2}), y, 0, 1 \right)$. Evaluate this integral and record the result below.

2a. Sketch the graph of $z = x^2 sin\left(\frac{\pi y}{6}\right)$ over $0 \le x \le 6, 0 \le y \le 6, 0 \le z \le 40$ from a standard view of $eye\theta = 70$, $eye\phi = 20$, $eye\Psi = 0$ on the axes provided. Be sure that you have *xgrid* = 14, *ygrid* = 14. From the format screen set the **Axes** to **BOX**.

Now regraph the function changing the window setting to

 $eye\theta = 135$, $eye\phi = 35$, $eye\Psi = 0$. Sketch the resulting graph in the box provided below.

2b. Riemann sums for the volume can be found using 4, 9, 16, 25, etc. squares. If you partition the region R into n^2 then $\Delta A_i = \frac{36}{n^2}$ for all *i*. For convenience you can label the center of each square as $(u_i, v_i), 1 \le i, j \le n$ so that $u_i = \frac{3}{n} + (i-1)\frac{6}{n}, 1 \le i \le n$ and

$$v_j = \frac{3}{n} + (j-1)\frac{6}{n}, 1 \le j \le n.$$
 Thus $V \approx \sum_{j=1}^n \sum_{i=1}^n f(u_i, v_j) \Delta A_i = \sum_{j=1}^n \sum_{i=1}^n u_i^2 \sin \frac{\pi v_j}{6}$. On your

calculator you will want to **Define** u = 3/n + (i-1)6/n and **Define** v = 3/n + (j-1)6/n. Then enter $(36/n^2)^* \sum (\sum (u^2 * sin(\pi * v/6), i, 1, n), j, 1, n)$ and record your result below. **2c.** You can readily compute this summation for various values of *n* by adding the $/n = _$ to the statement in **2b**. Fill in the table below by calculating the summation for the indicated values of *n*.

n	$\sum_{j=1}^{n}\sum_{i=1}^{n}f\left(u_{i},v_{j}\right)\Delta A_{i}$
2	
3	
6	
12	

2d. How large a value of *n* is needed to make the Riemann sum less than 275.03?

2e. The exact volume is given by $\int_0^6 \int_0^6 f(x, y) dx dy$. Evaluate this integral by entering $\int (\int (x \wedge 2^* \sin(\pi^* y / 6), x, 0, 6), y, 0, 6)$. Record your result below.

3a. Graph $z = sin(x^2 + y^2)$ over $-2 \le x \le 2, -2 \le y \le 2, -1 \le z \le 1$. How would you describe the resulting surface? What part of the surface corresponds to $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} sin(x^2 + y^2) dy dx$?

3b. Compute the double integral given in **3a** and record the results below. Be careful of the order of integration.

3c. Transform the integral to polar coordinates as $\int_0^2 \int_0^{\pi} r \sin(r^2) d\theta dr$ and evaluate the resulting double integral. Record the answer below. Are the answers the same? Which method was easier for your calculator?