Assignment 5: Limits, Part 1 (1.2) Please provide a handwritten response.

Name_____

1a. Many ordinary limits can be found with the TI-89 and the Voyage 200 using the limit command. For example, to evaluate $\lim_{x\to -3} \frac{3x+9}{x^2-9}$ you can execute the command $\lim_{x\to -3} it ((3x+9)/(x^2-9), x, -3)$. Execute this limit and record the result below.

1b. Your text suggests that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Execute $\lim it(\sin(x)/x, x, 0)$ and record your result below. Does it agree with your text?

2a. You are asked for numerical and graphical evidence regarding $\lim_{x\to 0} \frac{\tan x}{\sin x}$. Graph

 $y = \frac{\tan x}{\sin x}$ on the axes below. What value for $\lim_{x \to 0} \frac{\tan x}{\sin x}$ does this graph suggest?

2b. Next, evaluate f(-0.1), f(-0.01), etc. to complete the table below. What value for $\lim_{x\to 0} \frac{\tan x}{\sin x}$ does the table suggest?

x	f(x)
-0.1	
-0.01	
-0.001	
0.001	
0.01	
0.1	

2c. Finally, evaluate $\lim it(tan(x) / sin(x), x, 0)$ and record the result below. Did all three approaches lead you to the same conclusion?

1

3a. The example $\lim_{x\to 0} \frac{\cos x - 1}{x^2}$ shows that round-off error can cause very misleading computed results. Enter $y = \frac{\cos x - 1}{x^2}$ and complete the table below. (Be sure to count the zeros). Then evaluate $\lim it ((\cos(x) - 1) / x^2, x, 0)$ and record the result below.

x	f(x)
0.1	
0.0001	
0.0000001	
0.00000001	
0.000000001	

3b. Do you think that all of your calculator's results are correct in part a? If not, then which one(s) do you think are wrong, and why?

4a. To find one-sided limits you give the direction in the **limit** command by inserting -1 for the limit from the left. Graph the function $g(x) = \frac{x}{|x|}$ on the axes provided below.

Evaluate $\lim_{x\to 0^-} \frac{x}{|x|} = \lim it (x / abs(x), x, 0, -1)$ and record the result below.

F1+ F2+ Tools Zoom Ti	F3 F4 race ReGrapi	F5+ F6+ MathDraw	F7+SU Penic	
	-			
MAIN	RAD EXACT	FUNC		
$2.5 \le x \le$	<u> </u>	-1.5≤	$y \leq 1.$	5

4b. Now evaluate $\lim_{x\to 0^+} \frac{x}{|x|} = \lim it(x / abs(x), x, 0, 1)$ and record the result below.

4c. Now evaluate $\lim_{x\to 0} \frac{x}{|x|} = \lim_{x\to 0} it(x / abs(x), x, 0)$. Did you expect this result? Why?