Assignment 7: Limits, Part III (1.7) Please provide a handwritten response.

Name_____

1a. The function $f(x) = \frac{(x^3 + 4)^2 - x^6}{x^3}$ can be used to illustrate the dangers of loss of significance errors. Graph f(x) for $10000 \le x \le 100000$. Sketch the result below. Does this graph give any indication of the value of $\lim_{x \to \infty} f(x)$? Explain.

	F1+ F2+ F3 F4 F5+ F6+ F7+S;; Too1sZoomTraceReGraphMathDrawPen;<
	MAIN RAD EXACT FUNC
1000	$0 \le x \le 100000, 7.7 \le y \le 8.3$

1b. Now evaluate the function to complete the table below. Use $y_1(1000)$ to $y_1(1000000)$. You can shorten your typing by editing the current entry line (press the right arrow after an evaluation) to obtain the number in the table. \blacklozenge ENTER will simplify your results.

<i>x</i>	f(x)
1000	
10000	
100000	
1000000	
10000000	

1c. Now evaluate the limit using *limit* $\left(\left(\left(x^3+4\right)^2 - x^6\right)/x^3, x, \infty\right)$ and record the result below. Is it likely that all of these results are correct? Which ones are not?

1d.
$$f(x) = \frac{(x^3 + 4)^2 - x^6}{x^3}$$
 can be rewritten as $f(x) = \frac{8x^3 + 16}{x^3}$. Enter $f(x)$ in your

calculator as y_1 and complete the table below with this new (but equivalent) formula for f. Do you think these new results are more trustworthy?

x	f(x)
1000	
10000	
100000	
1000000	
1000000	

1e. Evaluate *limit* $((8x^3+16)/x^3, x, \infty)$. Is this result more accurate?

1

2. Scientific notation is used to write very large or very small numbers in a convenient form; for example, .0000000002673 would be written in scientific notation as 2.673X10⁻¹². Set Mode to Float 12. Enter $2.673 \times 10^{(-12)}$ into your calculator and record the result below.

3a. Find a value of x for which loss of significance occurs in $\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$. Graph $y = \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$ on the axes below. Based on this graph, what value would you give for $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$?

 $0 \le x \le 100000, 0 \le v \le 1$

3b. Now complete the table below by evaluating $y_1(1.0*10^8)$, $y_1(1.0*10^9)$, etc. Where does loss of significance occur?

x	g(x)
1X10 ⁸	
1X10 ⁹	
1X10 ¹⁰	
1X10 ¹¹	
1X10 ¹²	

3c. You can rewrite y to avoid loss of significance; you can check that multiplying y by $\frac{\sqrt{x+4} + \sqrt{x+2}}{\sqrt{x+4} + \sqrt{x+2}}$ gives $y = \frac{2\sqrt{x}}{\sqrt{x+4} + \sqrt{x+2}}$. Enter $y = \frac{2\sqrt{x}}{\sqrt{x+4} + \sqrt{x+2}}$ as y_1 and complete the table below as in part **b**. Do these results seem more reliable?

	a (n)
<i>x</i>	g(x)
1X10 ⁸	
1X10 ⁹	
1X10 ¹⁰	
1X10 ¹¹	
1X10 ¹²	

3d. Evaluate $\lim_{x\to\infty} \sqrt{x} \left(\sqrt{x+4} - \sqrt{x+2} \right)$ record the result below. Does it seem to be correct? Evaluate $\lim_{x\to\infty} \frac{2\sqrt{x}}{\sqrt{x+4} + \sqrt{x+2}}$ and record the result below. Do you get the same result?

3e. Repeat parts **a** and **b** for $\lim_{x \to \infty} x \left(\sqrt{x^3 + 8} - x^{3/2} \right)$ and record a value of x at which loss of significance occurs.

2