1a. Evaluate the surface integral $\iint_{S} g(x, y, z) d S$ for $\iint_{S} \sqrt{x^{2}+y^{2}} d S$ where S is the hemisphere $\mathbf{z}=\sqrt{\mathbf{9 - \boldsymbol { x } ^ { 2 } - \boldsymbol { y } ^ { 2 }}}$. You can begin by graphing the hemisphere over $-\mathbf{3} \leq \boldsymbol{x} \leq \mathbf{3}$, $-\mathbf{3} \leq \boldsymbol{y} \leq \mathbf{3 , 0 \leq z \leq 3}$. Show your graph on the axes below.

1b. To evaluate the integral it is easier to parameterize the surface $g(x, y, z)=\sqrt{x^{2}+y^{2}}$ using cylindrical coordinates by letting $x=r \boldsymbol{\operatorname { c o s }}(\theta), \quad y=r \boldsymbol{\operatorname { s i n }}(\theta)$ and $z=r$ where $\mathbf{0} \leq \boldsymbol{r} \leq \mathbf{3}$ and $\mathbf{0} \leq \boldsymbol{\theta} \leq \mathbf{2 \pi}$ than to evaluate it directly. To find $\boldsymbol{d S}$ you can use $\boldsymbol{d} \boldsymbol{S}=\left\|\boldsymbol{t}_{r} \times \boldsymbol{t}_{\theta}\right\| d A$ where $d A=r d r d \theta$. Begin by defining $\boldsymbol{t}(r, \theta)=\left\langle r \cos \theta, r \sin \theta, \sqrt{9-r^{2}}\right\rangle$. Then $d S=\left\|t_{r}(r, \theta) \times t_{\theta}(r, \theta)\right\|$ where $n(r, \theta)=t_{r}(r, \theta) \times t_{\theta}(r, \theta)$ is a vector normal to the surface $g(x, y, z)=\sqrt{x^{2}+y^{2}}$. Define $n(r, \theta)=\operatorname{cross} P(d(t(r, \theta), r), d(t(r, \theta), \theta))$. Then $d S=n o r m(n(r, \theta)) * r d r d \theta$ and $\int\left(\int\left(\sqrt{ }\left(9-r^{\wedge} 2\right) *\|n(r, \theta)\|, r, 0,3\right), \theta, 0,2 \pi\right)$. Evaluate this integral and record the result below.

2a. The flux integral is $\iint_{s} \boldsymbol{F} \cdot \boldsymbol{n d S}$ where $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}, \mathbf{z})$ is the vector field $\langle\boldsymbol{y},-\boldsymbol{x}, \mathbf{1}\rangle$ and \boldsymbol{n} is a unit normal vector. Define $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \mathbf{z})=[\boldsymbol{y},-\boldsymbol{x}, \mathbf{1}]$. Parameterize \boldsymbol{S} over $\mathbf{0} \leq \boldsymbol{u} \leq \mathbf{1 0}$ and $0 \leq v \leq 4 \pi$ by defining $r(u, v)=\left[u^{*} \boldsymbol{\operatorname { c o s }}(v), u^{*} \boldsymbol{\operatorname { s i n }}(v), v\right]$ and normal vector $n v(u, v)=\operatorname{cross} P(d(r(u, v), u), d(r(u, v), v))$. Define $n(u, v)=\frac{-n v(u, v)}{\|n v(u, v)\|}$. Calculate $\boldsymbol{n}(\boldsymbol{u}, \boldsymbol{v})$ and record your result below.

2b. Taking the unit normal \boldsymbol{n} to have positive z-component, would you expect $\iint_{\boldsymbol{s}} \boldsymbol{F} \cdot \boldsymbol{n} \boldsymbol{d} \boldsymbol{S}$ to be positive, negative or zero? Why?

