Assignment 3: Solving Equations (0.1\&2)

Name Please provide a handwritten response.

1a. One way to solve equations on TI-89 and Voyage 200 calculators is to use the solve command. For example you can find the zeros of $f(x)=x^{2}-3 x+2$ using the solver.

PROBLEM	TI-89, Voyage 200		
	$\begin{array}{l}\text { Use the solve command found } \\ \text { in the catalog (gives the syntax) }\end{array}$		
or from F2 (Algebra) 1(solve)		$\}$	or type the command on the
:---			
FIND ALL ZEROS OF:			
keyboard. The syntax is			
$\boldsymbol{f})=\boldsymbol{x}^{2}-\mathbf{3 x + 2}$			
solve (equation, variable).			
Enter			
solve $\left(\boldsymbol{x}^{\wedge} \wedge \mathbf{2 - 3 x}+\mathbf{2 = 0 , x}\right)$			
and press enter.			

Record the results below.

1b. Now solve $0=x^{3}-x^{2}-2 x+2$ (enter as $\left.0=x^{\wedge} 3-x^{\wedge} 2-2 x+2\right)$ and record the result below.

2a. Use the solve command to solve the equation $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2} \mathbf{- 1}$ and record the results below. Enter your equation as follows:

PROBLEM	TI-89, Voyage 200
Solve $\cos \boldsymbol{x}=\boldsymbol{x}^{2}-\mathbf{1}$	You can enter your equation as $\cos \boldsymbol{x}=\boldsymbol{x}^{\wedge} 2-1$.

Record the output below.

2b. You can find all the zeros of $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2} \mathbf{- 1}$ by starting from a graph.

PROBLEM	TI-89, Voyage 200
	Graph $y=\boldsymbol{\operatorname { c o s }}(\boldsymbol{x})-\boldsymbol{x}^{\wedge} 2+1$ From the GRAPH press F5 Solve $\boldsymbol{\operatorname { c o s } \boldsymbol { x } = \boldsymbol { x } ^ { 2 } - \mathbf { 1 } \text { from }}$a graph. (Math) 2 (Zero). Use arrow keys to move the cursor left of the zero for a Left (lower) Bound and then use them to find a Right (upper) Bound. Press ENTER and the calculator will give you the zero.

Sketch the graph and record the results below. Do they agree with the results from 2a?

2c. Now change parts \mathbf{a} and \mathbf{b} to solve the equation $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}=\boldsymbol{x}^{2}-5$. Remember to replace the $\boldsymbol{x}=$ with an appropriate value suggested by your graph. Record your solution below.

