Assignment 6: Limits, Part II (1.5) Please provide a handwritten response.

Name

1. We can use the calculators to conjecture limits even when the answer is $\pm \infty$. Even though $\lim _{x \rightarrow 0} \frac{\mathbf{1}}{\boldsymbol{x}}$ does not exist, it is nonetheless true that $\lim _{x \rightarrow 0^{+}} \frac{\mathbf{1}}{\boldsymbol{x}}=\infty$ and that $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. Graph $\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}}$ below. Evaluate limit $(\mathbf{1} / \boldsymbol{x}, \boldsymbol{x}, \mathbf{0},-\mathbf{1})$ and $\operatorname{limit}(\mathbf{1} / \boldsymbol{x}, \boldsymbol{x}, \mathbf{0}, \mathbf{1})$ on your calculator. Does this graph support your result?

2a. Evaluate $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$ by hand. Graph the function on the axes provided to see the graph near $\boldsymbol{x}=\mathbf{2}$.

2b. Based on this graph, what do you think $\lim _{x \rightarrow 2^{+}} \frac{4-x}{(x-2)^{2}}$ is?

2c. Based on this graph, do you think that $\lim _{x \rightarrow 2} \frac{4-x}{(x-2)^{2}}$ exists? If so, then what is its value?

2d. Evaluate limit $\left((4-x) /(x-2)^{\wedge} 2, x, 2\right)$. Is this result supported by the graph?
3. You can also use the calculator to conjecture limits when $x \rightarrow \infty$ or $x \rightarrow-\infty$ by examining the end behavior of the graph of the function. For example, conjecture
$\lim _{x \rightarrow \infty} \frac{5 x-7}{4 x+3}$ and record the graph below. Trace to the right and hold the arrow key down to form your conjecture. Is this answer correct?

4a. Find the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$. Sketch the graph of $y=\frac{x+\cos x}{3 x+2}$ below.

4b. Based on this graph, how accurately can you tell the value of $\lim _{x \rightarrow-\infty} \frac{x+\cos x}{3 x+2}$? What do you think it is?

4c. Now sketch the graph on the axes below. Can you now be more specific about the value of $\lim _{x \rightarrow-\infty} \frac{\boldsymbol{x}+\boldsymbol{\operatorname { c o s } \boldsymbol { x }}}{3 \boldsymbol{x}+2}$? Why was the graph in part a so much smoother than this one?

4d. Evaluate limit $((x+\boldsymbol{\operatorname { c o s }} \boldsymbol{x}) /(3 x+2), x,-\infty)$. On the TI-89 the symbol for ∞ is located at \leqslant CATALOG and is located at 2nd \mathbf{J} on the Voyage 200. Record your result below. Is this result surprising?