2c. In order to find the integrand $\boldsymbol{F} \cdot \boldsymbol{n d S}$, you first need to find $f(x, y, z) \mid x=u^{*} \cos (v)$ and $y=u^{*} \sin (v)$ and $z=v \rightarrow k(u, v)$ and then define $\boldsymbol{f n}(u, v)=\operatorname{dot} P(k(u, v), \boldsymbol{n v}(u, v))$. The flux integral $\int\left(\int(f n(u, v), u, 1,10), v, 0,4 \pi\right)$ can now be evaluated ${ }^{1}$. Record your result below. Were your expectations in 2b borne out?

3a. The Divergence Theorem can be used to compute $\iint_{\partial \boldsymbol{Q}} \boldsymbol{F} \cdot \boldsymbol{n d s}$ where $\boldsymbol{F}(x, y, z)=\left\langle\boldsymbol{x}^{3}, y^{3}-\mathrm{z}, \mathrm{xy}^{2}\right\rangle$ and \boldsymbol{Q} is bounded by $\mathrm{z}=\boldsymbol{x}^{2}+y^{2}$ and $\mathrm{z}=\mathbf{4}$ where $-2 \leq x \leq 2$ and $\mathbf{0} \leq \boldsymbol{y} \leq \mathbf{2}$. The curl of F , $\boldsymbol{\operatorname { c u r l }} \boldsymbol{F}=\nabla \times \boldsymbol{F}$ can be readily calculated once you Define curlf $=\left[d\left(x^{*} y^{\wedge} 2, y\right)-d\left(y^{\wedge} 3-z, z\right), d\left(x^{\wedge} 3, z\right)-d\left(x^{*} y^{\wedge} 2, x\right), d\left(y^{\wedge} 3-z, x\right)-d\left(x^{\wedge} 3, y\right)\right]$
Record the result below. The divergence of $\mathrm{F}, \operatorname{div} \boldsymbol{F}=\nabla \cdot \boldsymbol{F}$ is also readily calculated as $\operatorname{div} F=d\left(x^{\wedge} 3, x\right)+d\left(y^{\wedge} 3-z, y\right)+d\left(x^{*} y^{\wedge} 2, z\right)$. Record the result below. Are these results correct?

3b. Now set up (by hand) an iterated integral giving $\iiint_{Q} \nabla \cdot F(x, y, z) d V$ and use your calculator to evaluate it. Record the answer below.

3c. Stokes' Theorem tells you that $\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} \boldsymbol{d} \boldsymbol{s}$ is the same whether \boldsymbol{S} is the bottom "bowl" or the top "lid" of $\partial \boldsymbol{Q}$. In 3a you found the curl of $\boldsymbol{F}, \boldsymbol{\nabla} \times \boldsymbol{F}$, into which you can substitute the components of $\vec{r}(u, v)=\left[u^{*} \cos (v), u^{*} \sin (v), u^{2}\right], 0 \leq u \leq 2,0 \leq v \leq 2 \pi$. Define $\vec{r}(u, v)=\left[u^{*} \cos (v), u^{*} \sin (v), u^{2}\right]$ and Define $n \vec{v}(u, v)=\operatorname{cross} P(d(r(u, v), u), d(r(u, v), v))$. You can now calculate curlf $\mid x=u^{*} \cos (v)$ and $y=u^{*} \sin (v)$ and $z=u^{\wedge} 2 \rightarrow \boldsymbol{h}(u, v)$. Execute the double integral $\int\left(\int(\operatorname{dotP}(\boldsymbol{h}(\boldsymbol{u}, \boldsymbol{v}), \boldsymbol{n v}(\boldsymbol{u}, \boldsymbol{v})), \boldsymbol{u}, \mathbf{0}, \mathbf{2}), \boldsymbol{v}, \mathbf{0}, 2 \pi\right)$ and record your result below. Now you can make slight modifications in the above to calculate $\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n d s}$ for the lid. Record the result below. Do the two results agree?

[^0]
[^0]: ${ }^{1}$ This integral evaluates very slowly.

