Assignment 31: Vector Fields in the Plane (14.1-5) Name Please provide a handwritten response.

1a. Recall from Assignment 17 that vector fields can be drawn on your calculator. Draw the vector field for $\overrightarrow{\boldsymbol{v}}=\left\langle\mathbf{- 1}, \boldsymbol{y}^{\mathbf{2}}\right\rangle$. In order to draw this vector field on your calculator you must first express it in the form $\frac{d y}{d x}=-x^{2}$.

	TI-89	Voyage 200
DRAW A VECTOR FIELD	Set MODE to DifEq and enter the equation using \mathbf{t} for \mathbf{x} as $y 1^{\prime}=-t \wedge 2$ Set F1 9 (FORMAT) to Euler and SlpFld. Set initial conditions to $\mathbf{t 0}=\mathbf{0}$, WINDOW to $0 \leq t \leq 2$, $-2 \leq x \leq 2,-2 \leq y \leq 2$ GRAPH	Define $f(x, y)=-x^{2}$ and $y 1=f(x, y)$. Highlight and press F4 to deselect $\boldsymbol{y} \mathbf{1}$. Set WINDOW values to $-2 \leq x \leq 2,-2 \leq y \leq 2$ Run the program slopefld()

Sketch your results on the axes provided below.

1b. The flow lines of this vector field are the solutions of the separable differential equation, $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d x}}=-x^{2}$. Add flow lines to the vector field in 1a by following the directions below.

	TI-89	Voyage 200
ADD FLOW LINES	Without clearing your graph from 1a enter a list $\{-3,-2,-1,0,1,2,3\}$ in the $\bullet \mathbf{Y}=$ editor as $y i 1=\{-3,-2,-1,0,1,2,3\}$	Without clearing your graph from 1a run the program $\operatorname{slopegra}(x, y)$ multiple times for the pairs $\begin{aligned} & (-3,9),(-2,8 / 3),(-1,1 / 3), \\ & (0,0),(1,-1 / 3),(2,-8 / 3) \\ & \text { and }(3,-9) \text {. } \end{aligned}$

2a. To draw the gradient field corresponding to $f(x, y)=y \boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ on your calculator, first compute the gradient, $\nabla f(x, y)=\left[d\left(y^{*} \sin (x), x\right), d\left(y^{*} \sin (x), y\right)\right]=[y \cos x, \sin x]$ and express it in the form $\frac{d y}{d x}=\frac{\boldsymbol{\operatorname { s i n }} x}{y \cos x}$. You can then enter $y 1^{\prime}=\boldsymbol{\operatorname { s i n }}(\boldsymbol{t}) /\left(\boldsymbol{y 1} \boldsymbol{1}^{\boldsymbol{\operatorname { c o s }}(\boldsymbol{\operatorname { c o s }}(t)) \text { with a }}\right.$ window $0 \leq t \leq 2,-2 \leq x \leq 2,-2 \leq y \leq 2$, tstep $=.1$ and graph the gradient field. Sketch your results on the axes provided below.

2b. The level curves of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ can be added to the above sketch by entering the list $\{-\mathbf{1}, \mathbf{1}\}$ in yi1 as in 1b above. What general connection between level curves and the gradient vector field does this graph bring out? Record your answer below.

3a. The line integral $\oint_{C}\left(x^{2}-y\right) d x+y^{2} d y$ where C is the circle $x^{2}+y^{2}=\mathbf{1}$ oriented counterclockwise can be investigated by defining $m(x, y)=x^{\wedge} 2-y$, defining $n(x, y)=y^{\wedge} 2$, and defining $\vec{f}(x, y)=[\boldsymbol{m}(x, y), n(x, y)]$. After forming $\frac{d y}{d x}=\frac{y^{2}}{\boldsymbol{x}^{2}-y}$ you can graph the vector field by entering $\boldsymbol{y 1}=\boldsymbol{y 1} \mathbf{1}^{*} \boldsymbol{y 1} /(t \wedge 2-y 1)$ over $-1 \leq x \leq 1, \quad-1 \leq y \leq 1,-1 \leq t \leq 1$, and pressing F2 5 ZoomSqr. Your MODE is still DIFF EQUATIONS. From the graph save this picture by pressing F1, selecting 2. Save Copy As ENTER Type 2:Picture Variable pic1. Note that ZoomSqr has changed your xmin and xmax values. You can now define $\vec{r}(\boldsymbol{t})=[\boldsymbol{\operatorname { c o s }}(\boldsymbol{t}), \boldsymbol{\operatorname { s i n }}(\boldsymbol{t})]$ to parameterize the curve \boldsymbol{C}. Change your MODE to PARAMETRIC enter $\boldsymbol{x t} \mathbf{t}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{t}), \boldsymbol{y t} \boldsymbol{1}=\boldsymbol{\operatorname { s i n }}(\boldsymbol{t})$ and graph. Your calculator will keep the same window values for you. From the graph of $\boldsymbol{r}(\boldsymbol{t})$ press F1 and select 1. Open ENTER Type 2. Picture Variable pic1 and press ENTER.
You now have the vector field and region \boldsymbol{C} plotted together. Record your results on the axes below.

3b. To evaluate $\oint_{C} \boldsymbol{f}(\vec{r}) \cdot \boldsymbol{d r}$ you first need to separate the components of $\overrightarrow{\boldsymbol{r}}(\boldsymbol{t})$. You need to use the command mat\%ist $(\vec{r}(\boldsymbol{t})) \rightarrow \overrightarrow{\boldsymbol{q}}(\boldsymbol{t})$. Then the commands $\overrightarrow{\boldsymbol{q}}(\boldsymbol{t})[\mathbf{1}]$ and $\overrightarrow{\boldsymbol{q}}(\boldsymbol{t})[2]$ will give you the components of $\vec{r}(\boldsymbol{t})$. Form $\operatorname{dot} \boldsymbol{P}(f(\overrightarrow{\boldsymbol{q}}(\boldsymbol{t})[\mathbf{1}], \overrightarrow{\boldsymbol{q}}(\boldsymbol{t})[2]), \boldsymbol{d}(\vec{r}(\boldsymbol{t}), \boldsymbol{t}))$ and integrate the result over $\mathbf{0} \leq \boldsymbol{t} \leq \mathbf{2 \pi}$. Record the result of this calculation below and tell whether Green's theorem gives the same result.

3c. Now repeat the integration from part \mathbf{b} over $\frac{3 \pi}{4} \leq \boldsymbol{t} \leq \pi$. Would the graph lead you to expect a positive or negative result? Why? What result does your calculator give? Repeat the above for $\frac{3 \pi}{2} \leq t \leq 2 \pi$. Record both results below.

