Assignment 32: Vector Fields in Space (14.6-8) Name_ Please provide a handwritten response.

1a. Evaluate the surface integral $\iint_{S} g(x, y, z) dS$ for $\iint_{S} \sqrt{x^2 + y^2} dS$ where S is the hemisphere $z = \sqrt{9 - x^2 - y^2}$. You can begin by graphing the hemisphere over $-3 \le x \le 3$,

 $-3 \le y \le 3, 0 \le z \le 3$. Show your graph on the axes below.

1b. To evaluate the integral it is easier to parameterize the surface $g(x, y, z) = \sqrt{x^2 + y^2}$ using cylindrical coordinates by letting $x = r \cos(\theta)$, $y = r \sin(\theta)$ and z = r where $0 \le r \le 3$ and $0 \le \theta \le 2\pi$ than to evaluate it directly. To find *dS* you can use $dS = ||t_r \times t_{\theta}|| dA$ where $dA = r dr d\theta$. Begin by defining $t(r, \theta) = \langle r \cos \theta, r \sin \theta, \sqrt{9 - r^2} \rangle$. Then $dS = ||t_r(r, \theta) \times t_{\theta}(r, \theta)||$ where $n(r, \theta) = t_r(r, \theta) \times t_{\theta}(r, \theta)$ is a vector normal to the surface $g(x, y, z) = \sqrt{x^2 + y^2}$. Define $n(r, \theta) = c rossP(d(t(r, \theta), r), d(t(r, \theta), \theta)))$. Then $dS = norm(n(r, \theta)) * r dr d\theta$ and $\int (\int (\sqrt{9 - r^2}) * ||n(r, \theta)||, r, 0, 3), \theta, 0, 2\pi)$. Evaluate this integral and record the result below.

2a. The flux integral is $\iint_{s} F \cdot n dS$ where F(x, y, z) is the vector field $\langle y, -x, 1 \rangle$ and n is a unit normal vector. Define f(x, y, z) = [y, -x, 1]. Parameterize S over $0 \le u \le 10$ and $0 \le v \le 4\pi$ by defining $r(u, v) = [u * \cos(v), u * \sin(v), v]$ and normal vector nv(u, v) = crossP(d(r(u, v), u), d(r(u, v), v))). Define $n(u, v) = \frac{-nv(u, v)}{\|nv(u, v)\|}$. Calculate n(u, v) and record your result below.

2b. Taking the unit normal *n* to have positive z-component, would you expect $\iint_{s} F \cdot n dS$ to be positive, negative or zero? Why?

1

2c. In order to find the integrand $F \cdot ndS$, you first need to find $f(x, y, z)/x = u^* cos(v)$ and $y = u^* sin(v)$ and $z = v \rightarrow k(u, v)$ and then define fn(u, v) = dotP(k(u, v), nv(u, v)). The flux integral $\int (\int (fn(u, v), u, 1, 10), v, 0, 4\pi)$ can now be evaluated¹. Record your result below. Were your expectations in **2b** borne out?

3a. The Divergence Theorem can be used to compute $\iint_{\partial Q} F \cdot n ds$ where $F(x, y, z) = \langle x^3, y^3 - z, xy^2 \rangle$ and Q is bounded by $z = x^2 + y^2$ and z = 4 where $-2 \le x \le 2$ and $0 \le y \le 2$. The curl of F, *curl* $F = \nabla \times F$ can be readily calculated once you **Define** *curl* $f = [d(x^* y \wedge 2, y) - d(y \wedge 3 - z, z), d(x \wedge 3, z) - d(x^* y \wedge 2, x), d(y \wedge 3 - z, x) - d(x \wedge 3, y)]$ Record the result below. The divergence of F, *div* $F = \nabla \cdot F$ is also readily calculated as *div* $F = d(x \wedge 3, x) + d(y \wedge 3 - z, y) + d(x^* y \wedge 2, z)$. Record the result below. Are these results correct?

3b. Now set up (by hand) an iterated integral giving $\iiint_Q \nabla \cdot F(x, y, z) dV$ and use your calculator to evaluate it. Record the answer below.

3c. Stokes' Theorem tells you that $\iint_{S} (\nabla \times F) \cdot n \, ds$ is the same whether *S* is the bottom "bowl" or the top "lid" of ∂Q . In **3a** you found the curl of *F*, $\nabla \times F$, into which you can substitute the components of $\vec{r}(u,v) = [u^* \cos(v), u^* \sin(v), u^2]$, $0 \le u \le 2, 0 \le v \le 2\pi$. Define $\vec{r}(u,v) = [u^* \cos(v), u^* \sin(v), u^2]$ and Define $n\vec{v}(u,v) = crossP(d(r(u,v),u), d(r(u,v),v)))$. You can now calculate $curlf / x = u^* \cos(v) \text{ and } y = u^* \sin(v) \text{ and } z = u^2 \rightarrow h(u,v)$. Execute the double integral $\int (\int (dotP(h(u,v), nv(u,v)), u, 0, 2), v, 0, 2\pi)$ and record your result below. Now you can make slight modifications in the above to calculate $\iint_{S} (\nabla \times F) \cdot n \, ds$ for the lid. Record the result below. Do the two results agree?

¹ This integral evaluates very slowly.