Assignment 7: Limits, Part III (1.7)

Name \qquad Please provide a handwritten response.
1a. The function $f(x)=\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}$ can be used to illustrate the dangers of loss of significance errors. Graph $\boldsymbol{f}(\boldsymbol{x})$ for $\mathbf{1 0 0 0 0} \leq \boldsymbol{x} \leq \mathbf{1 0 0 0 0 0}$. Sketch the result below. Does this graph give any indication of the value of $\lim _{x \rightarrow \infty} f(x)$? Explain.

1b. Now evaluate the function to complete the table below. Use $\boldsymbol{y}_{\mathbf{1}} \mathbf{(1 0 0 0)}$ to $\boldsymbol{y}_{\mathbf{1}} \mathbf{(1 0 0 0 0 0 0 0)}$. You can shorten your typing by editing the current entry line (press the right arrow after an evaluation) to obtain the number in the table. \bullet ENTER will simplify your results.

x	$f(x)$
1000	
10000	
100000	
1000000	
10000000	

1c. Now evaluate the limit using limit $\left(\left(\left(x^{\wedge} 3+4\right)^{\wedge} 2-x^{\wedge} 6\right) / x^{\wedge} 3, x, \infty\right)$ and record the result below. Is it likely that all of these results are correct? Which ones are not?

1d. $f(x)=\frac{\left(x^{3}+4\right)^{2}-x^{6}}{x^{3}}$ can be rewritten as $f(x)=\frac{8 x^{3}+16}{x^{3}}$. Enter $f(x)$ in your calculator as $\boldsymbol{y}_{\mathbf{1}}$ and complete the table below with this new (but equivalent) formula for \boldsymbol{f}. Do you think these new results are more trustworthy?

x	$f(x)$
1000	
10000	
100000	
1000000	
10000000	

1e. Evaluate limit $\left(\left(8 x^{\wedge} 3+16\right) / x^{\wedge} 3, x, \infty\right)$. Is this result more accurate?
2. Scientific notation is used to write very large or very small numbers in a convenient form; for example, $\mathbf{0 0 0 0 0 0 0 0 0 0 0 2 6 7 3}$ would be written in scientific notation as $\mathbf{2 . 6 7 3 X 1 0}{ }^{-12}$. Set Mode to Float 12. Enter $2.673 * 10 \wedge(-12)$ into your calculator and record the result below.
3a. Find a value of x for which loss of significance occurs in $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$. Graph $y=\sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$ on the axes below. Based on this graph, what value would you give for $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$?

3b. Now complete the table below by evaluating $y_{\mathbf{1}}\left(1.0^{*} \mathbf{1 0} \wedge 8\right), y_{1}\left(1.0^{*} \mathbf{1 0} \wedge 9\right)$, etc. Where does loss of significance occur?

x	$g(x)$
$\mathbf{1 X 1 0}^{\mathbf{8}}$	
$\mathbf{1 X 1 0}^{9}$	
$\mathbf{1 X 1 0}^{10}$	
$\mathbf{1 X 1 0}^{11}$	
$\mathbf{1 X 1 0}^{12}$	

3c. You can rewrite y to avoid loss of significance; you can check that multiplying y by $\frac{\sqrt{x+4}+\sqrt{x+2}}{\sqrt{x+4}+\sqrt{x+2}}$ gives $y=\frac{2 \sqrt{x}}{\sqrt{x+4}+\sqrt{x+2}}$. Enter $y=\frac{2 \sqrt{x}}{\sqrt{x+4}+\sqrt{x+2}}$ as y_{1} and
complete the table below as in part \mathbf{b}. Do these results seem more reliable?

x	$g(x)$
$\mathbf{1 X 1 0}^{\mathbf{8}}$	
$\mathbf{1 X 1 0}^{9}$	
$\mathbf{1 X 1 0}^{10}$	
$\mathbf{1 X 1 0}^{11}$	
$\mathbf{1 X 1 0}^{12}$	

3d. Evaluate $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+4}-\sqrt{x+2})$ record the result below. Does it seem to be correct?
Evaluate $\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{\sqrt{x+4}+\sqrt{x+2}}$ and record the result below. Do you get the same result?
3e. Repeat parts a and b for $\lim _{x \rightarrow \infty} x\left(\sqrt{x^{3}+8}-x^{3 / 2}\right)$ and record a value of x at which loss of significance occurs.

