Assignment 30: Triple Integrals (13.4-7) Please provide a handwritten response.

Name_____

1a. To graph the portion of $z = f(x, y) = e^{x^2+y^2}$ inside $x^2 + y^2 = 1$ graph $z1 = e^{(x^2 + y^2)}$ where $-1 \le x \le 1, -1 \le y \le 1, 1 \le z \le 3$, $eye\theta = 70$, $eye\phi = 60$, $eye\Psi = 0$ and record your graph on the axes provided below.

1b. The formula for surface area, $S = \iint_{R} \sqrt{\left(f_{x}(x,y)\right)^{2} + \left(f_{y}(x,y)\right)^{2} + 1} \, dA$. We can find the surface area for this surface by evaluating $\iint \left(\iint \left(\sqrt{\left(2x * e^{(x^{2} + y^{2})}\right)^{2} + \left(2y * e^{(x^{2} + y^{2})}\right)^{2} + 1}, y, -\sqrt{(1 - x^{2})}, y \right)$

$$\sqrt{(1-x^2)}, x, -1, 1$$
 Record the result below.

1c. Convert the integral in 1b to polar coordinates by entering $\int (\int (r*\sqrt{4r} 2*e^{(2r+2)+1}, r, 0, 1), \theta, 0, 2\pi)$, evaluate it, and record the result below. Does this make the calculation go any faster? Did you get the same result?

2. Evaluate the triple integral $\int_0^2 \int_0^{4-2x} \int_0^{4-2x-z} 6xy \, dy \, dz \, dx$ by executing $\int \left(\int \left(\int (6x^* y, y, 0, 4-2x-z), z, 0, 4-2x \right), x, 0, 2 \right)$. Record your result below.

3a. To examine the region *Q* between the surfaces $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{4 - x^2 - y^2}$ you can plot each surface separately over $-1.5 \le x \le 1.5$, $-1.5 \le y \le 1.5$, $0 \le z \le 2$. Plot each surface on the axes provided below.

How would you describe in words the shape of this region?

3b. The triple integral $\iint_{Q} ze^{\sqrt{x^2+y^2}} dV$ is written as $\int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{\sqrt{4-r^2}} rze^r dz dr d\theta$ when it is converted to cylindrical coordinates. Compute this integral on your calculator and record the result below.

4a. The "roof" of the region below $x^2 + y^2 + z^2 = 4z$ and above $z = \sqrt{x^2 + y^2}$ can be graphed on your calculator only by solving for $z = 2 + \sqrt{4 - x^2 - y^2}$. Graph the "roof" and describe it below. This surface is readily written in spherical coordinates as $\rho = 4\cos\phi$.

4b. Sketch and describe the "floor" of the solid, $z = \sqrt{x^2 + y^2}$. Rewritten in spherical coordinates this surface can be described as $\phi = \frac{\pi}{4}$.

4c. Set up an integral in spherical coordinates which gives the volume of the solid described in **4a** and **4b**. Evaluate the integral using your calculator and record the result below.