1a. One way to solve equations on TI-89 and Voyage 200 calculators is to use the solve command. For example you can find the zeros of $f(x) = x^2 - 3x + 2$ using the solver.

PROBLEM	TI-89, Voyage 200
FIND ALL ZEROS OF: $f(x) = x^2 - 3x + 2$	Use the solve command found in the catalog (gives the syntax) or from F2 (Algebra) 1 (solve) or type the command on the keyboard. The syntax is $solve(equation, variable)$. Enter $solve(x \land 2 - 3x + 2 = 0, x)$ and press enter.

Record the results below.

1b. Now solve $0 = x^3 - x^2 - 2x + 2$ (enter as $0 = x \wedge 3 - x \wedge 2 - 2x + 2$) and record the result below.

2a. Use the **solve** command to solve the equation $\cos x = x^2 - 1$ and record the results below. Enter your equation as follows:

PROBLEM	TI-89, Voyage 200
Solve $\cos x = x^2 - 1$	You can enter your equation as $\cos x = x \wedge 2 - 1$.

Record the output below.

2b. You can find all the zeros of $\cos x = x^2 - 1$ by starting from a graph.

PROBLEM	TI-89, Voyage 200
Solve $\cos x = x^2 - 1$ from a graph.	Graph $y = cos(x) - x \wedge 2 + 1$
	From the GRAPH press F5
	(Math) 2 (Zero). Use arrow
	keys to move the cursor left of
	the zero for a Left (lower)
	Bound and then use them to
	find a Right (upper) Bound.
	Press ENTER and the
	calculator will give you the
	zero.

Sketch the graph and record the results below. Do they agree with the results from 2a?

2c. Now change parts **a** and **b** to solve the equation $\cos x = x^2 - 5$. Remember to replace the x = with an appropriate value suggested by your graph. Record your solution below.

