Assignment 8: Derivatives of Explicit Functions (2.1-9) Name Please provide a handwritten response.

1a. The TI calculators will graph both a function and its derivative. Graph $\boldsymbol{f}(\boldsymbol{x})=\mathbf{3} \boldsymbol{x}^{\mathbf{3}}+\mathbf{2 x} \mathbf{- 1}$ by entering the function as $\boldsymbol{y} \mathbf{1}$ and graph the derivative as $\boldsymbol{y} \mathbf{2}$. The derivative is entered as 2nd 8 (d). The syntax is d(expression,variable(,order)). Graph $f(x)=3 x^{3}+2 x-1$ and its derivative as $\boldsymbol{y} \mathbf{2}=\boldsymbol{d}(\mathbf{3 x} \wedge 3+2 x-1, x)$ or as $\boldsymbol{y} \mathbf{2}=\boldsymbol{d}(\boldsymbol{y} \mathbf{1}(\boldsymbol{x}), \boldsymbol{x})$ and record the result below. Use different line styles for the function and its derivative.

$$
-1.5 \leq x \leq 1.5,-10 \leq y \leq 10
$$

$\mathbf{1 b}$. The slope $\boldsymbol{m}_{\tan }$ line tangent to the graph of \boldsymbol{f} at, say, $\boldsymbol{x}=\mathbf{1}$ is given by $\boldsymbol{y} \mathbf{2 (1)}$. Execute $\boldsymbol{y} \mathbf{2}$ (1) to see that $\boldsymbol{m}_{\tan }=11$ in this case. Also execute $\boldsymbol{y} \mathbf{1 (1)}$ to see that $\boldsymbol{y}=\mathbf{4}$ when $\boldsymbol{x}=\mathbf{1}$. The equation of the tangent line at $\boldsymbol{x}=\mathbf{1}$ is $\boldsymbol{y}=\mathbf{1 1}(\boldsymbol{x}-\mathbf{1})+\mathbf{4}=\mathbf{1 1} \boldsymbol{x}-\mathbf{7}$. Now, graph both $y_{1}=3 x^{3}+2 x-1$ and $y_{3}=11 x-7$ together on the same set of axes (select y_{1} and y_{3} using F4). You can also draw the tangent line using the Math menu from the graph of $\boldsymbol{y}_{1}=\mathbf{3} \boldsymbol{x}^{3}+\mathbf{2 x} \mathbf{x} \mathbf{1}$. Select F5 (Math) A (Tangent). Once you have pressed ENTER type 1, at the tangent at ? prompt. When you press ENTER again calculator will graph the tangent line and give its equation. Does the tangent line really look as though its slope is $\mathbf{1 1}$? Why?

Graph \boldsymbol{y}_{1} and \boldsymbol{y}_{3}

$-1.5 \leq x \leq 1.5,-10 \leq y \leq 10$
Use DRAW Menu
2. Graph $\boldsymbol{y}=\boldsymbol{\operatorname { s i n }} \frac{\mathbf{2 x}}{\boldsymbol{x}+\boldsymbol{1}}$ and its first and second derivatives on the axes provided. To graph the second derivative $f^{\prime \prime}$ of $\boldsymbol{y} \mathbf{1}=\sin \frac{2 x}{x+1}$ use $y \mathbf{3}=\boldsymbol{d}(\sin (2 x /(x+1)), x, 2)$. (The first derivative is $\boldsymbol{y} \mathbf{2}=\boldsymbol{d}(\sin (2 x /(x+1)), x)$). Label which is which.

3a. Differentiate $f(x)=x^{2} e^{\sin x}$ by entering $d\left(x^{\wedge} 2^{*} e^{\wedge}(\sin (x)), x\right)$. Record your results below.

3b. Plot the first derivative of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2} \boldsymbol{e}^{\sin x}$ on the axes (on the left) provided below (Enter $y_{1}=f(x), y_{2}=f^{\prime}(x)$. Use the select option to turn y_{1} off.)

3c. According to the definition of derivative, if \boldsymbol{h} is a small fixed number, then the difference quotient $\frac{\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{x})}{\boldsymbol{h}}$ should be close to $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, and so their graphs should lie close together. For the moment let's choose $\boldsymbol{h}=\mathbf{0 . 5}$. Now plot $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ and the difference quotient on the same set of axes (on the right) below. Enter $y_{1}=x^{2} e^{\sin x}, y_{2}=$ derivative of y_{1}, and $y_{3}=\left(y_{1}(x+0.5)-y_{1}(x)\right) /(0.5)$. Do not plot \boldsymbol{y}_{1}. Use different line styles for \boldsymbol{y}_{2} and \boldsymbol{y}_{3}.

$-4 \leq x \leq 4,-10 \leq y \leq 10$

3d. Change the $\mathbf{0 . 5}$ to $\mathbf{0 . 4}$ in the difference quotient in part \mathbf{c}. Repeat parts \mathbf{b} and \mathbf{c} again. Are the two graphs closer? Can you still tell them apart?

3e. Experiment with smaller and smaller values of \boldsymbol{h} until the graphs of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ and the difference quotient over $\mathbf{- 4 \leq x \leq 4}$ become indistinguishable on your calculator screen. How small does \boldsymbol{h} have to be for this to happen?

