1a. To graph the portion of $z=f(x, y)=e^{x^{2}+y^{2}}$ inside $x^{2}+y^{2}=1$ graph $z 1=e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right)$
 on the axes provided below.

1b. The formula for surface area, $S=\iint_{R} \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d A$. We can find the surface area for this surface by evaluating

$$
\int\left(\int\left(\sqrt{ }\left(\left(2 x^{*} e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right)\right)^{\wedge} 2+\left(2 y^{*} e^{\wedge}\left(x^{\wedge} 2+y^{\wedge} 2\right)\right)\right)^{\wedge} 2+1\right), y,-\sqrt{ }\left(1-x^{\wedge} 2\right),\right.
$$

$$
\left.\left.\sqrt{ }\left(1-x^{\wedge} 2\right)\right), x,-1,1\right) \text { Record the result below. }
$$

1c. Convert the integral in $\mathbf{1 b}$ to polar coordinates by entering
$\int\left(\int\left(r^{*} \sqrt{ }\left(4 r^{\wedge} 2^{*} e^{\wedge}(2 r \wedge 2)+1\right), r, 0,1\right), \theta, 0,2 \pi\right)$, evaluate it, and record the result below. Does this make the calculation go any faster? Did you get the same result?
2. Evaluate the triple integral $\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{4-2 x-z} \mathbf{6 x y} \boldsymbol{d y d z d x}$ by executing $\int\left(\int\left(\int\left(6 x^{*} y, y, 0,4-2 x-z\right), z, 0,4-2 x\right), x, 0,2\right)$. Record your result below.

3a. To examine the region Q between the surfaces $z=\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{4-x^{2}-y^{2}}$ you can plot each surface separately over $\mathbf{- 1 . 5} \leq \boldsymbol{x} \leq 1.5,-\mathbf{1 . 5} \leq y \leq 1.5,0 \leq z \leq 2$. Plot each surface on the axes provided below.

How would you describe in words the shape of this region?

3b. The triple integral $\iiint_{Q} z e^{\sqrt{x^{2}+y^{2}}} \boldsymbol{d V}$ is written as $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{4-r^{2}}} r z e^{r} d z d r d \theta$ when it is converted to cylindrical coordinates. Compute this integral on your calculator and record the result below.

4a. The "roof" of the region below $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+z^{2}=\mathbf{z}$ and above $\mathbf{z}=\sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}$ can be graphed on your calculator only by solving for $\mathbf{z}=2+\sqrt{4-\boldsymbol{x}^{2}-\boldsymbol{y}^{2}}$. Graph the "roof" and describe it below. This surface is readily written in spherical coordinates as $\rho=4 \boldsymbol{\operatorname { c o s }} \phi$.

4b. Sketch and describe the "floor" of the solid, $\mathbf{z}=\sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}$. Rewritten in spherical coordinates this surface can be described as $\phi=\frac{\pi}{4}$.

4c. Set up an integral in spherical coordinates which gives the volume of the solid described in $\mathbf{4 a}$ and $\mathbf{4 b}$. Evaluate the integral using your calculator and record the result below.

